A QoS-Guaranteed and Congestion-Controlled SDN Routing Strategy for Smart Grid
Abstract
:1. Introduction
- To meet the QoS requirements of different service flows in the SG, by focusing on the flow trends in the network, we design an SDN-based strategy to predict the future congestion status for the link and construct a virtual congestion-free topology.
- We propose a queueing model and construct a long-term network utility maximization problem, which can be effectively solved by the Lyapunov optimization theory, to determine the final routing decision.
- The experimental results of different algorithms show that our QCORS can effectively grasp the advantages of global network and reduce end-to-end delay and packet loss rate.
2. Related Works
3. Design of QCORS Algorithm
3.1. Sdn System Framework
3.2. Network Model
3.3. Link Congestion Degree Judgment
3.4. Packet-Redirection Strategy Model
Algorithm 1 QCORS |
Input: Input the Network topology G, initialize the parameters of differentiating packets and their priority, set the congestion level threshold value , , and V. Output: Output the path from s to d with optimal routing.
|
4. Experiments and Performance Analysis
4.1. Implementation Details
4.2. Performance on Different Applications
4.3. Performance Comparison with Baselines
- LOBUS [32]: This method directly use the greedy selection strategy to select the path with the least response time, and instead ignores the unpredictable changes in the load state.
- LABERIO [33]: Although LABERIO monitors the distribution of traffic in the network, it only considers the data flow bandwidth while ignoring the requirements of other business attributes.
- OFFICER [34]: This approach introduce some additional deviations to the path allocation and utilizes those deviations to arrive at the destination through different strategies. However, the increasing data reduce the service quality of this method.
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fang, X.; Misra, S.; Xue, G.; Yang, D. Smart grid—The new and improved power grid: A survey. IEEE Commun. Surv. Tutorials 2011, 14, 944–980. [Google Scholar] [CrossRef]
- Tuballa, M.L.; Abundo, M.L. A review of the development of Smart Grid technologies. Renew. Sustain. Energy Rev. 2016, 59, 710–725. [Google Scholar] [CrossRef]
- Gungor, V.C.; Sahin, D.; Kocak, T.; Ergut, S.; Buccella, C.; Cecati, C.; Hancke, G.P. A survey on smart grid potential applications and communication requirements. IEEE Trans. Ind. Inform. 2012, 9, 28–42. [Google Scholar] [CrossRef] [Green Version]
- Abrahamsen, F.E.; Ai, Y.; Cheffena, M. Communication technologies for smart grid: A comprehensive survey. Sensors 2021, 21, 8087. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Sun, Z.; Li, D.; Luo, J.; Wan, S. User-centric computation offloading for edge computing. IEEE Internet Things J. 2021, 8, 12559–12568. [Google Scholar] [CrossRef]
- Liu, S.; Yu, J.; Deng, X.; Wan, S. FedCPF: An efficient-communication federated learning approach for vehicular edge computing in 6G communication networks. IEEE Trans. Intell. Transp. Syst. 2021, 23, 1616–1629. [Google Scholar] [CrossRef]
- Wan, S.; Ding, S.; Chen, C. Edge computing enabled video segmentation for real-time traffic monitoring in internet of vehicles. Pattern Recognit. 2022, 121, 108146. [Google Scholar] [CrossRef]
- Wei, W.; Yang, R.; Gu, H.; Zhao, W.; Chen, C.; Wan, S. Multi-objective optimization for resource allocation in vehicular cloud computing networks. IEEE Trans. Intell. Transp. Syst. 2021. [Google Scholar] [CrossRef]
- Chen, C.; Liu, L.; Wan, S.; Hui, X.; Pei, Q. Data Dissemination for Industry 4.0 Applications in Internet of Vehicles Based on Short-term Traffic Prediction. ACM Trans. Internet Technol. (TOIT) 2021, 22, 1–18. [Google Scholar] [CrossRef]
- Siano, P. Demand response and smart grids—A survey. Renew. Sustain. Energy Rev. 2014, 30, 461–478. [Google Scholar] [CrossRef]
- Rajalingham, G.; Gao, Y.; Ho, Q.D.; Le-Ngoc, T. Quality of service differentiation for smart grid neighbor area networks through multiple RPL instances. In Proceedings of the 10th ACM Symposium on QoS and Security for Wireless and Mobile Networks, Montreal, QC, Canada, 21–26 September 2014; pp. 17–24. [Google Scholar]
- Baroudi, U.; Bin-Yahya, M.; Alshammari, M.; Yaqoub, U. Ticket-based QoS routing optimization using genetic algorithm for WSN applications in smart grid. J. Ambient Intell. Humaniz. Comput. 2019, 10, 1325–1338. [Google Scholar] [CrossRef]
- Ding, S.; Qu, S.; Xi, Y.; Wan, S. A long video caption generation algorithm for big video data retrieval. Future Gener. Comput. Syst. 2019, 93, 583–595. [Google Scholar] [CrossRef]
- Ho, Q.D.; Gao, Y.; Le-Ngoc, T. Challenges and research opportunities in wireless communication networks for smart grid. IEEE Wirel. Commun. 2013, 20, 89–95. [Google Scholar]
- Mohapatra, B.K.; Gupta, D.K.; Panigrahi, C.K.; Kabat, S.R. Congestion Management in the Deregulated Market: A Brief Survey. Innov. Electr. Power Eng. Commun. Comput. Technol. 2022, 814, 1–10. [Google Scholar]
- Al Zishan, A.; Haji, M.M.; Ardakanian, O. Adaptive congestion control for electric vehicle charging in the smart grid. IEEE Trans. Smart Grid 2021, 12, 2439–2449. [Google Scholar] [CrossRef]
- Cokic, M.; Seskar, I.; Popovic, D. Communication Congestion Impact on State Estimation for Smart Grid Infrastructure. In Proceedings of the 2021 29th Telecommunications Forum (TELFOR), Belgrade, Serbia, 23–24 November 2021; pp. 1–4. [Google Scholar]
- Kreutz, D.; Ramos, F.M.; Verissimo, P.E.; Rothenberg, C.E.; Azodolmolky, S.; Uhlig, S. Software-defined networking: A comprehensive survey. Proc. IEEE 2014, 103, 14–76. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Gani, A.; Wahab, A.W.A.; Guizani, M.; Khan, M.K. Topology discovery in software defined networks: Threats, taxonomy, and state-of-the-art. IEEE Commun. Surv. Tutor. 2016, 19, 303–324. [Google Scholar] [CrossRef]
- Blenk, A.; Basta, A.; Reisslein, M.; Kellerer, W. Survey on network virtualization hypervisors for software defined networking. IEEE Commun. Surv. Tutor. 2015, 18, 655–685. [Google Scholar] [CrossRef] [Green Version]
- Dwaraki, A.; Wolf, T. Adaptive service-chain routing for virtual network functions in software-defined networks. In Proceedings of the 2016 workshop on Hot topics in Middleboxes and Network Function Virtualization, Florianopolis, Brazil, 22–26 August 2016; pp. 32–37. [Google Scholar]
- Attia, M.B.; Nguyen, K.K.; Cheriet, M. QoS-aware software-defined routing in smart community network. Comput. Netw. 2018, 147, 221–235. [Google Scholar] [CrossRef]
- Nunes, B.A.A.; Mendonca, M.; Nguyen, X.N.; Obraczka, K.; Turletti, T. A Survey of Software-Defined Networking: Past, Present, and Future of Programmable Networks. IEEE Commun. Surv. Tutor. 2014, 16, 1617–1634. [Google Scholar] [CrossRef] [Green Version]
- Kamboj, P.; Pal, S.; Mehra, A. A QoS-aware Routing based on Bandwidth Management in Software-Defined IoT Network. In Proceedings of the 2021 IEEE 18th International Conference on Mobile Ad Hoc and Smart Systems (MASS), Denver, CO, USA, 4–7 October 2021; pp. 579–584. [Google Scholar]
- Zhang, J.; Seet, B.C.; Lie, T.T.; Foh, C.H. Opportunities for software-defined networking in smart grid. In Proceedings of the 2013 9th International Conference on Information, Communications & Signal Processing, Tainan, Taiwan, 10–13 December 2013; pp. 1–5. [Google Scholar]
- Lange, S.; Gebert, S.; Zinner, T.; Tran-Gia, P.; Hock, D.; Jarschel, M.; Hoffmann, M. Heuristic approaches to the controller placement problem in large scale SDN networks. IEEE Trans. Netw. Serv. Manag. 2015, 12, 4–17. [Google Scholar] [CrossRef]
- Huang, L.; Neely, M.J. Delay reduction via Lagrange multipliers in stochastic network optimization. In Proceedings of the 2009 7th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, Seoul, Korea, 23–27 June 2009; pp. 1–10. [Google Scholar]
- Zhang, Q.; Wan, S.; Wang, B.; Gao, D.W.; Ma, H. Anomaly detection based on random matrix theory for industrial power systems. J. Syst. Archit. 2019, 95, 67–74. [Google Scholar] [CrossRef]
- Guck, J.W.; Van Bemten, A.; Reisslein, M.; Kellerer, W. Unicast QoS routing algorithms for SDN: A comprehensive survey and performance evaluation. IEEE Commun. Surv. Tutor. 2017, 20, 388–415. [Google Scholar] [CrossRef]
- Meloni, A.; Pegoraro, P.A.; Atzori, L.; Sulis, S. Bandwidth and accuracy-aware state estimation for smart grids using software defined networks. Energies 2017, 10, 858. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Filali, F.; Ko, Y.B. Trends and Potentials of the Smart Grid Infrastructure: From ICT Sub-System to SDN-Enabled Smart Grid Architecture. Appl. Sci. 2015, 5, 706–727. [Google Scholar] [CrossRef] [Green Version]
- Handigol, N.; Seetharaman, S.; Flajslik, M.; McKeown, N.; Johari, R. Plug-n-Serve: Load-balancing web traffic using OpenFlow. ACM Sigcomm Demo 2009, 4, 6. [Google Scholar]
- Long, H.; Shen, Y.; Guo, M.; Tang, F. LABERIO: Dynamic load-balanced routing in OpenFlow-enabled networks. In Proceedings of the 2013 IEEE 27th International Conference on Advanced Information Networking and Applications (AINA), Barcelona, Spain, 25–28 March 2013; pp. 290–297. [Google Scholar]
- Nguyen, X.N.; Saucez, D.; Barakat, C.; Turletti, T. OFFICER: A general optimization framework for OpenFlow rule allocation and endpoint policy enforcement. In Proceedings of the 2015 IEEE Conference on Computer Communications (INFOCOM), Hong Kong, China, 26 April–1 May 2015; pp. 478–486. [Google Scholar]
- Deng, X.; Long, F.; Li, B.; Cao, D.; Pan, Y. An influence model based on heterogeneous online social network for influence maximization. IEEE Trans. Netw. Sci. Eng. 2019, 7, 737–749. [Google Scholar] [CrossRef]
- Chen, L.W.; Ho, Y.F. Centimeter-grade metropolitan positioning for lane-level intelligent transportation systems based on the internet of vehicles. IEEE Trans. Ind. Inform. 2018, 15, 1474–1485. [Google Scholar] [CrossRef]
- Zheng, L.; Cai, L. A distributed demand response control strategy using Lyapunov optimization. IEEE Trans. Smart Grid 2014, 5, 2075–2083. [Google Scholar] [CrossRef]
- Yang, T.; Kong, L.; Zhao, N.; Sun, R. Efficient energy and delay tradeoff for vessel communications in SDN based maritime wireless networks. IEEE Trans. Intell. Transp. Syst. 2021, 22, 3800–3812. [Google Scholar] [CrossRef]
- Tang, L.; Zhao, G.; Wang, C.; Zhao, P.; Chen, Q. Queue-aware reliable embedding algorithm for 5G network slicing. Comput. Netw. 2018, 146, 138–150. [Google Scholar] [CrossRef]
- Rinaldi, S.; Bonafini, F.; Ferrari, P.; Flammini, A.; Sisinni, E.; Di Cara, D.; Panzavecchia, N.; Tinè, G.; Cataliotti, A.; Cosentino, V.; et al. Characterization of IP-Based communication for smart grid using software-defined networking. IEEE Trans. Instrum. Meas. 2018, 67, 2410–2419. [Google Scholar] [CrossRef]
- Rehmani, M.H.; Davy, A.; Jennings, B.; Assi, C. Software defined networks-based smart grid communication: A comprehensive survey. IEEE Commun. Surv. Tutor. 2019, 21, 2637–2670. [Google Scholar] [CrossRef]
- Imran; Ghaffar, Z.; Alshahrani, A.; Fayaz, M.; Alghamdi, A.M.; Gwak, J. A topical review on machine learning, software defined networking, internet of things applications: Research limitations and challenges. Electronics 2021, 10, 880. [Google Scholar]
- Keshari, S.K.; Kansal, V.; Kumar, S. A systematic review of quality of services (QoS) in software defined networking (SDN). Wirel. Pers. Commun. 2021, 116, 2593–2614. [Google Scholar] [CrossRef]
- Li, Y.; Xia, S.; Cao, B.; Liu, Q. Lyapunov optimization based trade-off policy for mobile cloud offloading in heterogeneous wireless networks. IEEE Trans. Cloud Comput. 2019, 10, 491–505. [Google Scholar] [CrossRef]
- Li, P.; Guo, S.; Pan, C.; Yang, L.; Liu, G.; Zeng, Y. Fast congestion-free consistent flow forwarding rules update in software defined networking. Future Gener. Comput. Syst. 2019, 97, 743–754. [Google Scholar] [CrossRef]
- Xia, J.; Zhang, S.; Lan, J. MFUC: Mitigating Transient Congestion for Multi-flow Updating in SDN. J. Phys. Conf. Ser. 2022, 2289, 012007. [Google Scholar] [CrossRef]
- Chu, C.Y.; Xi, K.; Luo, M.; Chao, H.J. Congestion-aware single link failure recovery in hybrid SDN networks. In Proceedings of the 2015 IEEE Conference on Computer Communications (INFOCOM), Hong Kong, China, 26 April–1 May 2015; pp. 1086–1094. [Google Scholar]
- Wang, Y.C.; You, S.Y. An efficient route management framework for load balance and overhead reduction in SDN-based data center networks. IEEE Trans. Netw. Serv. Manag. 2018, 15, 1422–1434. [Google Scholar] [CrossRef]
- Tsirigos, A.; Haas, Z.J. Multipath routing in the presence of frequent topological changes. IEEE Commun. Mag. 2001, 39, 132–138. [Google Scholar] [CrossRef]
- Balasubramanian, V.; Aloqaily, M.; Reisslein, M. An SDN architecture for time sensitive industrial IoT. Comput. Netw. 2021, 186, 107739. [Google Scholar] [CrossRef]
- Ren, J.; Mahfujul, K.M.; Lyu, F.; Yue, S.; Zhang, Y. Joint channel allocation and resource management for stochastic computation offloading in MEC. IEEE Trans. Veh. Technol. 2020, 69, 8900–8913. [Google Scholar] [CrossRef]
- Cui, Y.; Lau, V.K.; Wang, R.; Huang, H.; Zhang, S. A survey on delay-aware resource control for wireless systems—Large deviation theory, stochastic Lyapunov drift, and distributed stochastic learning. IEEE Trans. Inf. Theory 2012, 58, 1677–1701. [Google Scholar] [CrossRef] [Green Version]
- Boyd, S.; Boyd, S.P.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Khattak, Z.K.; Awais, M.; Iqbal, A. Performance evaluation of OpenDaylight SDN controller. In Proceedings of the 2014 20th IEEE international conference on parallel and distributed systems (ICPADS), Hsinchu, Taiwan, 16–19 December 2014; pp. 671–676. [Google Scholar]
Abbreviations | Definitions |
---|---|
AMI | Advanced Metering Infrastructure |
DR | Demand Response |
DA | Distribution Automation |
HAN | Home Area Network |
LABERIO [33] | LoAd-BalancEd Routing wIth OpenFlow |
LOBUS [32] | LOad-Balancing over UnStructured networks |
NAN | Neighborhood Area Network |
QoS | Quality of Service |
QCORS (our work) | QoS-guaranteed and Congestion-controlled OpenFlow Routing Strategy |
SG | Smart Grid |
WAN | Wide Area Network |
Value of Congestion Level | Traffic Load Range at Link |
---|---|
(1) No congestion | |
(2) Low congestion | |
(3) Heavy congestion |
Applications | Interval | Size | Priority | Latency |
---|---|---|---|---|
Periodic AMI | 15 s | 123 | 1 | ≤15 s |
AMI management | 300 s | 4000 | 2 | ≤1 s |
Periodic power quality | 3 s | 3000 | 1 | ≤3 s |
Power management | 300 s | 4000 | 2 | ≤1 s |
Requested AMI | On-demand | 123 | 3 | ≤5 s |
Requested power quality | On-demand | 2000 | 3 | ≤5 s |
Video surveillance | Constant | 250 KB/s | 0 | ≤100 ms |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, Y.; Jiang, P.; Chen, H.; Deng, X. A QoS-Guaranteed and Congestion-Controlled SDN Routing Strategy for Smart Grid. Appl. Sci. 2022, 12, 7629. https://doi.org/10.3390/app12157629
Su Y, Jiang P, Chen H, Deng X. A QoS-Guaranteed and Congestion-Controlled SDN Routing Strategy for Smart Grid. Applied Sciences. 2022; 12(15):7629. https://doi.org/10.3390/app12157629
Chicago/Turabian StyleSu, Yueyuan, Ping Jiang, Huan Chen, and Xiaoheng Deng. 2022. "A QoS-Guaranteed and Congestion-Controlled SDN Routing Strategy for Smart Grid" Applied Sciences 12, no. 15: 7629. https://doi.org/10.3390/app12157629
APA StyleSu, Y., Jiang, P., Chen, H., & Deng, X. (2022). A QoS-Guaranteed and Congestion-Controlled SDN Routing Strategy for Smart Grid. Applied Sciences, 12(15), 7629. https://doi.org/10.3390/app12157629