Performance Evaluation and Engineering Verification of Machine Learning Based Prediction Models for Slope Stability
Abstract
:Featured Application
Abstract
1. Introduction
2. Machine Learning Model Development
2.1. Machine Learning Datasets and Feature Parameters
2.2. Methods and Hyperparameter Adjustment
3. Prediction Results
4. Performance Evaluation of Machine Learning Methods
5. Engineering Applications
5.1. Numerical Simulation of Slopes
5.2. Comparison of Numerical Simulation and Machine Learning Method Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
h | slope height, m |
β | total slope angle, ° |
γ | total slope angle, ° |
c | cohesion, kPa |
φ | internal friction angle, ° |
ru | pore water ratio |
FOS | safety factor |
SVM | support vector machine |
DT | decision tree |
kNN | k-nearest neighbor algorithm |
ADA | AdaBoost algorithm |
RF | random forest |
ANN | artificial neural network |
Bagging | guided clustering algorithm |
GBDT | gradient boosting decision tree |
MSE | mean square error |
RMSE | root mean square error |
MAE | mean absolute error |
References
- Carrión-Mero, P.; Montalván-Burbano, N.; Morante-Carballo, F.; Quesada-Román, A.; Apolo-Masache, B. Worldwide Research Trends in Landslide Science. Int. J. Environ. Res. Public Health 2021, 18, 9445. [Google Scholar] [CrossRef]
- Chen, X.; Chen, Y.; Huang, Y.; Lv, X.; Xu, B. Comparative Analysis of Three Different Rigid Body Limit Equilibrium Methods. Yellow River 2016, 1, 116–119. [Google Scholar]
- Cao, Y. Comparative Study On Slope Stability Analysis of Foundation Pit Excavation. Jiangsu Constr. 2020, 2, 86–88. [Google Scholar]
- Yin, J.; Yang, J.; Ren, J.; Hu, D. Study of impact factors sensitivity of slope stability based on grey correlation analysis. J. Hefei Univ. Technol. 2015, 38, 75–78. [Google Scholar]
- Yibibula, M. Slope stability study based on the Swedish method and the Bishop method. Water Conserv. Sci. Technol. Econ. 2015, 21, 12–14. [Google Scholar]
- Hu, H.; Yao, L.; Dong, M. Comparison of slope stability evaluation with Swedish circle method and Bishop method. Subgrade Eng. 2007, 6, 110–112. [Google Scholar]
- Zhang, J.; Li, J. A Comparative Study Between Infinite Slope Model and Bishop’S Method for the Shallow Slope Stability Evaluation. Eur. J. Environ. Civ. Eng. 2021, 25, 1503–1520. [Google Scholar] [CrossRef]
- Dong, L.; Sun, D.; Li, X.; Zhou, Z. Interval Non-Probabilistic Reliability of a Surrounding Jointed Rockmass in Underground Engineering: A Case Study. IEEE Access 2017, 5, 18804–18817. [Google Scholar] [CrossRef]
- Dong, L.; Sun, D.; Li, X.; Ma, J.; Zhang, L.; Tong, X. Interval non-probabilistic reliability of surrounding jointed rockmass considering microseismic loads in mining tunnels. Tunn. Undergr. Sp. Tech. 2018, 81, 326–335. [Google Scholar] [CrossRef]
- Dong, L.; Sun, D.; Li, X. Theoretical and Case Studies of Interval Nonprobabilistic Reliability for Tailing Dam Stability. Geofluids 2017, 2017, 8745894. [Google Scholar] [CrossRef] [Green Version]
- Dong, L.; Shu, W.; Sun, D.; Li, X.; Zhang, L. Pre-Alarm System Based on Real-Time Monitoring and Numerical Simulation Using Internet of Things and Cloud Computing for Tailings Dam in Mines. IEEE Access 2017, 5, 21080–21089. [Google Scholar] [CrossRef]
- Dong, L.; Deng, S.; Wang, F. Some Developments and New Insights for Environmental Sustainability and Disaster Control of Tailings Dam. J. Clean. Prod. 2020, 269, 122270. [Google Scholar] [CrossRef]
- Zhang, J. Finite element simulation and stability analysis on slope excavation. Chin. J. Rock Mech. Eng. 2002, 21, 843–847. [Google Scholar]
- Wang, D.; Yuan, J. Slope research based on bishop method and strength reduction method. J. Yulin Univ. 2021, 31, 1–4. [Google Scholar]
- Chen, Q.; Hu, H.; Peng, J.; Hu, G. Visco-elastoplastic finite element simulation of progressive failure of high-steep rock slope. J. Eng. Geol. 2000, 8, 25–30. [Google Scholar]
- Li, S.; Li, H.; Shangguan, Z. Rock Slope Stability Under Earthquake Action with Finite Element Analysis. J. Liaoning Tech. Univ. 2015, 34, 1026–1030. [Google Scholar]
- Nian, T.; Huang, R.; Wan, S.; Chen, G. Three-Dimensional Strength-Reduction Finite Element Analysis of Slopes: Geometric Effects. Can. Geotech. J. 2012, 49, 574–588. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, G.; Zheng, L.; Li, Y.; Zhuang, X. Effects of Geometries on Three-Dimensional Slope Stability. Can. Geotech. J. 2013, 50, 233–249. [Google Scholar] [CrossRef]
- Dong, L.; Wesseloo, J.; Potvin, Y.; Li, X. Discrimination of Mine Seismic Events and Blasts Using the Fisher Classifier, Naive Bayesian Classifier and Logistic Regression. Rock Mech. Rock Eng. 2016, 49, 183–211. [Google Scholar] [CrossRef]
- Dong, L.; Tang, Z.; Li, X.; Chen, Y.; Xue, J. Discrimination of Mining Microseismic Events and Blasts Using Convolutional Neural Networks and Original Waveform. J. Cent. South Univ. 2020, 27, 3078–3089. [Google Scholar] [CrossRef]
- Peng, K.; Tang, Z.; Dong, L.; Sun, D. Machine Learning Based Identification of Microseismic Signals Using Characteristic Parameters. Sensors 2021, 21, 6967. [Google Scholar] [CrossRef]
- Dong, L.; Li, X.; Xie, G. Nonlinear Methodologies for Identifying Seismic Event and Nuclear Explosion Using Random Forest, Support Vector Machine, and Naive Bayes Classification. Abstr. Appl. Anal. 2014, 2014, 459137. [Google Scholar] [CrossRef] [Green Version]
- Dong, L.; Li, X.; Peng, K. Prediction of Rockburst Classification Using Random Forest. Trans. Nonferrous Met. Soc. China 2013, 23, 472–477. [Google Scholar] [CrossRef]
- Dong, L.; Shu, W.; Li, X.; Zhang, J. Quantitative Evaluation and Case Studies of Cleaner Mining with Multiple Indexes Considering Uncertainty Factors for Phosphorus Mines. J. Clean. Prod. 2018, 183, 319–334. [Google Scholar] [CrossRef]
- Lu, P.; Rosenbaum, M.; Chacon, J. Artificial Neural Networks and Grey Systems for the Prediction of Slope Stability. Nat. Hazards 2003, 30, 383–398. [Google Scholar] [CrossRef]
- Wang, H.; Xu, W.; Xu, R. Slope Stability Evaluation Using Back Propagation Neural Networks. Eng. Geol. 2005, 80, 302–315. [Google Scholar] [CrossRef]
- Li, X.; Dong, L.; Zhao, G.; Huang, M.; Liu, A.; Zeng, L.; Dong, L.; Chen, G. Stability Analysis and Comprehensive Treatment Methods of Landslides Under Complex Mining Environment—A Case Study of Dahu Landslide from Linbao Henan in China. Saf. Sci. 2012, 50, 695–704. [Google Scholar] [CrossRef]
- Das, S.K.; Biswal, R.K.; Sivakugan, N.; Das, B. Classification of Slopes and Prediction of Factor of Safety Using Differential Evolution Neural Networks. Environ. Earth Sci. 2011, 64, 201–210. [Google Scholar] [CrossRef]
- Liu, Z.; Shao, J.; Xu, W.; Chen, H.; Zhang, Y. An Extreme Learning Machine Approach for Slope Stability Evaluation and Prediction. Nat. Hazards 2014, 73, 787–804. [Google Scholar] [CrossRef]
- Zhou, J.; Li, E.; Yang, S.; Wang, M.; Shi, X.; Yao, S.; Mitri, H.S. Slope Stability Prediction for Circular Mode Failure Using Gradient Boosting Machine Approach Based on an Updated Database of Case Histories. Saf. Sci. 2019, 118, 505–518. [Google Scholar] [CrossRef]
- Wei, W.; Li, X.; Liu, J.; Zhou, Y.; Li, L.; Zhou, J. Performance Evaluation of Hybrid Woa-Svr and Hho-Svr Models with Various Kernels to Predict Factor of Safety for Circular Failure Slope. Appl. Sci. 2021, 11, 1922. [Google Scholar] [CrossRef]
- Qi, C.; Tang, X. Slope stability prediction using integrated metaheuristic and machine learning approaches: A comparative study. Comput. Ind. Eng. 2018, 118, 112–122. [Google Scholar] [CrossRef]
Case | γ (kN/m3) | c (kPa) | φ (°) | β (°) | h (m) | ru | FOS |
---|---|---|---|---|---|---|---|
1 | 18.68 | 26.34 | 15.00 | 35.0 | 8.23 | 0.00 | 1.11 |
2 | 18.84 | 14.36 | 25.00 | 20.0 | 30.50 | 0.00 | 1.88 |
3 | 18.84 | 57.46 | 20.00 | 20.0 | 30.50 | 0.00 | 2.05 |
4 | 28.44 | 29.42 | 35.00 | 35.0 | 100.00 | 0.00 | 1.78 |
5 | 28.44 | 39.23 | 38.00 | 35.0 | 100.00 | 0.00 | 1.99 |
6 | 20.60 | 16.28 | 26.50 | 30.0 | 40.00 | 0.00 | 1.25 |
7 | 14.00 | 11.97 | 26.00 | 30.0 | 88.00 | 0.00 | 1.02 |
8 | 25.00 | 120.00 | 45.00 | 53.0 | 120.00 | 0.00 | 1.30 |
9 | 26.00 | 150.05 | 45.00 | 50.0 | 200.00 | 0.00 | 1.20 |
10 | 22.40 | 10.00 | 35.00 | 30.0 | 10.00 | 0.00 | 2.00 |
11 | 21.40 | 10.00 | 30.34 | 30.0 | 20.00 | 0.00 | 1.70 |
12 | 22.00 | 20.00 | 36.00 | 45.0 | 50.00 | 0.00 | 1.02 |
13 | 16.00 | 70.00 | 20.00 | 40.0 | 115.00 | 0.00 | 1.11 |
14 | 20.41 | 24.90 | 13.00 | 22.0 | 10.67 | 0.35 | 1.40 |
15 | 19.63 | 11.97 | 20.00 | 22.0 | 12.19 | 0.41 | 1.35 |
16 | 21.82 | 8.62 | 32.00 | 28.0 | 12.80 | 0.49 | 1.03 |
17 | 18.84 | 15.32 | 30.00 | 25.0 | 10.67 | 0.38 | 1.63 |
18 | 19.06 | 11.71 | 28.00 | 35.0 | 21.00 | 0.11 | 1.09 |
19 | 18.84 | 14.36 | 25.00 | 20.0 | 30.50 | 0.45 | 1.11 |
20 | 21.51 | 6.94 | 30.00 | 31.0 | 76.81 | 0.38 | 1.01 |
21 | 18.00 | 24.00 | 30.15 | 45.0 | 20.00 | 0.12 | 1.12 |
22 | 22.40 | 100.00 | 45.00 | 45.0 | 15.00 | 0.25 | 1.80 |
23 | 22.40 | 10.00 | 35.00 | 45.0 | 10.00 | 0.40 | 0.90 |
24 | 20.00 | 20.00 | 36.00 | 45.0 | 50.00 | 0.25 | 0.96 |
25 | 20.00 | 20.00 | 36.00 | 45.0 | 50.00 | 0.50 | 0.83 |
26 | 21.00 | 20.00 | 40.00 | 40.0 | 12.00 | 0.00 | 1.84 |
27 | 21.00 | 45.00 | 25.00 | 49.0 | 12.00 | 0.30 | 1.53 |
28 | 21.00 | 30.00 | 35.00 | 40.0 | 12.00 | 0.40 | 1.49 |
29 | 21.00 | 35.00 | 28.00 | 40.0 | 12.00 | 0.50 | 1.43 |
30 | 20.00 | 40.00 | 30.00 | 30.0 | 15.00 | 0.30 | 1.84 |
31 | 18.00 | 45.00 | 25.00 | 25.0 | 14.00 | 0.30 | 2.09 |
32 | 19.00 | 30.00 | 35.00 | 35.0 | 11.00 | 0.20 | 2.00 |
33 | 20.00 | 40.00 | 40.00 | 40.0 | 10.00 | 0.20 | 2.31 |
34 | 18.85 | 24.80 | 21.30 | 29.2 | 37.00 | 0.50 | 1.07 |
35 | 18.85 | 10.34 | 21.30 | 34.0 | 37.00 | 0.30 | 1.29 |
36 | 18.80 | 30.00 | 10.00 | 25.0 | 50.00 | 0.10 | 1.40 |
37 | 18.80 | 25.00 | 10.00 | 25.0 | 50.00 | 0.20 | 1.18 |
38 | 18.80 | 20.00 | 10.00 | 25.0 | 50.00 | 0.30 | 0.97 |
39 | 19.10 | 10.00 | 10.00 | 25.0 | 50.00 | 0.40 | 0.65 |
40 | 18.80 | 30.00 | 20.00 | 30.0 | 50.00 | 0.10 | 1.46 |
41 | 18.80 | 25.00 | 20.00 | 30.0 | 50.00 | 0.20 | 1.21 |
42 | 18.80 | 20.00 | 20.00 | 30.0 | 50.00 | 0.30 | 1.00 |
43 | 19.10 | 10.00 | 20.00 | 30.0 | 50.00 | 0.40 | 0.65 |
44 | 22.00 | 20.00 | 22.00 | 20.0 | 180.00 | 0.00 | 1.12 |
45 | 22.00 | 20.00 | 22.00 | 20.0 | 180.00 | 0.10 | 0.99 |
46 | 25.00 | 55.00 | 36.00 | 45.0 | 239.00 | 0.25 | 1.71 |
47 | 25.00 | 63.00 | 32.00 | 44.5 | 239.00 | 0.25 | 1.49 |
48 | 25.00 | 63.00 | 32.00 | 46.0 | 300.00 | 0.25 | 1.45 |
49 | 25.00 | 48.00 | 40.00 | 45.0 | 330.00 | 0.25 | 1.62 |
50 | 31.30 | 68.60 | 37.00 | 47.5 | 262.50 | 0.25 | 1.20 |
51 | 31.30 | 68.60 | 37.00 | 47.0 | 270.00 | 0.25 | 1.20 |
52 | 31.30 | 58.80 | 35.50 | 47.5 | 438.50 | 0.25 | 1.20 |
53 | 31.30 | 58.80 | 35.50 | 47.5 | 502.70 | 0.25 | 1.20 |
54 | 31.30 | 68.00 | 37.00 | 47.0 | 360.50 | 0.25 | 1.20 |
55 | 27.30 | 14.00 | 31.00 | 41.0 | 110.00 | 0.25 | 1.25 |
56 | 27.00 | 40.00 | 35.00 | 43.0 | 420.00 | 0.25 | 1.15 |
57 | 27.00 | 50.00 | 40.00 | 42.0 | 407.00 | 0.25 | 1.44 |
58 | 27.00 | 35.00 | 35.00 | 42.0 | 359.00 | 0.25 | 1.27 |
59 | 27.00 | 32.00 | 33.00 | 42.4 | 289.00 | 0.25 | 1.30 |
60 | 27.00 | 32.00 | 33.00 | 42.6 | 301.00 | 0.25 | 1.16 |
61 | 25.00 | 46.00 | 35.00 | 46.0 | 393.00 | 0.25 | 1.31 |
62 | 25.00 | 48.00 | 40.00 | 49.0 | 330.00 | 0.25 | 1.49 |
63 | 31.30 | 68.60 | 37.00 | 47.0 | 305.00 | 0.25 | 1.20 |
64 | 25.00 | 55.00 | 36.00 | 45.5 | 299.00 | 0.25 | 1.52 |
65 | 31.30 | 68.00 | 37.00 | 47.0 | 213.00 | 0.25 | 1.20 |
66 | 22.00 | 29.00 | 15.00 | 18.0 | 400.00 | 0.00 | 1.04 |
67 | 23.00 | 24.00 | 19.80 | 23.0 | 380.00 | 0.00 | 1.15 |
68 | 22.00 | 40.00 | 30.00 | 30.0 | 196.00 | 0.00 | 1.11 |
69 | 22.54 | 29.40 | 20.00 | 24.0 | 210.00 | 0.00 | 1.06 |
70 | 22.00 | 21.00 | 23.00 | 30.0 | 257.00 | 0.00 | 1.10 |
71 | 23.50 | 10.00 | 27.00 | 26.0 | 190.00 | 0.00 | 1.02 |
72 | 22.50 | 18.00 | 20.00 | 20.0 | 290.00 | 0.00 | 1.05 |
73 | 22.50 | 20.00 | 16.00 | 25.0 | 220.00 | 0.00 | 1.36 |
74 | 21.00 | 20.00 | 24.00 | 21.0 | 565.00 | 0.00 | 1.26 |
75 | 26.49 | 150.00 | 33.00 | 45.0 | 73.00 | 0.15 | 1.23 |
76 | 26.70 | 150.00 | 33.00 | 50.0 | 130.00 | 0.25 | 1.80 |
77 | 26.89 | 150.00 | 33.00 | 52.0 | 120.00 | 0.25 | 1.80 |
78 | 26.43 | 50.00 | 26.60 | 40.0 | 92.20 | 0.15 | 1.25 |
79 | 26.70 | 50.00 | 26.60 | 50.0 | 170.00 | 0.25 | 1.25 |
80 | 26.80 | 60.00 | 28.80 | 59.0 | 108.00 | 0.25 | 1.25 |
81 | 23.00 | 0.00 | 20.00 | 20.0 | 100.00 | 0.30 | 1.20 |
82 | 20.00 | 0.00 | 36.00 | 45.0 | 50.00 | 0.50 | 0.67 |
83 | 18.50 | 12.00 | 0.00 | 30.0 | 6.00 | 0.00 | 0.78 |
84 | 12.00 | 0.00 | 30.00 | 35.0 | 4.00 | 0.00 | 1.46 |
85 | 21.43 | 0.00 | 20.00 | 20.0 | 61.00 | 0.50 | 1.03 |
86 | 22.00 | 0.00 | 40.00 | 33.0 | 8.00 | 0.35 | 1.45 |
87 | 18.00 | 5.00 | 30.00 | 20.0 | 8.00 | 0.30 | 2.05 |
88 | 23.47 | 0.00 | 32.00 | 37.0 | 214.00 | 0.00 | 1.08 |
89 | 22.00 | 0.00 | 36.00 | 45.0 | 50.00 | 0.00 | 0.89 |
90 | 20.00 | 0.00 | 24.50 | 20.0 | 8.00 | 0.35 | 1.37 |
91 | 20.41 | 33.52 | 11.00 | 16.0 | 45.72 | 0.20 | 1.28 |
92 | 12.00 | 0.00 | 30.00 | 45.0 | 8.00 | 0.00 | 0.86 |
93 | 16.50 | 11.49 | 0.00 | 30.0 | 3.66 | 0.00 | 1.00 |
94 | 9.06 | 11.71 | 28.00 | 35.0 | 21.00 | 0.11 | 1.09 |
95 | 12.00 | 0.00 | 30.00 | 45.0 | 8.00 | 0.00 | 0.80 |
96 | 18.50 | 25.00 | 0.00 | 30.0 | 6.00 | 0.00 | 1.09 |
97 | 24.00 | 0.00 | 40.00 | 33.0 | 8.00 | 0.30 | 1.58 |
98 | 14.80 | 0.00 | 17.00 | 20.0 | 50.00 | 0.00 | 1.13 |
99 | 12.00 | 0.00 | 30.00 | 35.0 | 4.00 | 0.00 | 1.44 |
100 | 18.84 | 0.00 | 20.00 | 20.0 | 7.62 | 0.45 | 1.05 |
101 | 20.00 | 0.00 | 36.00 | 45.0 | 50.00 | 0.25 | 0.79 |
102 | 14.00 | 11.97 | 26.00 | 30.0 | 88.00 | 0.45 | 0.63 |
Model | Parameters |
---|---|
Random Forest | N_estimators = 10 Max_depth = 6 Min_samples_leaf = 1 Min_sanmples_split = 2 Criterion = ‘entropy’ |
Decision Tree | Criterion = ‘gini’ Max_depth = 5 Ccp_alpha = 0.0 Min_samples_leaf = 1 Random_state = 111 |
SVM | Kernel =‘poly’ Degree = 2 C = 100 Epsilon = 0.1 |
GBDT | n_Estimators = 500 Max_Depth = 4 Min_Samples_Split = 2 Learning_Rate = 0.01 Loss = ‘Ls’ |
KNN | n_Neighbors = 3 |
AdaBoost | Max_depth = 2 Min_samples_split = 20 Min_samples_leaf = 5 Algorithm = ’SAMME’ N_estimators = 200 Learning_rate = 0.8 |
Bagging | Max_samples = 0.5 Max_features = 0.5 |
ANN | Activation = ’relu’ Neurons = (256, 128, 64, 32) Optimization_method = rmsprop Loss_function = ’mse’ Metrics = ’mae’ |
Model | MSE | RMSE | MAE | Pearson Correlation |
---|---|---|---|---|
RF | 0.0725 | 0.2587 | 0.1925 | 0.3272 |
DT | 0.1205 | 0.3413 | 0.2397 | 0.2741 |
SVM | 0.1088 | 0.3174 | 0.2600 | 0.2871 |
GBDT | 0.0720 | 0.2648 | 0.1950 | 0.2892 |
KNN | 0.1086 | 0.3129 | 0.2442 | 0.2882 |
Adaboost | 0.1004 | 0.3129 | 0.2463 | 0.2953 |
Bagging | 0.0878 | 0.2950 | 0.2299 | 0.2956 |
ANN | 0.0661 | 0.2514 | 0.1882 | 0.2987 |
Model | Positive Ideal Solution | Negative Ideal Solution | Comprehensive Score | Ranking |
---|---|---|---|---|
RF | 0.0214 | 0.1149 | 0.8432 | 2 |
DT | 0.1289 | 0.0135 | 0.0948 | 8 |
SVM | 0.1185 | 0.0189 | 0.1378 | 7 |
GBDT | 0.0315 | 0.1090 | 0.7759 | 3 |
KNN | 0.1125 | 0.0231 | 0.1703 | 6 |
Adaboost | 0.1034 | 0.0322 | 0.2376 | 5 |
Bagging | 0.0774 | 0.0576 | 0.4267 | 4 |
ANN | 0.0165 | 0.1316 | 0.8886 | 1 |
Model | Positive Ideal Solution | Negative Ideal Solution | Comprehensive Score | Ranking |
---|---|---|---|---|
RF | 0.0188 | 0.1052 | 0.8482 | 1 |
DT | 0.1175 | 0.0113 | 0.0877 | 8 |
SVM | 0.1061 | 0.0185 | 0.1484 | 7 |
GBDT | 0.0354 | 0.0958 | 0.7301 | 3 |
KNN | 0.1011 | 0.0219 | 0.1782 | 6 |
Adaboost | 0.0923 | 0.0310 | 0.2513 | 5 |
Bagging | 0.0701 | 0.0522 | 0.4270 | 4 |
ANN | 0.0220 | 0.1163 | 0.8410 | 2 |
Sand and Soil Surface | Strongly Weathered Andesite | |||||||
---|---|---|---|---|---|---|---|---|
Water content (%) | 6 | 10 | 20 | 25 | 6 | 10 | 20 | 25 |
c (kPa) | 8 | 85 | 17 | 9 | 215 | 195 | 151 | 130 |
φ (°) | 30 | 25 | 25 | 17.9 | 15.6 | 14.6 | 12.7 | 11.9 |
γ (kN/m3) | 13.2 | 13.75 | 15 | 15.63 | 15.75 | 16.35 | 17.82 | 18.56 |
Water Content (%) | Radius of Dangerous Sliding Surface (m) | Sliding Force (kN) | Anti-Sliding Force (kN) | FOS |
---|---|---|---|---|
6 | 102.9 | 1236 | 1802 | 1.458 |
10 | 184.53 | 76,345.938 | 145,378 | 1.904 |
25 | 102.91 | 1458.175 | 1677.549 | 1.150 |
Water Content (%) | Slope Layer | γ (kN/m3) | c (kPa) | φ (°) | ß (°) | h (m) | ru | FOS |
---|---|---|---|---|---|---|---|---|
6 | Sand-gravel layer | 13.20 | 8 | 8 | 40 | 120 | 0 | 1.05 |
Strong Weathered Andesite | 15.75 | 215 | 215 | 40 | 120 | 0 | 1.40 | |
10 | Sand-gravel layer | 13.75 | 85 | 85 | 40 | 120 | 0 | 1.38 |
Strong Weathered Andesite | 16.35 | 195 | 195 | 40 | 120 | 0 | 1.40 | |
25 | Sand-gravel layer | 15.63 | 9 | 9 | 40 | 120 | 0 | 1.08 |
Strong Weathered Andesite | 18.56 | 130 | 130 | 40 | 120 | 0 | 1.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, G.; Hou, Y.; Wan, B.; An, N.; Yan, Y.; Tang, Z.; Yan, M.; Zhang, Y.; Sun, D. Performance Evaluation and Engineering Verification of Machine Learning Based Prediction Models for Slope Stability. Appl. Sci. 2022, 12, 7890. https://doi.org/10.3390/app12157890
Bai G, Hou Y, Wan B, An N, Yan Y, Tang Z, Yan M, Zhang Y, Sun D. Performance Evaluation and Engineering Verification of Machine Learning Based Prediction Models for Slope Stability. Applied Sciences. 2022; 12(15):7890. https://doi.org/10.3390/app12157890
Chicago/Turabian StyleBai, Gexue, Yunlong Hou, Baofeng Wan, Ning An, Yihao Yan, Zheng Tang, Mingchun Yan, Yihan Zhang, and Daoyuan Sun. 2022. "Performance Evaluation and Engineering Verification of Machine Learning Based Prediction Models for Slope Stability" Applied Sciences 12, no. 15: 7890. https://doi.org/10.3390/app12157890
APA StyleBai, G., Hou, Y., Wan, B., An, N., Yan, Y., Tang, Z., Yan, M., Zhang, Y., & Sun, D. (2022). Performance Evaluation and Engineering Verification of Machine Learning Based Prediction Models for Slope Stability. Applied Sciences, 12(15), 7890. https://doi.org/10.3390/app12157890