Evaluation of the Influence of Rootstock Type on the Yield Parameters of Vines Using a Mathematical Model in Nontraditional Wine-Growing Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Measurements and Statistical Analysis
2.2. Model Development and Optimization
3. Results and Discussion
3.1. Summary of 5-Year Observation
3.2. Model Optimization Result and Its Final Accuracy
3.3. Case Study with the Presented Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
101-14 Mgt | Rootstock 101-14 Millardet et de Grasset |
125 AA | Rootstock KOBER 125 AA |
161-49C | Rootstock 161-49 Couderc |
5 BB | Rootstock KOBER 5 BB |
Berry weight [g], measured or from raw interpolation | |
Cluster weight [g] | |
Extract Brix, measured or from raw interpolation | |
Number of berries [pcs], measured or from raw interpolation | |
Number of clusters [pcs], measured or from raw interpolation | |
Polynomial coefficient | |
interaction coefficient of model for a denoted pair of parameters | |
Seasonal sum of precipitation [mm] | |
Seasonal sum of precipitation [mm] | |
Rootstock Selektion Oppenheim 4 | |
Rootstock SORI | |
Average seasonal temperature [°C] | |
Standard deviation of temperature in season [°C] | |
Value of denoted variable, modeled including interactions | |
Grape yield per hectare [t/ha] |
References
- Cancelli, U.; Montevecchi, G.; Masino, F.; Mayer-Laigle, C.; Rouau, X.; Antonelli, A. Grape Stalk: A First Attempt to Disentangle Its Fibres via Electrostatic Separation. Food Bioprod. Process. 2020, 124, 455–468. [Google Scholar] [CrossRef]
- Bettenfeld, P.; Canals, J.C.I.; Jacquens, L.; Fernandez, O.; Fontaine, F.; van Schaik, E.; Courty, P.E.; Trouvelot, S. The Microbiota of the Grapevine Holobiont: A Key Component of Plant Health. J. Adv. Res. 2021. [Google Scholar] [CrossRef]
- Alston, J.M.; Sambucci, O. Grapes in the World Economy. In The Grape Genome; Cantu, D., Walker, M.A., Eds.; Compendium of Plant Genomes; Springer International Publishing: Cham, Switzerland, 2019; pp. 1–24. [Google Scholar] [CrossRef]
- FAOSTAT, (Food and Agriculture Organization). Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 6 July 2022).
- Myśliwiec, R. Uprawa Winorośli; Plantpress: Kraków, Poland, 2009. [Google Scholar]
- Raddova, J.; Stefkova, A.; Sotolar, R.; Baranek, M. Genetic Analysis of Vitis Interspecific Hybrids Occurring in Vineyards of the Czech Republic. Pak. J. Bot. 2016, 48, 681–688. [Google Scholar]
- De la Fuente Lloreda, M. Use of Hybrids in Viticulture. A Challenge for the OIV. OENO One 2018, 52, 231–234. [Google Scholar] [CrossRef]
- Xie, L.; Wang, P.; Luo, J.; Yi, W.; Deng, J. Optimisation and Numerical Simulation of Shearing Blade Used for Citrus Seedling Grafting. Biosyst. Eng. 2022, 215, 67–79. [Google Scholar] [CrossRef]
- Koundouras, S.; Tsialtas, I.T.; Zioziou, E.; Nikolaou, N. Rootstock Effects on the Adaptive Strategies of Grapevine (Vitis Vinifera L. Cv. Cabernet–Sauvignon) under Contrasting Water Status: Leaf Physiological and Structural Responses. Agric. Ecosyst. Environ. 2008, 128, 86–96. [Google Scholar] [CrossRef]
- Hajdu, E.; Korac, N.; Cindric, P.; Ivanisevic, D.; Medic, M. The Importance of Clonal Selection of Grapevine and the Role of Selected Clones in Production of Healthy Propagating Stocks. Int. J. Hortic. Sci. 2011, 17, 15–24. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Guo, Z.; Jia, N.; Yuan, J.; Han, B.; Yin, Y.; Sun, Y.; Liu, C.; Zhao, S. Evaluation of Eight Rootstocks on the Growth and Berry Quality of ‘Marselan’ Grapevines. Sci. Hortic. 2019, 248, 58–61. [Google Scholar] [CrossRef]
- da Silva, M.J.R.; Paiva, A.P.M.; Pimentel, A.; Sánchez, C.A.P.C.; Callili, D.; Moura, M.F.; Leonel, S.; Tecchio, M.A. Yield Performance of New Juice Grape Varieties Grafted onto Different Rootstocks under Tropical Conditions. Sci. Hortic. 2018, 241, 194–200. [Google Scholar] [CrossRef] [Green Version]
- Robinson, J. The Oxford Companion to Wine, 2nd ed.; Oxford University Press: Oxford, UK; New York, NY, USA, 1999. [Google Scholar]
- Medrano, H.; Tomás, M.; Martorell, S.; Escalona, J.M.; Pou, A.; Fuentes, S.; Flexas, J.; Bota, J. Improving Water Use Efficiency of Vineyards in Semi-Arid Regions. A Review. Agron. Sustain. Dev. 2015, 35, 499–517. [Google Scholar] [CrossRef] [Green Version]
- Sivilotti, P.; Zulini, L.; Peterlunger, E.; Petrussi, C. Sensory Properties of ’Cabernet Sauvignon’ Wines as Affected by Rootstock and Season. Acta Hortic. 2007, 754, 443–448. [Google Scholar] [CrossRef]
- Sabir, A.; Doğan, Y.; Tangolar, S.; Kafkas, S. Analysis of Genetic Relatedness among Grapevine Rootstocks by AFLP (Amplified Fragment Length Polymorphism) Markers. J. Food Agric. Environ. 2010, 8, 210–213. [Google Scholar]
- Keller, M.; Mills, L.J.; Harbertson, J.F. Rootstock Effects on Deficit-Irrigated Winegrapes in a Dry Climate: Vigor, Yield Formation, and Fruit Ripening. Am. J. Enol. Vitic. 2012, 63, 29–39. [Google Scholar] [CrossRef]
- de Souza, C.R.; da Mota, R.V.; França, D.V.C.; Pimentel, R.M.d.A.; Regina, M.D.A. Cabernet Sauvignon Grapevine Grafted onto Rootstocks during the Autumn-Winter Season in Southeastern Brazilian. Sci. Agric. 2015, 72, 138–146. [Google Scholar] [CrossRef] [Green Version]
- Vilanova, M.; Genisheva, Z.; Tubío, M.; Alvarez, K.; Lissarrague, J.R.; Oliveira, J.M. Rootstock Effect on Volatile Composition of Albariño Wines. Appl. Sci. 2021, 11, 2135. [Google Scholar] [CrossRef]
- Rizk-Alla, M.S.; Sabry, G.H.; Abd-El-Wahab, M.A. Influence of Some Rootstocks on the Performance of Red Globe Grape Cultivar. J. Am. Sci. 2011, 7, 71–81. [Google Scholar]
- Sampaio, T.L.B. Using Rootstocks to Manipulate Vine Physiological Performance and Mediate Changes in Fruit and Wine Composition; Oregon State University: Corvallis, OR, USA, 2007. [Google Scholar]
- Kapłan, M.; Klimek, K.; Borowy, A.; Najda, A. Effect of Rootstock on Yield Quantity and Quality of Grapevine ‘Regent’ in southeastern Poland. Acta Sci. Pol. Hortorum Cultus 2018, 17, 117–127. [Google Scholar] [CrossRef]
- Hedberg, P.R.; McLeod, R.; Cullis, B.; Freeman, B.M. Effect of Rootstock on the Production, Grape and Wine Quality of Shiraz Vines in the Murrumbidgee Irrigation Area. Aust. J. Exp. Agric. 1986, 26, 511–516. [Google Scholar] [CrossRef]
- Miller, D.P.; Howell, G.S.; Striegler, R.K. Cane and Bud Hardiness of Selected Grapevine Rootstocks. Am. J. Enol. Vitic. 1988, 39, 55–59. [Google Scholar]
- Miller, D.P.; Howell, G.S.; Striegler, R.K. Cane and Bud Hardiness of Own-Rooted White Riesling and Scions of White Riesling and Chardonnay Grafted to Selected Rootstocks. Am. J. Enol. Vitic. 1988, 39, 60–66. [Google Scholar]
- Palliotti, A.; Cartechini, A.; Proietti, P. Influence of rootstock and height of training system on spring frost sensibility of Chardonnay and Cabernet Sauvignon grape cultivars in the Umbria region. Ann. Della Fac. Agrar. Univ. Degli Studi Perugia Italy 1991, 45, 283–291. [Google Scholar]
- Ferree, D.C.; Cahoon, G.A.; Ellis, M.A.; Scurlock, D.M.; Johns, G.R. Influence of Eight Rootstocks on the Performance of ’White Riesling’ and ’Cabernet Franc’ over Five Years. Fruit Var. J. 1996, 50, 124–130. [Google Scholar]
- Wunderer, W.; Fardossi, A.; Schmuckenschlager, J. Influence of Three Different Rootstock Varieties and Two Training Systems on the Efficiency of the Grape Cultivar Grüner Veltliner in Klosterneuburg. Mitteilungen Klosterneubg. Rebe Wein Obstbau FrÜchteverwertung 1999, 49, 57–64. [Google Scholar]
- Sommer, K.J.; Islam, M.; Clingeleffer, P.R. Sultana Fruitfulness and Yield as Influenced by Season, Rootstock and Trellis Type. Aust. J. Grape Wine Res. 2001, 7, 19–26. [Google Scholar] [CrossRef]
- Satisha, J.; Somkuwar, R.G.; Sharma, J.; Upadhyay, A.K.; Adsule, P.G. Influence of Rootstocks on Growth Yield and Fruit Composition of Thompson Seedless Grapes Grown in the Pune Region of India. S. Afr. J. Enol. Vitic. 2010, 31, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Boselli, M.; Fregoni, M.; Vercesi, A.; Volpe, B. Variation in Mineral Composition and Effects on the Growth and Yield of Chardonnay Grapes on Various Rootstocks. Agric. Ric. 1992, 14, 138–139. [Google Scholar]
- Ferroni, G.; Scalabrelli, G. Effect of Rootstock on Vegetative Activity and Yield in Grapevine. Acta Hortic. ISHS 1993, 388, 37–42. [Google Scholar] [CrossRef]
- Reynolds, A.; Wardle, D. Performance of ‘Gewurztraminer’ (Vitis Vinifera L.) on Three Rootsystems. Fruit Var. J. 1995, 49, 31–33. [Google Scholar]
- Reynolds, A.; Wardle, D. Rootstocks Impact Vine Performance and Fruit Composition of Grapes in British Columbia. Hortic. Technol. 2001, 11, 419–427. [Google Scholar] [CrossRef] [Green Version]
- Loomis, N.H. Effect of Fourteen Rootstocks on Yield, Vigor, and Longevity of Twelve Varieties of Grapes at Meridian, Mississippi. Proc. Am. Soc. Hortic. Sci. 1952, 59, 125–132. [Google Scholar]
- Hedberg, P. Increased Winegrapes Yields with Rootstocks. Farmers Newsl. 1980, 147, 22–24. [Google Scholar]
- Novello, V.; De Palma, L.; Bica, D. Rootstock Effects on Vegetative-Productive Indices in Grapevine Cv Erbaluce Trained to Pergola System. Acta Hortic. 1996, 427, 233–240. [Google Scholar] [CrossRef]
- Menora, N.; Joshi, V.; Kumar, V.; Vijaya, D.; Debnath, M.; Pattanashe, S.; Padmavatha, A.; Variath, M.; Biradar, S.; Khadakabhavi, S. Influence of Rootstock on Bud Break, Period of Anthesis, Fruit Set, Fruit Ripening, Heat Unit Requirement and Berry Yield of Commercial Grape Varieties. Int. J. Plant Breed. Genet. 2015, 9, 126–135. [Google Scholar] [CrossRef] [Green Version]
- Nordey, T.; Schwarz, D.; Kenyon, L.; Manickam, R.; Huat, J. Tapping the Potential of Grafting to Improve the Performance of Vegetable Cropping Systems in Sub-Saharan Africa. A Review. Agron. Sustain. Dev. 2020, 40, 23. [Google Scholar] [CrossRef]
- Palacios, F.; Melo-Pinto, P.; Diago, M.P.; Tardaguila, J. Deep Learning and Computer Vision for Assessing the Number of Actual Berries in Commercial Vineyards. Biosyst. Eng. 2022, 218, 175–188. [Google Scholar] [CrossRef]
- Mio, A.; Bertagna, S.; Cozzarini, L.; Laurini, E.; Bucci, V.; Marinò, A.; Fermeglia, M. Multiscale Modelling Techniques in Life Cycle Assessment: Application to Nanostructured Polymer Systems in the Maritime Industry. Sustain. Mater. Technol. 2021, 29, e00327. [Google Scholar] [CrossRef]
- Mammarella, M.; Comba, L.; Biglia, A.; Dabbene, F.; Gay, P. Cooperation of Unmanned Systems for Agricultural Applications: A Case Study in a Vineyard. Biosyst. Eng. 2021. [Google Scholar] [CrossRef]
- Shamshiri, R. Measuring Optimality Degrees of Microclimate Parameters in Protected Cultivation of Tomato under Tropical Climate Condition. Measurement 2017, 106, 236–244. [Google Scholar] [CrossRef]
- Barkunan, S.R.; Bhanumathi, V.; Balakrishnan, V. Automatic Irrigation System with Rain Fall Detection in Agricultural Field. Measurement 2020, 156, 107552. [Google Scholar] [CrossRef]
- Villaverde, A.F.; Fröhlich, F.; Weindl, D.; Hasenauer, J.; Banga, J.R. Benchmarking Optimization Methods for Parameter Estimation in Large Kinetic Models. Bioinformatics 2019, 35, 830–838. [Google Scholar] [CrossRef]
- Ugray, Z.; Lasdon, L.; Plummer, J.; Glover, F.; Kelly, J.; Martí, R. Scatter Search and Local NLP Solvers: A Multistart Framework for Global Optimization. INFORMS J. Comput. 2007, 19, 328–340. [Google Scholar] [CrossRef]
- Postawa, K.; Szczygieł, J.; Kułażyński, M. Methods for Anaerobic Digestion Model Fitting–Comparison between Heuristic and Automatic Approach. Biomass Convers. Biorefinery 2020. [Google Scholar] [CrossRef]
- Kamİloğlu, Ö. The Effects of Rootstocks and Training Systems on the Growth and Fruit Quality of the ’Round Seedless’ Grape. J. Food Agric. Environ. 2012, 10, 350–354. [Google Scholar]
- Ilhan, I.; Yilmaz, N.; Gokçay, E. Comparision of Some Rootstocks Used for ‘Round Seedless’ Grape Variety from the Point of Yield and Quality. In Proceedings of the 4th Viticulture Symposium, Yalova, Turkey, 20–23 October 1998; pp. 212–216. [Google Scholar]
- Çelik, M.; Kismali, İ. The Researches on the Effects of Some Rootstocks on Yield, Quality and Vegetative Growth of Round Seedless Cultivar. J. Agric. Fac. Ege Univ. 2003, 40, 1–8. [Google Scholar]
- Main, G.; Morris, J.R.; Striegler, K. Rootstock Effects on Chardonel Productivity, Fruit, and Wine Composition. Am. J. Enol. Vitic. 2002, 53, 37–40. [Google Scholar]
Air Temperature, °C | ||||||||
IV | V | VI | VII | VIII | IX | X | Mean from IV to X °C | |
2016 | 9.5 | 14.7 | 19.1 | 19.4 | 17.8 | 15.6 | 7.3 | 14.8 |
2017 | 7.6 | 14.1 | 18.7 | 18.7 | 19.6 | 13.3 | 9.0 | 14.4 |
2018 | 14.0 | 17.6 | 19.2 | 20.5 | 20.4 | 15.7 | 9.8 | 16.7 |
2019 | 10.0 | 13.3 | 22.6 | 19.2 | 20.4 | 14.5 | 10.4 | 15.8 |
2020 | 9.5 | 11.9 | 18.6 | 19.3 | 20.5 | 15.3 | 9.9 | 15.0 |
Averagetemperature | 10.1 | 14.3 | 19.6 | 19.4 | 19.7 | 14.9 | 9.3 | 15.3 |
Mean (1988–2008) | 8.8 | 14.2 | 16.9 | 19.1 | 18.4 | 13.4 | 8.6 | 14,2 |
Total precipitation, mm | ||||||||
IV | V | VI | VII | VIII | IX | X | ∑ precipitation | |
2016 | 22.4 | 38.0 | 21.0 | 55.2 | 47.4 | 17.2 | 36.6 | 237.8 |
2017 | 80.6 | 49.6 | 31.4 | 26.6 | 44.2 | 77.0 | 72.4 | 381.8 |
2018 | 15.4 | 45.2 | 40.4 | 86.6 | 66.2 | 38.4 | 33.4 | 325.6 |
2019 | 42.2 | 59.6 | 14.4 | 36.4 | 51.4 | 45.6 | 35.0 | 284.6 |
2020 | 11.0 | 54.6 | 64.2 | 44.0 | 43.8 | 58.2 | 78.2 | 354.0 |
Average precipitation | 34.3 | 49.4 | 34.3 | 49.8 | 50.6 | 47.3 | 51.1 | 316.8 |
Mean (1988–2008) | 45.7 | 57.0 | 68.7 | 82.4 | 58.7 | 57.0 | 37.9 | 361.7 |
Average Number of Cluster (pcs) | Cluster Weight (g) | Number of Berries per Cluster (pcs) | Berry Weight (g) | Extract, Brix | Yield (kg·vine−1) | Yield (t·ha−1) | ||
---|---|---|---|---|---|---|---|---|
Combination (A) | 101-14 Mgt | 18.6 ±1.7 | 101.8 ±25.3 | 84.2 ±17.5 | 1.20 ± 0.1 | 19.5 ± 1.2 | 1.9 ± 0.6 | 9.6 ± 3.0 |
SORI | 18.5 ± 2.1 | 108.9 ± 36.2 | 87.7 ± 23.2 | 1.2 ± 0.2 | 20.5 ± 1.6 | 2.1 ± 0.8 | 10.4 ± 4.1 | |
161-49 C | 17.8 ± 2.8 | 99.0 ± 17.5 | 75.7 ± 11.3 | 1.3 ± 0.1 | 20.6 ± 1.7 | 1.8 ± 0.5 | 8.9 ± 2.5 | |
5 BB | 18.7 ± 2.8 | 97.2 ± 28.9 | 76.9 ± 17.2 | 1.3 ± 0.1 | 20.7 ± 1.6 | 1.9 ± 0.7 | 9.3 ± 3.8 | |
SO4 | 20.1 ± 2.5 | 113.7 ± 29.8 | 88.3 ± 19.6 | 1.3 ± 0.1 | 21.6 ± 2.2 | 2.4 ± 0.8 | 11.8 ± 4.2 | |
125 AA | 20.9 ± 2.5 | 133.8 ± 36.1 | 85.8 ± 22.6 | 1.6 ± 0.1 | 20.8 ± 1.6 | 2.9 ± 0.9 | 14.4 ± 4.8 | |
Own root | 20.5 ± 2.4 | 114.8 ± 35.2 | 87.7 ± 21.1 | 1.3 ± 0.1 | 21.2 ± 1.5 | 2.4 ± 0.9 | 12.1 ± 4.6 | |
p-value * | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Year (B) | 2016 | 19.7 ± 2.3 | 123.8 ± 21.3 | 91.2 ± 7.7 | 1.4 ± 0.2 | 21.1 ± 0.6 | 2.5 ± 0.6 | 12.3 ± 3.2 |
2017 | 18.2 ± 2.2 | 103.4 ± 18.4 | 81.3 ± 5.5 | 1.3 ± 0.2 | 19.6 ± 0.7 | 1.9 ± 0.5 | 9.6 ± 2.7 | |
2018 | 21.5 ± 1.1 | 148.5 ± 18.4 | 109.3 ± 10.3 | 1.4 ± 0.1 | 22.9 ± 1.3 | 3.2 ± 0.5 | 16.1 ± 2.5 | |
2019 | 21.2 ± 0.9 | 109.9 ± 13.4 | 83.9 ± 7.7 | 1.3 ± 0.1 | 21.3 ± 0.1 | 2.3 ± 0.3 | 11.6 ± 1.6 | |
2020 | 15.8 ± 0.4 | 63.9 ± 6.7 | 53.1 ± 2.6 | 1.2 ± 0.1 | 18.5 ± 0.4 | 1.0 ± 0.1 | 5.0 ± 0.6 | |
p-value * | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
A×B | p-value * | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Number of Clusters (pcs) | Cluster Weight (g) | Number of Berries per Cluster (pcs) | Berry Weight (g) | Extract, °Brix | Yield (kg·vine−1) | Yield (t·ha−1) | |
---|---|---|---|---|---|---|---|
Number of clusters (pcs) | 1 | ||||||
Cluster weight (g) | 0.7770 <0.0001 | 1 | |||||
Number of berries per cluster (pcs) | 0.7458 <0.0001 | 0.9155 <0.0001 | 1 | ||||
Berry weight (g) | 0.4801 <0.0001 | 0.6749 <0.0001 | 0.3289 <0.0001 | 1 | |||
Extract, °Brix | 0.7707 <0.0001 | 0.7624 <0.0001 | 0.7705 <0.0001 | 0.3951 <0.0001 | 1 | ||
Yield (kg·vine−1) | 0.8793 <0.0001 | 0.9781 <0.0001 | 0.8946 <0.0001 | 0.6571 <0.0001 | 0.7983 <0.0001 | 1 | |
Yield (t·ha−1) | 0.8793 <0.0001 | 0.9781 <0.0001 | 0.8946 <0.0001 | 0.6571 <0.0001 | 0.7983 <0.0001 | 0.9789 <0.0001 | 1 |
Number of Clusters (pcs) | Cluster Weight (g) | Number of Berries per Cluster (pcs) | Berry Weight (g) | Extract, °Brix | Yield (kg·vine−1) | Yield (t·ha−1) | |
---|---|---|---|---|---|---|---|
Year | −0.2617 | −0.4993 | −0.5317 | −0.2330 | −0.2807 | −0.4131 | −0.4135 |
0.0005 | <0.0001 | <0.0001 | 0.0019 | 0.0002 | <0.0001 | <0.0001 |
Number of Clusters (pcs) | Number of Berries per Cluster (pcs) | Berry Weight (g) | Extract, °Brix | |
---|---|---|---|---|
Short name | NC | NB | BW | EB |
Number of clusters (pcs) | 1 | 0.7458 <0.0001 | 0.4801 <0.0001 | 0.7707 <0.0001 |
Number of berries per clusters (pcs) | 0.7458 <0.0001 | 1 | 0.3289 <0.0001 | 0.7705 <0.0001 |
Berry weight (g) | 0.4801 <0.0001 | 0.3289 <0.0001 | 1 | 0.3951 <0.0001 |
Extract, °Brix | 0.7707 <0.0001 | 0.7705 <0.0001 | 0.3951 <0.0001 | 1 |
Rootstock Type/Variable | NC | NB | BW | EB | Total | ||
---|---|---|---|---|---|---|---|
101-14 Mgt | Change | [%] | 7.22 | 26.83 | 1.43 | 2.16 | 11.32 |
Final error | [%] | 1.82 | 2.89 | 4.21 | 1.17 | 10.09 | |
SORI | Change | [%] | 1.04 | 45.77 | 0.65 | 2.72 | 17.74 |
Final error | [%] | 1.79 | 3.36 | 7.28 | 1.17 | 13.60 | |
161-49C | Change | [%] | 0.95 | 1.61 | 3.28 | 3.36 | 2.57 |
Final error | [%] | 1.14 | 1.95 | 3.83 | 1.14 | 8.06 | |
5 BB | Change | [%] | −0.77 | 2.75 | −0.49 | −2.10 | 0.70 |
Final error | [%] | 1.11 | 4.89 | 4.16 | 1.36 | 11.53 | |
SO4 | Change | [%] | 3.85 | 79.54 | 2.59 | 17.54 | 35.46 |
Final error | [%] | 0.93 | 0.86 | 3.52 | 1.63 | 6.95 | |
125 AA | Change | [%] | 1.51 | 6.02 | 0.53 | 0.69 | 4.10 |
Final error | [%] | 0.90 | 8.17 | 2.69 | 1.34 | 13.11 | |
Own root | Change | [%] | 2.25 | 83.46 | 1.09 | 1.18 | 36.46 |
Final error | [%] | 1.35 | 0.93 | 5.10 | 0.98 | 8.36 | |
Mean | Change | [%] | 2.29 | 35.14 | 1.30 | 3.65 | 15.48 |
Final error | [%] | 1.29 | 3.29 | 4.40 | 1.26 | 10.24 |
Case | Temp. | Rainfall | Best | Yield | Worst | Yield |
---|---|---|---|---|---|---|
[°C] | [mm] | [kg/vine] | [kg/vine] | |||
1 | High | High | Own root | 9.413 | 161-49C | 2.406 |
2 | High | Mid | Own root | 3.617 | 161-49C | 2.578 |
3 | High | Low | 125 AA | 13.47 | 161-49C | 5.420 |
4 | Mid | High | Own root | 4.469 | 161-49C | 1.841 |
5 | Mid | Mid | 125 AA | 1.233 | Own root | 0.8444 |
6 | Mid | Low | 125 AA | 5.881 | 161-49C | 2.749 |
7 | Low | High | 125 AA | 2.727 | 5 BB | 1.273 |
8 | Low | Mid | 161-49C | 0.5143 | Own root | 0.01241 |
9 | Low | Low | 125 AA | 2.680 | 161-49C | 1.401 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klimek, K.; Postawa, K.; Kapłan, M.; Kułażyński, M. Evaluation of the Influence of Rootstock Type on the Yield Parameters of Vines Using a Mathematical Model in Nontraditional Wine-Growing Conditions. Appl. Sci. 2022, 12, 7293. https://doi.org/10.3390/app12147293
Klimek K, Postawa K, Kapłan M, Kułażyński M. Evaluation of the Influence of Rootstock Type on the Yield Parameters of Vines Using a Mathematical Model in Nontraditional Wine-Growing Conditions. Applied Sciences. 2022; 12(14):7293. https://doi.org/10.3390/app12147293
Chicago/Turabian StyleKlimek, Kamila, Karol Postawa, Magdalena Kapłan, and Marek Kułażyński. 2022. "Evaluation of the Influence of Rootstock Type on the Yield Parameters of Vines Using a Mathematical Model in Nontraditional Wine-Growing Conditions" Applied Sciences 12, no. 14: 7293. https://doi.org/10.3390/app12147293
APA StyleKlimek, K., Postawa, K., Kapłan, M., & Kułażyński, M. (2022). Evaluation of the Influence of Rootstock Type on the Yield Parameters of Vines Using a Mathematical Model in Nontraditional Wine-Growing Conditions. Applied Sciences, 12(14), 7293. https://doi.org/10.3390/app12147293