Identification by GC-MS Analysis of Organics in Manufactured Articles through a D-Optimal Design
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Solvents
2.2. Samples
2.3. Chemometric Model
2.4. Samples Preparation
2.4.1. Soxhlet Extraction
2.4.2. Sonication Extraction
2.5. GC-MS Analyses
- For the 24 min analysis: held at 50 °C for 2.0 min, increased to 300 °C at a rate of 15 °C min−1 and maintained at 300 °C for 5.33 min.
- For the 30 min analysis: held at 60 °C for 2.0 min, increased to 300 °C at a rate of 15 °C min−1 and maintained at 300 °C for 12 min.
- The EI energy was 70 eV and it was held at 230 °C. A solvent delay of 4 min was set. Detection was carried out in full scan mode covering a mass range (m/z) of 29–600 amu.
Compound Identification
3. Results
3.1. Chemometric Model
3.2. GC-MS Analysis
3.2.1. Samples A to F
3.2.2. Samples W to Z
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pilato, L. Phenolic resins: 100 Years and still going strong. React. Funct. Polym. 2013, 73, 270–277. [Google Scholar] [CrossRef]
- Dante, R.C. Handbook of Friction Materials and Their Applications; Woodhead Publishing: Thorston, UK, 2015. [Google Scholar]
- Pilato, L. Phenolic Resins: A Century of Progress; Springer: Berlin/Heidelberg, Germany, 2010; Volume 11. [Google Scholar]
- Zhang, N.; Li, Z.; Xiao, Y.; Pan, Z.; Jia, P.; Feng, G.; Bao, C.; Zhou, Y.; Hua, L. Lignin-based phenolic resin modified with whisker silicon and its application. J. Bioresour. Bioprod. 2020, 5, 67–77. [Google Scholar] [CrossRef]
- Hong, U.; Jung, S.; Cho, K.; Cho, M.; Kim, S.; Jang, H. Wear mechanism of multiphase friction materials with different phenolic resin matrices. Wear 2009, 266, 739–744. [Google Scholar] [CrossRef]
- Gunka, V.; Demchuk, Y.; Sidun, I.; Miroshnichenko, D.; Nyakuma, B.B.; Pyshyev, S. Application of phenol-cresol-formaldehyde resin as an adhesion promoter for bitumen and asphalt concrete. Road Mater. Pavement Des. 2021, 22, 2906–2918. [Google Scholar] [CrossRef]
- Bijwe, J. NBR-modified resin in fade and recovery module in non-asbestos organic (NAO) friction materials. Tribol. Lett. 2007, 27, 189–196. [Google Scholar]
- Natarajan, M.; Murugavel, S.C. Synthesis, spectral and thermal degradation kinetics of novolac resins derived from cardanol. High Perform. Polym. 2013, 25, 685–696. [Google Scholar] [CrossRef]
- Parameswaran, P.; Abraham, B.; Thachil, E. Cardanol-based Resol Phenolics–A Comparative Study. Prog. Rubber Plast. Recycl. Technol. 2010, 26, 31–50. [Google Scholar] [CrossRef]
- Jia, P.; Song, F.; Li, Q.; Xia, H.; Li, M.; Shu, X.; Zhou, Y. Recent development of cardanol based polymer materials-a review. J. Renew. Mater. 2019, 7, 601–619. [Google Scholar] [CrossRef] [Green Version]
- Sultania, M.; Rai, J.; Srivastava, D. A study on the kinetics of condensation reaction of cardanol and formaldehyde, part I. Int. J. Chem. Kinet. 2009, 41, 559–572. [Google Scholar] [CrossRef]
- Devi, A.; Srivastava, D. Cardanol-based novolac-type phenolic resins. I. A kinetic approach. J. Appl. Polym. Sci. 2006, 102, 2730–2737. [Google Scholar] [CrossRef]
- Cardona, F.; Aravinthan, T.; Moscou, C. Modified PF resins for composite structures with improved mechanical properties. Polym. Polym. Compos. 2010, 18, 297–306. [Google Scholar] [CrossRef]
- Yadav, R.; Srivastava, D.D. Kinetics of the acid-catalyzed cardanol–formaldehyde reactions. Mater. Chem. Phys. 2007, 106, 74–81. [Google Scholar] [CrossRef]
- Srivastava, R.; Srivastava, D. Mechanical, chemical, and curing characteristics of cardanol–furfural-based novolac resin for application in green coatings. J. Coat. Technol. Res. 2015, 12, 303–311. [Google Scholar] [CrossRef]
- Singaravelu, D.L.; Vijay, R.; Filip, P. Influence of various cashew friction dusts on the fade and recovery characteristics of non-asbestos copper free brake friction composites. Wear 2019, 426, 1129–1141. [Google Scholar] [CrossRef]
- Cardona, F.; Kin-Tak, A.L.; Fedrigo, J. Novel phenolic resins with improved mechanical and toughness properties. J. Appl. Polym. Sci. 2012, 123, 2131–2139. [Google Scholar] [CrossRef]
- Shukla, S.K.; Maithani, A.; Srivastava, D. A Study on the Influence of the Temperature on the Formation of Cardanol-Based Phenolic Resin. Int. J. Chem. Kinet. 2013, 45, 469–476. [Google Scholar] [CrossRef]
- Nagesh, S.; Siddaraju, C.; Prakash, S.; Ramesh, M. Characterization of brake pads by variation in composition of friction materials. Procedia Mater. Sci. 2014, 5, 295–302. [Google Scholar] [CrossRef] [Green Version]
- McQueen, C.M.A.; Tamburini, D.; Braovac, S. Identification of inorganic compounds in composite alum-treated wooden artefacts from the Oseberg collection. Sci. Rep. 2018, 8, 2901. [Google Scholar] [CrossRef] [Green Version]
- Klapiszewski, Ł.; Jamrozik, A.; Strzemiecka, B.; Jakubowska, P.; Szalaty, T.J.; Szewczyńska, M.; Voelkel, A.; Jesionowski, T. Kraft lignin/cubic boron nitride hybrid materials as functional components for abrasive tools. Int. J. Biol. Macromol. 2019, 122, 88–94. [Google Scholar] [CrossRef]
- Marin, E.; Daimon, E.; Boschetto, F.; Rondinella, A.; Inada, K.; Zhu, W.; Pezzotti, G. Diagnostic spectroscopic tools for worn brake pad materials: A case study. Wear 2019, 432, 202969. [Google Scholar] [CrossRef]
- De Aguiar, P.F.; Bourguignon, B.; Khots, M.; Massart, D.; Phan-Than-Luu, R. D-optimal designs. Chemom. Intell. Lab. Syst. 1995, 30, 199–210. [Google Scholar] [CrossRef]
- Fedorov, V.V. Theory of Optimal Experiments; Studden, W.J., Klimko, E.M., Eds.; Academic Press: New York, NY, USA, 1972. [Google Scholar]
- Carlson, R. Design and Optimization in Organic Synthesis; Elsevier: Amsterdam, The Netherlands; New York, NY, USA, 1992. [Google Scholar]
- Available online: http://www.gruppochemiometria.it/index.php/software/19-download-the-r-based-chemometric-software (accessed on 20 February 2022).
Sample | Type | Note |
---|---|---|
A | Phenolic resin (raw material) | As is |
A1 | Phenolic resin (raw material) | Cured |
A2 | Phenolic resin (raw material) | Conditioned |
B | Silicone modified resin (raw material) | As is |
B1 | Silicone modified resin (raw material) | Cured |
C | Cardanol resin (raw material) | As is |
C1 | Cardanol resin (raw material) | Conditioned |
D | Cardanol resin (raw material) | As is |
E | Cardanol resin (raw material) | As is |
F | Cardanol resin (raw material) | As is |
W | Manufactured article | With A, C |
X | Manufactured article | With A |
Y | Manufactured article | With C |
Z | Manufactured article | With B, C |
# Experiment | Acetone | Dichloromethane | Heptane | Extraction | Time GC Analysis | |
---|---|---|---|---|---|---|
Before DOE | 1 | +1 | −1 | −1 | −1 | −1 |
2 | −1 | +1 | −1 | −1 | −1 | |
3 | −1 | +1 | −1 | −1 | +1 | |
4 | +1 | −1 | −1 | −1 | +1 | |
5 | −1 | −1 | +1 | +1 | +1 | |
6 | −1 | +1 | −1 | +1 | +1 | |
7 | +1 | −1 | −1 | +1 | +1 | |
After DOE | 8 | −1 | +1 | −1 | +1 | −1 |
9 | −1 | −1 | +1 | +1 | −1 | |
10 | +1 | +1 | −1 | +1 | −1 | |
11 | +1 | +1 | +1 | +1 | +1 |
Sample | Compound | CAS | tR (min) | # ID |
---|---|---|---|---|
A | phenol | 108-95-2 | 5.2 | 1 |
2-hydroxybenzaldehyde | 90-02-8 | 6.0 | 2 | |
4-methylphenol | 106-44-5 | 6.3 | 3 | |
benzoic acid | 65-85-0 | 7.5 | 4 | |
1,3,5,7-tetrazatricyclo[3.3.1.13,7]decane | 100-97-0 | 8.2 | 5 | |
2-[(2-hydroxyphenyl)methyl]phenol | 2467-02-9 | 14.0 | 6 | |
2-[(4-hydroxyphenyl)methyl]phenol | 2467-03-0 | 14.3 | 7 | |
4-[(4-hydroxyphenyl)methyl]phenol | 620-92-8 | 14.6 | 8 | |
2-[(2-hydroxy-5-methylphenyl)methyl]-4-methylphenol | 3236-63-3 | 15.0 | 9 | |
A1 | phenol | 108-95-2 | 5.1 | 1 |
2-[(2-hydroxyphenyl)methyl]phenol | 2467-02-9 | 14.0 | 6 | |
2-[(4-hydroxyphenyl)methyl]phenol | 2467-03-0 | 14.3 | 7 | |
4-[(4-hydroxyphenyl)methyl]phenol | 620-92-8 | 14.6 | 8 | |
A2 | - | - | - | - |
B | phenol | 108-95-2 | 5.1 | 1 |
2-hydroxybenzaldehyde | 90-02-8 | 5.9 | 2 | |
4-methylphenol | 106-44-5 | 6.2 | 3 | |
2,2,4,4,6,6,8,8,10,10-decamethyl-1,3,5,7,9,2,4,6,8,10-pentaoxapentasilecane | 541-02-6 | 6.7 | 10 | |
1,3,5,7-tetrazatricyclo[3.3.1.13,7]decane | 100-97-0 | 8.1 | 5 | |
benzene-1,2-dio | 120-80-9 | 8.3 | 11 | |
4-hydroxybenzaldehyde | 123-08-0 | 9.1 | 12 | |
2,2,4,4,6,6,8,8,10,10,12,12,14,14-tetradecamethyl-1,3,5,7,9,11,13-heptaoxa-2,4,6,8,10,12,14-heptasilacyclotetradecane | 107-50-6 | 9.9 | 13 | |
phenylmethoxymethylbenzene | 103-50-4 | 11.4 | 14 | |
2,2,4,4,6,6,8,8,10,10,12,12,14,14,16,16,18,18,20,20-icosamethyl-1,3,5,7,9,11,13,15,17,19-decaoxa-2,4,6,8,10,12,14,16,18,20-decasilacycloicosane | 18772-36-6 | 13.4 | 15 | |
2-[(2-hydroxyphenyl)methyl]phenol | 2467-02-9 | 13.9 | 6 | |
2-[(4-hydroxyphenyl)methyl]phenol | 2467-03-0 | 14.2 | 7 | |
4-[(4-hydroxyphenyl)methyl]phenol | 620-92-8 | 14.6 | 8 | |
B1 | phenol | 108-95-2 | 5.1 | 1 |
2-hydroxybenzaldehyde | 90-02-8 | 5.9 | 2 | |
1,3,5,7-tetrazatricyclo[3.3.1.13,7]decane | 100-97-0 | 8.0 | 5 | |
2,2,4,4,6,6,8,8,10,10,12,12,14,14-tetradecamethyl-1,3,5,7,9,11,13-heptaoxa-2,4,6,8,10,12,14-heptasilacyclotetradecane | 107-50-6 | 9.9 | 13 | |
2-[(4-hydroxyphenyl)methyl]phenol | 2467-03-0 | 14.1 | 7 | |
4-[(4-hydroxyphenyl)methyl]phenol | 620-92-8 | 14.6 | 8 | |
2,2,4,4,6,6,8,8,10,10,12,12,14,14,16,16-hexadecamethyl-1,3,5,7,9,11,13,15-octaoxa-2,4,6,8,10,12,14,16-octasilacyclohexadecane | 556-68-3 | 16.6 | 16 | |
C | phenol | 108-95-2 | 5.1 | 1 |
hexadecan-1-ol | 36653-82-4 | 13.2 | 17 | |
2-methylpropyl tetradecanoate | 25263-97-2 | 13.6 | 18 | |
(E)-hexadec-9-enoic acid | 2091-29-4 | 13.6 | 19 | |
(Z)-hexadec-11-enoic acid | 2416-20-8 | 13.7 | 20 | |
(E)-octadec-9-enal | 5090-41-5 | 13.8 | 21 | |
hexadecanoic acid | 57-10-3 | 13.8 | 22 | |
2-methylpropyl hexadecanoate | 110-34-9 | 14.9 | 23 | |
octadec-9-enoic acid | 2027-47-6 | 15.1 | 24 | |
octadecanoic acid | 57-11-4 | 15.2 | 25 | |
1-methyl-4-(4-methylphenyl)sulfonylbenzene | 599-66-6 | 15.4 | 26 | |
hexadecyl (Z)-octadec-9-enoate | 22393-86-8 | 16.0 | 27 | |
butyl (Z)-octadec-9-enoate | 142-77-8 | 16.0 | 28 | |
2-methylpropyl octadecanoate | 646-13-9 | 16.1 | 29 | |
1-methoxy-3-pentadecylbenzene | 15071-57-5 | 16.6 | 30 | |
3-pentadecylphenol | 501-24-6 | 17.0 | 31 | |
C1 | 2-methylpropyl hexadecanoate | 110-34-9 | 14.9 | 32 |
1-methyl-4-(4-methylphenyl)sulfonylbenzene | 599-66-6 | 15.3 | 26 | |
butyl (Z)-octadec-9-enoate | 142-77-8 | 16.0 | 28 | |
2-methylpropyl octadecanoate | 646-13-9 | 16.1 | 29 | |
3-pentadecylphenol | 501-24-6 | 16.9 | 31 | |
D | 1-(furan-2-yl)ethanone | 1192-62-7 | 4.9 | 33 |
benzaldehyde | 100-52-7 | 5.5 | 34 | |
(E)-3-(furan-2-yl)prop-2-enal | 623-30-3 | 7.3 | 35 | |
butyl furan-2-carboxylate | 583-33-5 | 8.2 | 36 | |
3H-2-benzofuran-1-one | 87-41-2 | 9.7 | 37 | |
2-dodecoxyethanol | 4536-30-5 | 12.1 | 38 | |
(Z)-pentadec-11-enal | - | 12.5 | 39 | |
2-methylpropyl dodecanoate | 37811-72-6 | 12.8 | 40 | |
tetradecanoic acid | 544-63-8 | 12.9 | 41 | |
pentadecanoic acid | 1002-84-2 | 13.6 | 42 | |
(Z)-hexadec-11-enoic acid | 2416-20-8 | 13.7 | 20 | |
hexadecanoic acid | 57-10-3 | 13.8 | 43 | |
methyl hexadecanoate | 112-39-0 | 14.1 | 44 | |
octadec-9-enoic acid | 2027-47-6 | 15.6 | 24 | |
octadecanoic acid | 57-11-4 | 15.7 | 25 | |
1-methyl-4-(4-methylphenyl)sulfonylbenzene | 599-66-6 | 15.9 | 26 | |
1-methoxy-3-pentadecylbenzene | 15071-57-5 | 16.6 | 30 | |
3-pentadecylphenol | 501-24-6 | 17.0 | 31 | |
E | 5-methylfuran-2-carbaldehyde | 620-02-0 | 4.9 | 45 |
benzoic acid | 65-85-0 | 7.9 | 4 | |
(E)-4-(furan-2-yl)but-3-en-2-one | 41438-24-8 | 8.1 | 46 | |
3H-2-benzofuran-1-one | 87-41-2 | 9.7 | 37 | |
decanoic acid | 334-48-5 | 9.8 | 47 | |
dodecanoic acid | 143-07-7 | 11.4 | 48 | |
tetradecanoic acid | 544-63-8 | 13.0 | 41 | |
methyl (E)-hexadec-11-enoate | 55000-42-5 | 13.3 | 49 | |
propan-2-yl tetradecanoate | 110-27-0 | 13.4 | 50 | |
methyl hexadecanoate | 112-39-0 | 13.5 | 44 | |
pentadecanoic acid | 1002-84-2 | 13.6 | 42 | |
(Z)-hexadec-11-enoic acid | 2416-20-8 | 13.7 | 20 | |
propan-2-yl hexadecanoate | 142-91-6 | 14.1 | 51 | |
heptadecanoic acid | 506-12-7 | 15.1 | 52 | |
octadecanoic acid | 57-11-4 | 15.1 | 25 | |
methyl (E)-octadec-9-enoate | 1937-62-8 | 15.2 | 53 | |
octadec-9-enoic acid | 2027-47-6 | 15.7 | 24 | |
3-pentadecylphenol | 501-24-6 | 16.9 | 31 | |
F | benzaldehyde | 100-52-7 | 4.9 | 34 |
octanoic acid | 124-07-2 | 7.3 | 54 | |
hexadecanenitrile | 629-79-8 | 13.3 | 55 | |
pentadecanenitrile | 18300-91-9 | 13.4 | 56 | |
(Z)-hexadec-11-enoic acid | 2416-20-8 | 13.7 | 20 | |
(E)-hexadec-9-enoic acid | 2091-29-4 | 13.7 | 19 | |
hexadecanoic acid | 57-10-3 | 13.8 | 43 | |
3-[(2-methyl-5-nitrophenyl)iminomethyl]phenol | - | 13.9 | 57 | |
heptadecanoic acid | 506-12-7 | 14.4 | 52 | |
octadec-1-ene | 112-88-9 | 14.5 | 58 | |
(Z)-octadec-9-enenitrile | 112-91-4 | 14.6 | 59 | |
octadecanenitrile | 638-65-3 | 14.7 | 60 | |
(E)-octadec-9-enoic acid | 112-79-8 | 15.0 | 24 | |
(Z)-octadec-6-enoic acid | 593-39-5 | 15.1 | 61 | |
octadecanoic acid | 57-11-4 | 15.2 | 25 | |
hexadecanamide | 629-54-9 | 15.3 | 62 | |
(Z)-octadec-9-enamide | 301-02-0 | 16.2 | 63 | |
3-pentadecylphenol | 501-24-6 | 17.0 | 31 |
Sample | Compound | CAS | Raw Material | tR (min) | # ID |
---|---|---|---|---|---|
W | phenol | 108-95-2 | A–C | 5.1 | 1 |
2-hydroxybenzaldehyde | 90-02-8 | A | 6.0 | 2 | |
4-hydroxybenzaldehyde | 123-08-0 | A | 9.2 | 12 | |
2-[(4-hydroxyphenyl)methyl]phenol | 2467-03-0 | A | 14.2 | 7 | |
4-[(4-hydroxyphenyl)methyl]phenol | 620-92-8 | A | 14.6 | 8 | |
2-methylpropyl hexadecanoate | 110-34-9 | C | 14.9 | 23 | |
1-methyl-4-(4-methylphenyl)sulfonylbenzene | 599-66-6 | C | 15.4 | 26 | |
3-pentadecylphenol | 501-24-6 | C | 17.0 | 31 | |
X | phenol | 108-95-2 | A | 5.1 | 1 |
2-hydroxybenzaldehyde | 90-02-8 | A | 6.0 | 2 | |
benzoic acid | 65-85-0 | A | 7.5 | 4 | |
4-hydroxybenzaldehyde | 123-08-0 | A | 9.2 | 12 | |
2-[(4-hydroxyphenyl)methyl]phenol | 2467-03-0 | A | 14.2 | 7 | |
4-[(4-hydroxyphenyl)methyl]phenol | 620-92-8 | A | 14.6 | 8 | |
Y | Phenol | 108-95-2 | C | 5.1 | 1 |
hexadecan-1-ol | 36653-82-4 | C | 13.2 | 17 | |
Z | 2-hydroxybenzaldehyde | 90-02-8 | B | 6.0 | 2 |
4-hydroxybenzaldehyde | 123-08-0 | B | 9.2 | 12 | |
phenylmethoxymethylbenzene | 103-50-4 | B | 11.5 | 14 | |
hexadecan-1-ol | 36653-82-4 | C | 11.8 | 17 | |
2-[(4-hydroxyphenyl)methyl]phenol | 2467-03-0 | B | 14.2 | 7 | |
4-[(4-hydroxyphenyl)methyl]phenol | 620-92-8 | B | 14.6 | 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romagnoli, M.; Polliotto, V.; Alladio, E.; Pazzi, M. Identification by GC-MS Analysis of Organics in Manufactured Articles through a D-Optimal Design. Appl. Sci. 2022, 12, 7320. https://doi.org/10.3390/app12147320
Romagnoli M, Polliotto V, Alladio E, Pazzi M. Identification by GC-MS Analysis of Organics in Manufactured Articles through a D-Optimal Design. Applied Sciences. 2022; 12(14):7320. https://doi.org/10.3390/app12147320
Chicago/Turabian StyleRomagnoli, Monica, Valeria Polliotto, Eugenio Alladio, and Marco Pazzi. 2022. "Identification by GC-MS Analysis of Organics in Manufactured Articles through a D-Optimal Design" Applied Sciences 12, no. 14: 7320. https://doi.org/10.3390/app12147320
APA StyleRomagnoli, M., Polliotto, V., Alladio, E., & Pazzi, M. (2022). Identification by GC-MS Analysis of Organics in Manufactured Articles through a D-Optimal Design. Applied Sciences, 12(14), 7320. https://doi.org/10.3390/app12147320