Meta-Heuristics Optimization of Mirrors for Gravitational Wave Detectors: Cryogenic Case
Abstract
:1. Introduction
2. The Physical Model
3. The Optimization: The Mathematical Problem
4. The Optimization Methods
4.1. Optimization Heuristic NSGA2 and NSGA3
4.2. Optimization Heuristic GDE3
4.3. Optimization Heuristic MOEA/D
4.4. Optimization Heuristic Borg MOEA
4.5. Optimization Heuristic Particle Swarming (MOPSO)
5. Numerical Experiments
5.1. Asseveration of Convergence
5.2. Physical Properties of the Optimal Design
5.3. The Coating Length Optimization
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Available online: http://www.virgo.infn.it (accessed on 27 June 2022).
- Bersanetti, D.; Patricelli, B.; Piccinni, O.J.; Piergiovanni, F.; Salemi, F.; Sequino, V. Advanced Virgo: Status of the Detector, Latest Results and Future Prospects. Universe 2021, 7, 322. [Google Scholar] [CrossRef]
- Available online: http://www.et-gw.eu/ (accessed on 27 June 2022).
- Punturo, M.; Abernathy, M.; Acernese, F.; Allen, B.; Andersson, N.; Arun, K.; Barone, F.; Barr, B.; Barsuglia, M.; Beker, M.; et al. The Einstein Telescope: A third-generation gravitational wave observatory. Class. Quant. Gravity 2010, 27, 194002. [Google Scholar] [CrossRef]
- Available online: http://www.ligo.caltech.edu (accessed on 27 June 2022).
- Cahillane, C.; Mansell, G. Review of the Advanced LIGO Gravitational Wave Observatories Leading to Observing Run Four. Galaxies 2022, 10, 36. [Google Scholar] [CrossRef]
- Akutsu, T.; KAGRA Scientific Collaboration. Overview of KAGRA: Calibration, detector characterization, physical environmental monitors, and the geophysics interferometer. Prog. Theor. Exp. Phys. 2021, 5, 05A102. [Google Scholar] [CrossRef]
- Creighton, J.D.; Anderson, W.G. Gravitational Wave Physics and Astronomy; John Wiley and Sons: Hoboken, NJ, USA, 2011; ISBN 978-3-527-40886-3. [Google Scholar]
- Saulson, P. Fundamentals of Interferometric Gravitational Wave Detectors; World Scientific: Singapore, 2017; ISBN 978-9813143074. [Google Scholar]
- Abbott, B.P.; LIGO Scientific Collaboration; Virgo Collaboration. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef] [PubMed]
- Abbott, B.P.; LIGO Scientific Collaboration; Virgo Collaboration. GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Phys. Rev. Lett. 2017, 119, 141101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, B.P. Multi-messenger Observations of a Binary Neutron Star Merger. Appl. J. Lett. 2017, 848, L12. [Google Scholar] [CrossRef]
- Branchesi, M. Multi-messenger astronomy: Gravitational waves, neutrinos, photons, and cosmic rays. J. Phys. Conf. Ser. 2016, 718, 022004. [Google Scholar] [CrossRef] [Green Version]
- LIGO; Virgo; KAGRA Collaborations. GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo during the Second Part of the Third Observing Run. Available online: https://arxiv.org/abs/2111.03606 (accessed on 27 June 2022).
- Accadia, T. Virgo: A laser interferometer to detect gravitational waves. J. Instrum. 2012, 7, P03012. [Google Scholar] [CrossRef]
- Aasi, J.; LIGO Scientific Collaboration; Virgo Collaboration. Advanced LIGO. Class. Quant. Gravity 2015, 32, 074001. [Google Scholar]
- Abernathy, M.R.; Lium, X.; Metcalf, T.H. An overview of research into low internal friction optical coatings by the gravitational wave detection community. Mater. Res. 2018, 21, e20170864. [Google Scholar] [CrossRef] [Green Version]
- Flaminio, R.; Franc, J.; Michel, C.; Morgado, N.; Pinard, L.; Sassolas, B. A study of coating mechanical and optical losses in view of reducing mirror thermal noise in gravitational wave detectors. Class. Quantum Gravity 2010, 27, 084030. [Google Scholar] [CrossRef]
- Snyman, J.A.; Wilke, D.N. Practical Mathematical Optimization: Basic Optimization Theory and Gradient-Based Algorithms, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2018; ISBN 978-3-319-77585-2. [Google Scholar]
- Pierro, V.; Fiumara, V.; Chiadini, F. Optimal Design of Coatings for Mirrors of Gravitational Wave Detectors: Analytic Turbo Solution via Herpin Equivalent Layers. Appl. Sci. 2021, 11, 11669. [Google Scholar] [CrossRef]
- Steinlechner, J.; Martin, I.W.; Hough, J.; Kruger, C.; Rowan, S.; Schnabel, R. Thermal noise reduction and absorption optimization via multimaterial coatings. Phys. Rev. D 2015, 91, 042001. [Google Scholar] [CrossRef] [Green Version]
- Pierro, V.; Fiumara, V.; Chiadini, F.; Granata, V.; Durante, O.; Neilson, J.; Di Giorgio, C.; Fittipaldi, R.; Carapella, G.; Bobba, F.; et al. Ternary quarter wavelength coatings for gravitational wave detector mirrors: Design optimization via exhaustive search. Phys. Rev. Res. 2021, 3, 023172. [Google Scholar] [CrossRef]
- Pan, H.W.; Wang, S.J.; Kuo, L.C.; Chao, S.; Principe, M.; Pinto, I.M.; DeSalvo, R. Thickness-dependent crystallization on thermal anneal for Titania/Silica nm-layer composites deposited by ion beam sputter method. Opt. Express 2014, 22, 29847. [Google Scholar] [CrossRef]
- Durante, O.; Di Giorgio, C.; Granata, V.; Neilson, J.; Fittipaldi, R.; Vecchione, A.; Carapella, G.; Chiadini, F.; DeSalvo, R.; Dinelli, F.; et al. Emergence and Evolution of Crystallization in TiO2 Thin Films: A Structural and Morphological Study. Nanomaterials 2021, 11, 1409. [Google Scholar] [CrossRef]
- Abelès, F. La théorie générale des couches minces. J. Phys. Radium 1950, 11, 307–310. [Google Scholar] [CrossRef]
- Born, M.; Wolf, E. Principles of Optics; Cambridge University Press: Cambridge, UK, 1997; ISBN 9780521639217. [Google Scholar]
- Orfanidis, S.J. Electromagnetic Waves and Antennas. Available online: https://www.ece.rutgers.edu/~orfanidi/ewa/ (accessed on 27 June 2022).
- Harry, G.; Bodiya, T.P.; De Salvo, R. Optical Coatings and Thermal Noise in Precision Measurements, 1st ed.; Cambridge University Press: Cambridge, UK, 2012; ISBN 9780511762314. [Google Scholar]
- Schroeter, A.; Nawrodt, R.; Schnabel, R.; Reid, S.; Martin, I.; Rowan, S.; Schwarz, C.; Koettig, T.; Neubert, R.; Thürk, M.; et al. On the Mechanical Quality Factors of Cryogenic Test Masses from Fused Silica and Crystalline Quartz. Available online: https://arxiv.org/abs/0709.4359 (accessed on 27 June 2022).
- Hong, T.; Yang, H.; Gustafson, E.K.; Adhikari, R.X.; Chen, Y. Brownian Thermal Noise in Multilayer Coated Mirrors. Phys. Rev. D 2013, 87, 082001. [Google Scholar] [CrossRef] [Green Version]
- Vajente, G.; Yang, L.; Davenport, A.; Fazio, M.; Ananyeva, A.; Zhang, L.; Billingsley, G.; Prasai, K.; Markosyan, A.; Bassiri, R.; et al. Low Mechanical Loss TiO2:GeO2 Coatings for Reduced Thermal Noise in Gravitational Wave Interferometers. Phys. Rev. Lett. 2021, 127, 071101. [Google Scholar] [CrossRef]
- Agresti, J.; Castaldi, G.; De Salvo, R.; Galdi, V.; Pierro, V.; Pinto, I.M. Optimized multilayer dielectric mirror coatings for gravitational wave interferometers. Proc. SPIE 2006, 6286, 628608. [Google Scholar]
- Pierro, V.; Fiumara, V.; Chiadini, F.; Bobba, F.; Carapella, G.; Di Giorgio, C.; Durante, O.; Fittipaldi, R.; Mejuto Villa, E.; Neilson, J.; et al. On the performance limits of coatings for gravitational wave detectors made of alternating layers of two materials. Opt. Mater. 2019, 96, 109269. [Google Scholar] [CrossRef] [Green Version]
- Deb, K. Multi-Objective Optimization Using Evolutionary Algorithms; John Wiley and Sons: Hoboken, NJ, USA, 2001. [Google Scholar]
- Deb, K.; Pratap, A.; Meyarivan, T. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Deb, K.; Jain, H. An evolutionary manyobjective optimiszation algorithm using reference-point based non-dominated sorting approach, part I: Solving problems with box constraints. IEEE Trans. Evol. Comput. 2014, 18, 577–601. [Google Scholar] [CrossRef]
- Kukkonen, S.; Lampinen, J. GDE3: The third evolution step of generalized differential evolution. IEEE Congr. Evol. Comput. 2005, 1, 443–450. [Google Scholar]
- Price, K.; Storn, R.M.; Lampinen, J.A. Differential Evolution: A Practical Approach to Global Optimization; Springer: Berlin/Heidelberg, Germany, 2005; ISBN 978-3-540-20950-8. [Google Scholar]
- Zhang, Q.; Li, H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 2007, 11, 712–731. [Google Scholar] [CrossRef]
- Fan, Z.; Fang, Y.; Li, W.; Cai, X.; Wei, C.; Goodman, E. MOEA/D with angle-based constrained dominance principle for constrained multi-objective optimization problems. Appl. Soft Comput. 2019, 74, 621–633. [Google Scholar] [CrossRef] [Green Version]
- Holland, J.H. Adaptation in Natural and Artificial Systems; University of Michigan Press: Ann Arbor, MI, USA, 1975. [Google Scholar]
- Hadka, D.; Reed, P.M. Borg: An Auto-Adaptive Many-Objective Evolutionary Computing Framework. Evol. Comput. 2013, 21, 231–259. [Google Scholar] [CrossRef] [PubMed]
- Feldt, R. BlackBoxOptim, GitHub Repository. Available online: https://github.com/robertfeldt/BlackBoxOptim.jl (accessed on 27 June 2022).
- Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the IEEE International Conference on Neural Networks IV, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar]
- Shi, Y.; Eberhart, R.C. A modified particle swarm optimizer. In Proceedings of the IEEE International Conference on Evolutionary Computation, Anchorage, AK, USA, 4–9 May 1998; pp. 69–73. [Google Scholar]
- Bonyadi, M.R.; Michalewicz, Z. Particle swarm optimization for single objective continuous space problems: A review. Evol. Comput. 2017, 25, 1–54. [Google Scholar] [CrossRef]
- GitHub Repository. Available online: https://github.com/Project-Platypus/Platypus (accessed on 27 June 2022).
- GitHub Repository. Available online: https://github.com/jMetal/jMetal (accessed on 27 June 2022).
- Mishra, K.K.; Harit, S. A Fast Algorithm for Finding the Non Dominated Set in Multi objective Optimization. Int. J. Comput. Appl. 2010, 1, 35–39. [Google Scholar]
- Coello Coello, C.A. Evolutionary multi-objective optimization: A historical view of the field. IEEE Comput. Intell. Mag. 2006, 1, 28–36. [Google Scholar] [CrossRef]
- Gaudrie, D.; le Riche, R.; Picheny, V.; Enaux, B.; Herbert, V. Budgeted Multi-Objective Optimization with a Focus on the Central Part of the Pareto Front. Available online: https://arxiv.org/abs/1809.10482 (accessed on 27 June 2022).
- Agresti, J.; Castaldi, G.; De Salvo, R.; Galdi, V.; Pierro, V.; Pinto, I.M. Optimized Coatings. LIGO Document, 2005, G050363. Available online: https://dcc.ligo.org/LIGO-G050363/public (accessed on 27 June 2022).
Property | H Material | L Material |
---|---|---|
refractive index | ||
loss angle | ||
extinction | ||
coeff. | 1 | 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Granata, V.; Pierro, V.; Troiano, L. Meta-Heuristics Optimization of Mirrors for Gravitational Wave Detectors: Cryogenic Case. Appl. Sci. 2022, 12, 7680. https://doi.org/10.3390/app12157680
Granata V, Pierro V, Troiano L. Meta-Heuristics Optimization of Mirrors for Gravitational Wave Detectors: Cryogenic Case. Applied Sciences. 2022; 12(15):7680. https://doi.org/10.3390/app12157680
Chicago/Turabian StyleGranata, Veronica, Vincenzo Pierro, and Luigi Troiano. 2022. "Meta-Heuristics Optimization of Mirrors for Gravitational Wave Detectors: Cryogenic Case" Applied Sciences 12, no. 15: 7680. https://doi.org/10.3390/app12157680
APA StyleGranata, V., Pierro, V., & Troiano, L. (2022). Meta-Heuristics Optimization of Mirrors for Gravitational Wave Detectors: Cryogenic Case. Applied Sciences, 12(15), 7680. https://doi.org/10.3390/app12157680