The Effect of Different Types of Feedback on Learning of Aerobic Gymnastics Elements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Intervention Programs
2.4. Materials
2.5. Evaluation Process
2.6. Statistical Analysis
3. Results
3.1. Changes in the Performance of the Elements in IP1 and IP2
3.2. Comparison of the Effect of Various Types of Feedback on the Performance of the Elements
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raiola, G.; Giugno, Y.; Scassillo, I.; Di Tore, P.A. An experimental study on Aerobic Gymnastic: Performance analysis as an effective evaluation for technique and teaching of motor gestures. J. Hum. Sport Exerc. 2013, 8, 297–306. [Google Scholar] [CrossRef]
- FIG. 2017–2020 Aerobic Gymnastics Code of Points. Available online: http://www.fig-gymnastics.com/publicdir/rules/files/aer/aer_cop_2017-2020-e_january_2017.pdf (accessed on 2 March 2021).
- Prassas, S.; Kwon, Y.; Sands, W.A. Biomechanical research in artistic gymnastics: A review. Sports Biomech. 2006, 5, 261–291. [Google Scholar] [CrossRef]
- Razali, R.; Suwarganda, E.; Zawaki, I. The Effect of Direct Video Feedback on Performance of Tennis Serve. In Proceedings of the 30th Annual Conference of Biomechanics in Sport, Melbourne, Australia, 2–6 July 2012; pp. 241–244. [Google Scholar] [CrossRef]
- Bilodeau, E.A.; Bilodeau, I.M. Motor-Skills Learning. Annu. Rev. Psychol. 1961, 12, 243–280. [Google Scholar] [CrossRef]
- Magill, R.A.; Schoenfelder-Zohdi, B. A Visual Model and Knowledge of Performance as Sources of Information for Learning a Rhythmic Gymnastics Skill. Int. J. Sport Psychol. 1996, 27, 7–22. [Google Scholar]
- Magill, R.A. Modeling and Verbal Feedback Influences on Motor Skill Learning. Int. J. Sport Psychol. 1993, 24, 358–369. [Google Scholar]
- Granados, C.; Wulf, G. Enhancing Motor Learning Through Dyad Practice: Contributions of Observation and dialogue. Res. Q. Exerc. Sport 2007, 78, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Weiss, M. Modeling and Motor Performance: A Development Perspective. Res. Q. Exerc. Sport 1983, 54, 190–197. [Google Scholar] [CrossRef]
- Bandura, A. Social Foundations of Thought and Action: A Social Cognitive Theory; Prentice Hall: Englewood Cliffs, NJ, USA, 1986. [Google Scholar]
- Mccullagh, P.A.; Little, W.S. A Comparison of Modalities in Modeling. Hum. Perform. 1989, 2, 101–111. [Google Scholar] [CrossRef]
- Dowrick, P.W. A Review of Self Modeling and Related Interventions. Appl. Prev. Psychol. 1999, 8, 23–39. [Google Scholar] [CrossRef]
- Blandin, Y.L.; Lhuisset, L.P. Cognitive Processes Underlying Observational Learning of Motor Skills. Q. J. Exp. Psychol. 1999, 52, 957–979. [Google Scholar] [CrossRef]
- Buchanan, J.J.; Dean, N.J. Specificity in Practice Benefits Learning in Novice Models and Variability in Demonstration Benefits Observational Practice. Psychol. Res. PRPF 2010, 74, 313–326. [Google Scholar] [CrossRef]
- Oxendine, J.B. Applied Sport Psychology; Prentice Hall: Englewood Cliffs, NJ, USA, 2002; pp. 15–27. [Google Scholar]
- Pollock, B.J.; Lee, T.D. Effects of the Model’s Skill Level on Observational Motor Learning. Res. Q. Exerc. Sport 1992, 63, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, R.A.; Lee, T.D. Motor Learning. In Motor Control and Learning; A Behavioral Emphasis; Human Kinetics: Champaign, IL, USA, 2005; pp. 301–400. [Google Scholar]
- Rucci, J.A.; Tomporowski, P.D. Three Types of Kinematic Feedback and the Execution of the Hang Power Clean. J. Strength Cond. Res. 2010, 24, 771–778. [Google Scholar] [CrossRef]
- Liebermann, D.G.; Katz, L.; Hughes, M.D.; Bartlett, R.M.; McClements, J.; Franks, I.M. Advances in the Application of Information Technology to Sport Performance. J. Sports Sci. 2002, 20, 755–769. [Google Scholar] [CrossRef] [PubMed]
- Vrbik, I.; Vrbik, A. Video demonstration as way of teaching in education. Croat. J. Educ. Hrvat. Časopis Za Odgoj. I Obraz. 2018, 19, 201–213. [Google Scholar] [CrossRef]
- Boyer, E.; Miltenberger, R.G.; Batsche, C.; Fogel, V. Video Modeling by Experts with Video Feedback to Enhance Gymnastics Skills. J. Appl. Behav. Anal. 2009, 42, 855–860. [Google Scholar] [CrossRef] [PubMed]
- Scully, D.M.; Newell, K.M. Observational Learning and the Acquisition of Motor Skills Toward a Visual Perception Perspective. J. Hum. Mov. Stud. 1985, 11, 169–186. [Google Scholar]
- Hayes, S.J.; Dutoy, C.A.; Elliott, D.; Gowen, E.; Bennett, S.J. Atypical Biological Motion Kinematics are Represented by Complementary Lower-Level and Top-Down Processes During Imitation Learning. Acta Psychologica 2016, 163, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Carroll, W.R.; Bandura, A. Representational Guidance of Action Production in Observational Learning: A Causal Analysis. J. Mot. Behav. 1990, 22, 85–97. [Google Scholar] [CrossRef]
- Hebert, E.P.; Landin, D. Effects of a Learning Model and Augmented Feedback on Tennis Skill Acquisition. Res. Q. Exerc. Sport 1994, 65, 250–257. [Google Scholar] [CrossRef]
- Tzetzis, G.; Mantis, K.; Zachopoulou, E.; Kioumourtzoglou, E. The Effect of Modeling and Verbal Feedback on Skill Learning. J. Hum. Mov. Studies 1999, 36, 137–151. [Google Scholar]
- Ste-Marie, D.M.; Law, B.; Rymal, A.M.; Jenny, O.; Hall, C.; McCullagh, P. Observation Interventions for Motor Skill Learning and Performance: An Applied Model for the Use of Observation. Int. Rev. Sport Exerc. Psychol. 2012, 5, 145–176. [Google Scholar] [CrossRef]
- Starzak, M.; Biegajło, M.; Nogal, M.; Niźnikowski, T.; Ambroży, T.; Rydzik, Ł.; Jaszczur-Nowicki, J. The Role of Verbal Feedback in the Motor Learning of Gymnastic Skills: A Systematic Review. Appl. Sci. 2022, 12, 5940. [Google Scholar] [CrossRef]
- Schmidt, R.A.; Wrisberg, C.A. Motor Learning and Performance. A Problem-Based Learning Approach, 2nd ed.; Human Kinetics: Champaign, IL, USA, 2000. [Google Scholar]
- McNevin, N.H.; Wulf, G. Attentional focus on supra-postural tasks affects postural control. Hum. Mov. Sci. 2002, 21, 187–202. [Google Scholar] [CrossRef]
- Wulf, G.; Prinz, W.P. Directing attention to movement effects enhances learning: A review. Psychon. Bull. Rev. 2001, 8, 648–660. [Google Scholar] [CrossRef]
- Wulf, G.; Hob, M.; Prinz, W. Instruction for motor learning: Differential effects of internal versus external focus of attention. J. Mot. Behav. 1998, 30, 169–179. [Google Scholar] [CrossRef]
- Wulf, G.; Landers, M.; Lewthwaite, R.; Toöllner, T.; Tollner, T. External focus instructions reduce postural instability in individuals with Parkinson disease. Phys. Ther. 2009, 89, 162–168. [Google Scholar] [CrossRef] [PubMed]
- McNevin, N.H.; Shea, C.H.; Wulf, G. Increasing the distance of an external focus of attention enhances learning. Psychol. Res. 2003, 67, 22–29. [Google Scholar] [CrossRef]
- Wulf, G.; Shea, C.; Park, J.H. Attention and motor performance: Preferences for and advantages of an external focus. Res. Q. Exerc. Sport 2001, 72, 335–344. [Google Scholar] [CrossRef]
- Bell, J.J.; Hardy, J. Effects of attentional focus on skilled performance in golf. J. Appl. Sport Psychol. 2009, 21, 163–177. [Google Scholar] [CrossRef]
- Pascua, L.; Wulf, G.; Lewthwaite, R. Additive benefits of external focus and enhanced performance expectancy for motor learning. J. Sports Sci. 2014, 33, 58–66. [Google Scholar] [CrossRef]
- Castaneda, B.; Gray, R. Effects of focus of attention on baseball batting performance in players of differing skill levels. J. Sport Exerc. Psychol. 2007, 29, 60–77. [Google Scholar] [CrossRef] [PubMed]
- Peh, S.; Chow, J.; Davids, K. Focus of attention and its impact on movement behaviour. J. Sci. Med. Sport 2011, 14, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Künzell, S. Optimal attentional focus in practical sport settings: Always external or task specific? E-J. Beweg. Train. 2007, 1, 27–28. Available online: http://www.sportwissenschaft.de/fileadmin/pdf/BuT/hossner_wulf.pdf (accessed on 4 August 2022).
- Zentgraf, K.; Munzert, J. Effects of attentional-focus instructions on movement kinematics. Psychol. Sport Exerc. 2009, 10, 520–525. [Google Scholar] [CrossRef]
- Emanuel, M.; Jarus, T.; Bart, O. Effect of focus of attention and age on motor acquisition, retention, and transfer: A randomized trial. Phys. Ther. 2008, 88, 251–260. [Google Scholar] [CrossRef]
- Perkins-Ceccato, N.; Passmore, S.R.; Lee, T.D. Effects of focus of attention depend on golfers’ skill. J. Sports Sci. 2003, 21, 593–600. [Google Scholar] [CrossRef]
- Baudry, L.; Leroy, D.; Seifert, L.; Chollet, D. The effect of video training on pommel horse circles according to circle phase complexity. J. Hum. Mov. Stud. 2005, 48, 313–334. [Google Scholar]
- Baudry, L.; Leroy, D.; Seifert, L.; Chollet, D. The effect of combined self- and expert-modelling on the performance of the double leg circle on the pommel horse. J. Sports Sci. 2006, 24, 1055–1063. [Google Scholar] [CrossRef]
- Maleki, F.; Nia, P.S.; Zarghami, M.; Neisi, A. The Comparison of Different Types of Observational Training on Motor Learning of Gymnastic Handstand. J. Hum. Kinet. 2010, 26, 13–19. [Google Scholar] [CrossRef]
- Rohbanfard, H.; Proteau, L. Learning through observation: A combination of expert and novice models favors learning. Exp. Brain Res. 2011, 215, 183–197. [Google Scholar] [CrossRef] [PubMed]
- Amara, S.; Mkaouer, B.; Nassib, S.H.; Chaaben, H.; Hachana, Y.; Ben Salah, F.Z. Effect of Video Modeling Process on Teaching/Learning Hurdle Clearance Situations on Physical Education Students. Adv. Phys. Educ. 2015, 5, 225–233. [Google Scholar] [CrossRef]
- Anderson, R.; Campbell, J.M. Accelerating Skill Acquisition in Rowing Using Self-Based Observational Learning and Expert Modelling During Performance. Int. J. Sports Sci. Coach. 2015, 10, 425–437. [Google Scholar] [CrossRef]
- Le Naour, T.; Ré, C.; Bresciani, J. 3D Feedback and Observation for Motor Learning: Application to the Roundoff Movement in Gymnastics. Hum. Mov. Sci. 2019, 66, 564–577. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsday, NJ, USA, 1988. [Google Scholar]
- Zetou, E.; Fragouli, M.; Tzetzis, G. The Influence of Star and Self Modeling on Volleyball Skill Acquisition. J. Hum. Mov. Stud. 1999, 37, 127–143. [Google Scholar]
- Lirgg, C.D.; Feltz, D.L. Teacher Versus Peer Models Revisited: Effects on Motor Performance and Self-Efficacy. Res. Q. Exerc. Sport 1991, 62, 217–224. [Google Scholar] [CrossRef]
- Zetou, E.; Tzetzis, G.; Vernadakis, N. Modeling in Learning Two Volleyball Skills. Percept. Mot. Ski. 2002, 94, 1131–1142. [Google Scholar] [CrossRef]
- Kazakas, P.; Gantiraga, E.; Christos, P.; Ermioni, K.; Nikolaos, K. Effect of Different Information Models on Biomechanical Characteristics of a Multiangular Skill in Badminton. J. Hum. Mov. Stud. 2005, 48, 41–55. [Google Scholar]
- Oñate, J.A.; Guskiewicz, K.M.; Marshall, S.W.; Giuliani, B.; Yu, C.; Garrett, W.E. Instruction of Jump-Landing Technique Using Videotape Feedback: Altering Lower Extremity Motion Patterns. Am. J. Sports Med. 2005, 33, 831–842. [Google Scholar] [CrossRef]
- Kalapoda, E.; Michalopoulou, M.; Aggelousis, N.; Taxildaris, K. Discovery Learning and Modeling When Learning Skills in Tennis. J. Hum. Mov. 2003, 45, 433–448. [Google Scholar]
- Giroud, P.; Debu, B. Effectiveness of Explicit or Implicit Demonstrating for Learning Hurdling in Children Aged 7 to 10 Years. Mov. Sports Sci. 2004, 51, 29–48. [Google Scholar]
- Palao, J.M.; Hastie, P.A.; Cruz, P.G.; Ortega, E. The impact of video technology on student performance in physical education. Technol. Pedagog. Educ. 2015, 24, 51–63. [Google Scholar] [CrossRef]
- Barzouka, K.; Sotiropoulos, K.; Kioumourtzoglou, E. The effect of feedback through an expert model observation on performance and learning the pass skill in volleyball and motivation. J. Phys. Educ. Sport 2015, 15, 407–416. [Google Scholar] [CrossRef]
- Robertson, R.; Germain, L.S.; Ste-Marie, D.M. The Effects of Self-Observation When Combined with a Skilled Model on the Learning of Gymnastics Skills. J. Mot. Learn. Dev. 2018, 6, 18–34. [Google Scholar] [CrossRef]
- Nishizawa, H.; Kimura, T. Enhancement of Motor Skill Learning by a Combination of Ideal Model-Observation and Self-Observation. J. Phys. Ther. Sci. 2017, 29, 1555–1560. [Google Scholar] [CrossRef]
- Amri-Dardari, A.; Mkaouer, B.; Nassib, S.H.; Amara, S.; Amri, R.; Salah, F.Z.B. The Effects of Video Modeling and Simulation on Teaching/Learning Basic Vaulting Jump on the Vault Table. Sci. Gymnast. J. 2021, 12, 325–344. [Google Scholar]
- Giannousi, M.; Mountaki, F.; Kioumourtzoglou, E. The effects of verbal and visual feedback on performance and learning freestyle swimming in novice swimmers. Kinesiology 2017, 49, 65–73. [Google Scholar] [CrossRef]
Coefficient r | ||
---|---|---|
Effect Size | Positive | Negative |
Small | 0.10 ≤ r < 0.30 | −0.10 ≤ r < −0.30 |
Medium | 0.30 ≤ r < 0.50 | −0.30 ≤ r < −0.50 |
Large | r ≥ 0.50 | r ≥ −0.50 |
Subphase | Pretest | Posttest | Difference | p Value | Effect Size | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | S.D. | Mean | S.D. | Mean | S.D. | |||||
Approach | ||||||||||
IP1 | 1.87 | 0.08 | 1.93 | 0.05 | 0.06 * | −0.03 | 0.03 | r = −0.53 | ||
IP2 | 1.86 | 0.06 | 1.92 | 0.05 | 0.05 | −0.01 | 0.08 | r = −0.45 | ||
Takeoff | ||||||||||
IP1 | 1.67 | 0.18 | 1.77 | 0.09 | 0.10 | −0.09 | 0.16 | r = −0.35 | ||
IP2 | 1.61 | 0.06 | 1.67 | 0.11 | 0.06 | 0.06 | 0.18 | r = −0.33 | ||
Culmination | ||||||||||
IP1 | 1.10 | 0.49 | 1.46 | 0.36 | 0.36 * | −0.14 | 0.03 | r = −0.55 | ||
IP2 | 1.09 | 0.36 | 1.40 | 0.33 | 0.31 * | −0.03 | 0.02 | r = −0.60 | ||
Descent | ||||||||||
IP1 | 1.53 | 0.14 | 1.63 | 0.17 | 0.10 | 0.03 | 0.09 | r = −0.42 | ||
IP2 | 1.66 | 0.12 | 1.72 | 0.20 | 0.06 | 0.08 | 0.26 | r = −0.28 | ||
Landing | ||||||||||
IP1 | 1.51 | 0.18 | 1.49 | 0.23 | −0.01 | 0.04 | 0.89 | r = 0.04 | ||
IP2 | 1.49 | 0.29 | 1.61 | 0.23 | 0.12 | −0.06 | 0.18 | r = −0.34 | ||
Final score | ||||||||||
IP1 | 7.68 | 1.08 | 8.28 | 0.90 | 0.60 * | −0.18 | 0.04 | r = −0.53 | ||
IP2 | 7.72 | 0.89 | 8.33 | 0.93 | 0.61 * | 0.04 | 0.02 | r = −0.60 |
Subphase | r | Effect Size |
---|---|---|
Approach | 0.04 | x |
Takeoff | 0.03 | x |
Culmination | 0.07 | x |
Descent | 0.14 | small |
Landing | −0.32 | medium |
Final score | 0.11 | small |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lamošová, A.; Kyselovičová, O. The Effect of Different Types of Feedback on Learning of Aerobic Gymnastics Elements. Appl. Sci. 2022, 12, 8066. https://doi.org/10.3390/app12168066
Lamošová A, Kyselovičová O. The Effect of Different Types of Feedback on Learning of Aerobic Gymnastics Elements. Applied Sciences. 2022; 12(16):8066. https://doi.org/10.3390/app12168066
Chicago/Turabian StyleLamošová, Anita, and Oľga Kyselovičová. 2022. "The Effect of Different Types of Feedback on Learning of Aerobic Gymnastics Elements" Applied Sciences 12, no. 16: 8066. https://doi.org/10.3390/app12168066
APA StyleLamošová, A., & Kyselovičová, O. (2022). The Effect of Different Types of Feedback on Learning of Aerobic Gymnastics Elements. Applied Sciences, 12(16), 8066. https://doi.org/10.3390/app12168066