Early Earthquake Detection Using Batch Normalization Graph Convolutional Neural Network (BNGCNN)
Abstract
:Featured Application
Abstract
1. Introduction
- We propose a deep learning-based model BNGCNN model for the early prediction of an earthquake.
- For experiments, we use a seismological dataset having 1477 events collected from 187 stations. Event waveform data with location information have been collected from multiple seismic stations instead of a single station.
- The performance of our model has been systematically analyzed by fine-tuning its several hyper-parameters.
- We chose the model proposed in [18] as a baseline model to compare the results obtained from the proposed model. Results show the superiority of our model.
2. Related Work
3. Methods
4. Results
4.1. Datasets
4.2. Experimentation
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, G.; Ku, B.; Ahn, J.K.; Ko, H. Graph Convolution Networks for Seismic Events Classification Using Raw Waveform Data from Multiple Stations. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Münchmeyer, J.; Bindi, D.; Leser, U.; Tilmann, F. The Transformer Earthquake Alerting Model: A New Versatile Approach to Earthquake Early Warning. Geophys. J. Int. 2021, 225, 646–656. [Google Scholar] [CrossRef]
- Elnagar, A.; Al-Debsi, R.; Einea, O. Arabic Text Classification Using Deep Learning Models. Inf. Process. Manag. 2020, 57, 102121. [Google Scholar] [CrossRef]
- Akhter, M.P.; Zheng, J.; Afzal, F.; Lin, H.; Riaz, S.; Mehmood, A. Supervised Ensemble Learning Methods towards Automatically Filtering Urdu Fake News within Social Media. PeerJ Comput. Sci. 2021, 7, e425. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Cui, G.; Hu, S.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li, C.; Sun, M. Graph Neural Networks: A Review of Methods and Applications. AI Open 2020, 1, 57–81. [Google Scholar] [CrossRef]
- Amin, J.; Sharif, M.; Anjum, M.A.; Raza, M.; Bukhari, S.A.C. Convolutional Neural Network with Batch Normalization for Glioma and Stroke Lesion Detection Using MRI. Cogn. Syst. Res. 2020, 59, 304–311. [Google Scholar] [CrossRef]
- Park, T.J.; Kanda, N.; Dimitriadis, D.; Han, K.J.; Watanabe, S.; Narayanan, S. A Review of Speaker Diarization: Recent Advances with Deep Learning. Comput. Speech Lang. 2022, 72, 101317. [Google Scholar] [CrossRef]
- Zia, T.; Zahid, U. Long Short-Term Memory Recurrent Neural Network Architectures for Urdu Acoustic Modeling. Int. J. Speech Technol. 2019, 22, 21–30. [Google Scholar] [CrossRef]
- Harirchian, E.; Lahmer, T. Improved Rapid Assessment of Earthquake Hazard Safety of Structures via Artificial Neural Networks. IOP Conf. Ser. Mater. Sci. Eng. 2020, 897, 012014. [Google Scholar] [CrossRef]
- Song, J.; Zhu, J.; Wang, Y.; Li, S. On-Site Alert-Level Earthquake Early Warning Using Machine-Learning-Based Prediction Equations. Geophys. J. Int. 2022, 231, 786–800. [Google Scholar] [CrossRef]
- Audretsch, J. Earthquake Detection Using Deep Learning Based Approaches. Available online: https://repository.kaust.edu.sa/handle/10754/662251 (accessed on 17 March 2020).
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Santurkar, S.; Tsipras, D.; Ilyas, A.; Madry, A. How Does Batch Normalization Help Optimization? In Proceedings of the Advances in Neural Information Processing Systems, Montreal, ON, Canada, 3–8 December 2018. [Google Scholar]
- Kalayeh, M.M.; Shah, M. Training Faster by Separating Modes of Variation in Batch-Normalized Models. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 1483–1500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yano, K.; Shiina, T.; Kurata, S.; Kato, A.; Komaki, F.; Sakai, S.; Hirata, N. Graph-Partitioning Based Convolutional Neural Network for Earthquake Detection Using a Seismic Array. J. Geophys. Res. Solid Earth 2021, 126, 1–17. [Google Scholar] [CrossRef]
- Jozinović, D.; Lomax, A.; Štajduhar, I.; Michelini, A. Rapid Prediction of Earthquake Ground Shaking Intensity Using Raw Waveform Data and a Convolutional Neural Network. Geophys. J. Int. 2021, 222, 1379–1389. [Google Scholar] [CrossRef]
- Bloemheuvel, S.; van den Hoogen, J.; Jozinović, D.; Michelini, A.; Atzmueller, M. Multivariate Time Series Regression with Graph Neural Networks. arxiv 2022, 2201, 00818. [Google Scholar] [CrossRef]
- van den Ende, M.P.A.; Ampuero, J.P. Automated Seismic Source Characterization Using Deep Graph Neural Networks. Geophys. Res. Lett. 2020, 47, 1–11. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Beroza, G.C. A Machine-Learning Approach for Earthquake Magnitude Estimation. Geophys. Res. Lett. 2020, 47, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Tous, R.; Alvarado, L.; Otero, B.; Cruz, L.; Rojas, O. Deep Neural Networks for Earthquake Detection and Source Region Estimation in North-Central Venezuela. Bull. Seismol. Soc. Am. 2020, 110, 2519–2529. [Google Scholar] [CrossRef]
- Ahmad, J.; Farman, H.; Jan, Z. Deep Learning Methods and Applications BT—Deep Learning: Convergence to Big Data Analytics; Khan, M., Jan, B., Farman, H., Eds.; Springer: Singapore, 2019; pp. 31–42. ISBN 978-981-13-3459-7. [Google Scholar]
- Akhter, M.P.; Jiangbin, Z.; Naqvi, I.R.; Abdelmajeed, M.; Fayyaz, M. Exploring Deep Learning Approaches for Urdu Text Classification in Product Manufacturing. Enterp. Inf. Syst. 2022, 16, 223–248. [Google Scholar] [CrossRef]
- Hong, S.; Nguyen, H.T.; Jung, J.; Ahn, J. Seismic Ground Response Estimation Based on Convolutional Neural Networks (Cnn). Appl. Sci. 2021, 11, 10760. [Google Scholar] [CrossRef]
- Harirchian, E.; Lahmer, T.; Rasulzade, S. Earthquake Hazard Safety Assessment of Existing Buildings Using Optimized Multi-Layer Perceptron Neural Network. Energies 2020, 13, 2060. [Google Scholar] [CrossRef] [Green Version]
- Datta, A.; Wu, D.J.; Zhu, W.; Cai, M.; Ellsworth, W.L. DeepShake: Shaking Intensity Prediction Using Deep Spatiotemporal RNNs for Earthquake Early Warning. Seismol. Res. Lett. 2022, 93, 1636–1649. [Google Scholar] [CrossRef]
- Ochoa, L.H.; Niño, L.F.; Vargas, C.A. Fast Magnitude Determination Using a Single Seismological Station Record Implementing Machine Learning Techniques. Geod. Geodyn. 2018, 9, 34–41. [Google Scholar] [CrossRef]
- Lomax, A.; Michelini, A.; Jozinović, D. An Investigation of Rapid Earthquake Characterization Using Single-Station Waveforms and a Convolutional Neural Network. Seismol. Res. Lett. 2019, 90, 517–529. [Google Scholar] [CrossRef]
- Tan, C.; Li, F.; Lv, S.; Yang, Y.; Dong, F. Gas-Liquid Two-Phase Stratified Flow Interface Reconstruction with Sparse Batch Normalization Convolutional Neural Network. IEEE Sens. J. 2021, 21, 17076–17084. [Google Scholar] [CrossRef]
- Wang, J.; Li, S.; An, Z.; Jiang, X.; Qian, W.; Ji, S. Batch-Normalized Deep Neural Networks for Achieving Fast Intelligent Fault Diagnosis of Machines. Neurocomputing 2019, 329, 53–65. [Google Scholar] [CrossRef]
- Bacciu, D.; Errica, F.; Micheli, A.; Podda, M. A Gentle Introduction to Deep Learning for Graphs. Neural Netw. 2020, 129, 203–221. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Ellsworth, W.L.; Zhu, W.; Chuang, L.Y.; Beroza, G.C. Earthquake Transformer—an Attentive Deep-Learning Model for Simultaneous Earthquake Detection and Phase Picking. Nat. Commun. 2020, 11, 1–12. [Google Scholar] [CrossRef]
- Krischer, L.; Megies, T.; Barsch, R.; Beyreuther, M.; Lecocq, T.; Caudron, C.; Wassermann, J. ObsPy: A Bridge for Seismology into the Scientific Python Ecosystem. Comput. Sci. Discov. 2015, 8, 014003. [Google Scholar] [CrossRef]
- Megies, T.; Beyreuther, M.; Barsch, R.; Krischer, L.; Wassermann, J. ObsPy—What Can It Do for Data Centers and Observatories? Ann. Geophys. 2011, 54, 47–58. [Google Scholar] [CrossRef]
- Ku, B.; Kim, G.; Ahn, J.K.; Lee, J.; Ko, H. Attention-Based Convolutional Neural Network for Earthquake Event Classification. IEEE Geosci. Remote Sens. Lett. 2021, 18, 2057–2061. [Google Scholar] [CrossRef]
Study | Model | Spatial Info | Year | Data | Station |
---|---|---|---|---|---|
[17] | GCNN | Yes | 2022 | Italy and California | Multiple |
[18] | GCNN | Yes | 2020 | California | Multiple |
[27] | CNN | No | 2019 | IRIS | Single |
[16] | CNN | No | 2021 | Central Italy | Multiple |
[1] | GCNN | 2022 | -- | Multiple | |
[26] | SVMR | No | 2018 | Bogota, Colombia | Single |
[31] | CNN + LSTM + BiLSTM + Transformer | No | 2020 | STEAD | Single |
[15] | CNN and Graph | No | 2021 | MeSO-Net Japan | Multiple, Single |
[23] | CNN | -- | 2021 | NIED Japan | Single |
[23] | Deep CNN | -- | 2021 | CARABOBO | Single |
[2] | CNN and Team. Transformer | Yes | 2021 | Japan, Italy | Multiple |
Properties | Values | Properties | Values |
---|---|---|---|
Period | 2000–2015 | Min. and Max. Latitude | [32° to 36°] |
No. of events | 1427 | Min and Max. Longitude | [−120° to 116°] |
No. of stations | 187 | Minimum magnitude | 3.0 |
Filter the waveform | 0.1–8 Hz | Even spaced time sample | 2048 Hz |
No. of stations | 187 | Scaled Min. max. source depth | 0 to 30 km |
Scaled magnitude | 3–6 | Time-base |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilal, M.A.; Ji, Y.; Wang, Y.; Akhter, M.P.; Yaqub, M. Early Earthquake Detection Using Batch Normalization Graph Convolutional Neural Network (BNGCNN). Appl. Sci. 2022, 12, 7548. https://doi.org/10.3390/app12157548
Bilal MA, Ji Y, Wang Y, Akhter MP, Yaqub M. Early Earthquake Detection Using Batch Normalization Graph Convolutional Neural Network (BNGCNN). Applied Sciences. 2022; 12(15):7548. https://doi.org/10.3390/app12157548
Chicago/Turabian StyleBilal, Muhammad Atif, Yanju Ji, Yongzhi Wang, Muhammad Pervez Akhter, and Muhammad Yaqub. 2022. "Early Earthquake Detection Using Batch Normalization Graph Convolutional Neural Network (BNGCNN)" Applied Sciences 12, no. 15: 7548. https://doi.org/10.3390/app12157548
APA StyleBilal, M. A., Ji, Y., Wang, Y., Akhter, M. P., & Yaqub, M. (2022). Early Earthquake Detection Using Batch Normalization Graph Convolutional Neural Network (BNGCNN). Applied Sciences, 12(15), 7548. https://doi.org/10.3390/app12157548