Fatty-Acid Profiles, Triacylglycerol Compositions, and Crystalline Structures of Bambangan-Seed Fat Extracted Using Different Solvents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction of Bambangan-Seed Fat (BSF) Using Hexane, Petroleum Ether, and Ethanol
2.3. Physicochemical Properties
2.4. Profile of FA
2.5. TG Content
2.6. Crystalline Structure
2.7. Statistical Analysis
3. Results
3.1. Extraction of BSF and Its IV and SMP Properties
3.2. Characterisation of FA Profiles in BSF Extracts
3.3. TG Profiles
Composition (%) | Hexane | Petroleum Ether | Ethanol | Bambangan-Seed Fat [8,12,13] | Mango-Seed Fat [41,53,54,55,56,57] |
---|---|---|---|---|---|
OLL | 1.80 ± 0.00 b | 1.34 ± 0.00 c | 2.07 ± 0.00 a | Traceable | Traceable |
PLL | 1.19 ± 0.00 b | 0.71 ± 0.00 c | 1.42 ± 0.00 a | Traceable | Traceable |
OLO | 3.83 ± 0.00 b | 2.90 ± 0.00 c | 4.56 ± 0.00 a | Traceable | Traceable |
POL | 3.02 ± 0.00 c | 3.16 ± 0.00 b | 3.65 ± 0.00 a | Traceable | Traceable |
PLP | 1.27 ± 0.00 b | 0.98 ± 0.00 c | 1.56 ± 0.00 a | Traceable | Traceable |
OOO | 6.57 ± 0.00 b | 5.18 ± 0.00 c | 7.09 ± 0.00 a | 3.6–5.89 | 2.5–5.7 |
POO | 2.68 ± 0.00 a | 2.30 ± 0.00 b | 2.18 ± 0.00 c | 3.8–4.57 | 2.4–10.8 |
POP | 3.83 ± 0.00 a | 2.95 ± 0.00 b | 2.44 ± 0.00 c | 0.75–5.90 | 1.3–8.9 |
SOO | 23.84 ± 0.00 b | 20.19 ± 0.00 c | 24.18 ± 0.00 a | 11.20–26.88 | 5.7–30.8 |
POS | 11.78 ± 0.00 b | 12.48 ± 0.00 a | 9.57 ± 0.00 c | 11.35–11.94 | 5.7–14.8 |
SOS | 36.79 ± 0.00 b | 44.29 ± 0.00 a | 30.22 ± 0.00 c | 28.67–40.71 | 14.3–51.6 |
SSS | 3.40 ± 0.00 b | 3.52 ± 0.00 a | 1.25 ± 0.00 c | Traceable | Traceable |
3.4. Crystalline Microstructure
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Azrina, A.; Aznira, A.R.; Khoo, H.E. Chemical properties and fatty acid composition of Mangifera pajang and Mangifera indica kernel fats. Malays. J. Nutr. 2015, 21, 355–363. [Google Scholar]
- Tangah, J.; Bajau, F.E.; Jilimin, W.; Chan, H.T.; Wong, S.K.; Chan, E.W.C. Phytochemistry and pharmacology of Mangifera pajang: An iconic fruit of Sabah, Malaysia. Syst. Rev. Pharm. 2017, 8, 86–91. [Google Scholar] [CrossRef]
- Abu Bakar, M.F.; Mohamed, M.; Rahmat, A.F.; Fry, J.R. Bambangan (Mangifera pajang) seed kernel: Antioxidant properties and anti-cancer effects. In Nuts and Seed in Health and Disease Prevention; Elsevier Inc.: Amsterdam, The Netherlands, 2011; pp. 183–187. [Google Scholar]
- Jahurul, M.H.A.; Zaidul, I.S.M.; Beh, L.; Sharifudin, M.S.; Siddiquee, S.; Hasmadi, M.; Jinap, S. Valuable components of bambangan fruit (Mangifera pajang) and its co-products: A review. Food Res. Int. 2018, 115, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Department of Agriculture. Fruits Crops by State and Type Malaysia: Department of Agriculture; Department of Agriculture: Kuala Lumpur, Malaysia, 2020; pp. 7–177.
- Bakar, M.F.A.; Fry, J.F. A review on underutilised indigenous bambangan (Mangifera pajang) fruit as a potential novel source for functional food and medicine. J. Med. Plants Res. 2013, 7, 3292–3297. [Google Scholar]
- Abu Bakar, M.F.; Mohamed, M.; Rahmat, A.; Fry, J. Phytochemicals and antioxidant activity of different parts of bambangan (Mangifera pajang) and tarap (Artocarpus odoratissimus). Food Chem. 2009, 113, 479–483. [Google Scholar] [CrossRef]
- Jahurul, M.H.A.; Ping, L.L.; Sharifudin, M.S.; Hasmadi, M.; Mansoor, A.H.; Lee, J.S.; Noorakmar, B.W.; Amir, H.M.S.; Jinap, S.; Mohd Omar, A.K.; et al. Thermal properties, triglycerides and crystal morphology of bambangan (Mangifera pajang) kernel fat and palm stearin blends as cocoa butter alternatives. LWT-Food Sci. Technol. 2019, 107, 64–71. [Google Scholar] [CrossRef]
- Norazlina, M.R.; Jahurul, M.H.A.; Hasmadi, M.; Sharifudin, M.S.; Patricia, M.; Mansoor, A.H.; Lee, J.S. Characteristics of bambangan kernel fat fractions produced by solvent fractionation and their potential industrial applications. J. Food Proces. Preserv. 2020, 44, e14446. [Google Scholar] [CrossRef]
- Jahurul, M.H.A.; Soon, Y.; Sharifudin, M.S.; Hasmadi, M.; Mansoor, A.H.; Zaidul, I.S.M. Optimization of fat yield of bambangan (Mangifera pajang) kernel using response surface methodology and its antioxidant activities. J. Food Meas. Charact. 2018, 12, 1427–1438. [Google Scholar] [CrossRef]
- Haron, H.; Said, M. Determination of the nutrient and anti-nutrient contents in seed of Mangifera pajang kostermans. Malays. J. Health Sci. 2004, 2, 1–11. [Google Scholar]
- Jahurul, M.H.A.; Soon, Y.; Shaarani Sharifudin, M.; Hasmadi, M.; Mansoor, A.H.; Zaidul, I.S.M. Bambangan (Mangifera pajang) kernel fat: A potential new source of cocoa butter alternatives. Int J. Food Sci. Technol. 2018, 53, 1687–1697. [Google Scholar] [CrossRef]
- Norazlina, M.R.; Jahurul, M.H.A.; Hasmadi, M.; Sharifudin, M.S.; Patricia, M.; Lee, J.S.; Amir, H.M.S.; Noorakmar, A.W.; Riman, I. Effects of fractionation technique on triacylglycerols, melting and crystallisation and the polymorphic behavior of bambangan kernel fat as cocoa butter improver. LWT-Food Sci. Technol. 2020, 129, 109558. [Google Scholar] [CrossRef]
- Al-Sheraji, S.H.; Ismail, A.; Manap, M.Y.; Mustafa, S.; Yusof, R.M. Viability and activity of bifidobacteria during refrigerated storage of yoghurt containing Mangifera pajang fibrous polysaccharides. J. Food Sci. 2012, 77, 624–630. [Google Scholar] [CrossRef]
- Oladipo, B.; Betiku, E. Process optimisation of solvent extraction of seed oil from Moringa oleifera: An appraisal of quantitative and qualitative process variables on oil quality using D-optimal design. Biocatal. Agric. Biol. 2019, 20, 101187. [Google Scholar] [CrossRef]
- Handa, S.S. An overview of extraction techniques for medicinal and aromatic plants. In Extraction Technologies for Medicinal and Aromatic Plants; Handa, S.S., Khanuja, S.P.S., Longo, G., Rakesh, D.D., Eds.; International Centre for Science and High Technology: Trieste, Italy, 2008. [Google Scholar]
- Kittiphoom, S.; Sutasinee, S. Mango seed kernel oil and its physicochemical properties. Int. Food Res. J. 2013, 20, 1145–1149. [Google Scholar]
- Mani, S.; Jaya, S.; Vadivambal, R. Optimization of solvent extraction of moringa (Moringa oleifera) seed kernel oil using response surface methodology. Food Bioprod. Process. 2007, 85, 328–335. [Google Scholar] [CrossRef]
- Stevanato, N.; da Silva, C. Radish seed oil: Ultrasound-assisted extraction using ethanol as solvent and assessment of its potential for ester production. Ind. Crops Prod. 2019, 132, 283–291. [Google Scholar] [CrossRef]
- Jedidi, B.; Mokbli, S.; Sbihi, H.M.; Nehdi, I.A.; Younes, M.R.; Al-Resayes, S.I. Effect of extraction solvents on fatty acid composition and physicochemical properties of Tecoma stans seed oils. J. King Saud Uni. Sci. 2020, 32, 2468–2473. [Google Scholar] [CrossRef]
- Liu, S.X.; Mamidipally, P.K. Quality comparison of rice bran oil extracted with d-limonene and hexane. Cereal Chem. 2005, 82, 209–215. [Google Scholar] [CrossRef]
- Danlami, J.M.; Arsad, A.; Zaini, M.A.A.; Sulaiman, H. A comparative study of various oil extraction techniques from plants. Rev. Chem. Eng. 2014, 30, 605–626. [Google Scholar] [CrossRef]
- Mujdalipah, S.; Sasmita, A.H.; Amalia, I.K.; Suryani, A. Separation of glycerolysis product using hexane. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bandung, Indonesia, 2016. [Google Scholar]
- Perrier, A.; Delsart, C.; Boussetta, N.; Grimi, N.; Citeau, M.; Vorobiev, E. Effect of ultrasound and green solvents addition on the oil extraction efficiency from rapeseed flakes. Ultrasonics Sonochem. 2017, 39, 58–65. [Google Scholar] [CrossRef]
- Feng, W.; Li, M.; Hao, Z.; Zhang, J. Analytical Methods of Isolation and Identification. In Phytochemicals in Human Health; Rao, V., Mans, D., Rao, L., Eds.; IntechOpen: London, UK, 2019. [Google Scholar]
- Hanmoungjai, P.Y.L.E.; Pyle, D.L.; Niranjan, K. Enzymatic process for extracting oil and protein from rice bran. J. Am. Oil Chem. Soc. 2001, 78, 817–821. [Google Scholar] [CrossRef]
- Sawada, M.M.; Venâncio, L.L.; Toda, T.A.; Rodrigues, C.E. Effects of different alcoholic extraction conditions on soybean oil yield, fatty acid composition and protein solubility of defatted meal. Food Res. Int. 2014, 62, 662–670. [Google Scholar] [CrossRef]
- Ahmadi Kamazani, N.; Mortazavi, S.A.; Ebrahimi Tajabadi, M.; Hasani, M.; Ghotbi, M. The Effect of Different Solvent Systems on Some Chemical Properties of Pistachio Nut Oil Contaminated with Aflatoxin. J. Food Biosci. Technol. 2015, 5, 1–13. [Google Scholar]
- Kumar, S.J.; Prasad, S.R.; Banarjee, R.; Agarwal, D.K.; Kulkarni, K.S.; Ramesh, K.V. Green solvents and technologies for oil extraction from oil seeds. Chem. Cent. J. 2017, 11, 9. [Google Scholar] [CrossRef]
- AOAC Official Method of Analysis. Method 945.16, Oil in Cereal Adjuncts, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Abdolshahi, A.; Majd, M.H.; Rad, J.S.; Taheri, M.; Shabani, A.; Da Silva, J.A.T. Choice of solvents extraction technique affects fatty acid composition of pistachio (Pistacia vera L.) oil. J. Food Sci. Technol. 2015, 52, 2422–2427. [Google Scholar] [CrossRef]
- American Oil Chemists’ Society. Official Methods and Recommended Practices of the American Oils Chemists’ Society, 5th ed.; American Oil Chemists’ Society: Champaign, IL, USA, 2003. [Google Scholar]
- Narine, S.S.; Marangoni, A.G. The difference between cocoa butter and Salatrim lies in the microstructure of the fat crystal network. J. Am Oil Chem. Soc. 1999, 76, 7–13. [Google Scholar] [CrossRef]
- Rios, R.V.; Pessanha, M.D.F.; Almeida, P.F.; de Viana, C.L.; Lannes, S.C. Applications of fats in some food products. Food Sci. Technol. 2014, 34, 3–15. [Google Scholar] [CrossRef]
- Okeleye, A.A.; Betiku, E. Kariya (Hildegardia barteri) seedd oil extrcation: Comparative evaluatin of solvents, modeling and optimisation techniques. Chem. Eng. Commun. 2019, 206, 1181–1198. [Google Scholar] [CrossRef]
- Bhatnagar, A.S.; Krishna, A.G.G. Effect of extraction solvent on oil and bioactives composition of commercial Indian niger (Guizotia abyssinica (Lf) class.) seed. J. Am. Oil Chem. 2013, 90, 1203–1212. [Google Scholar] [CrossRef]
- Yang, X.; Lyu, H.; Chen, K.; Zhu, X.; Zhang, S.; Chen, J. Selective extraction of oil from hydrothermal liquefaction of Salix psammophila by organic solvents with different polarities through multistep extraction separation. BioResources 2014, 9, 5219–5233. [Google Scholar] [CrossRef]
- Sonwai, S.; Ponprachanuvut, P. Studies of fatty acid composition, physicochemical and thermal properties and crystallisation behaviour of mango kernel fats from various Thai varieties. J. Oleo Sci. 2014, 63, 661–669. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.X.; Hanna, M.A.; Josiah, S.J. Hybrid hazelnut characteristics and its potential oleochemical application. Ind. Crops Prod. 2007, 26, 69–76. [Google Scholar] [CrossRef]
- Norazlina, M.R.; Tan, Y.S.; Hasmadi, M.; Jahurul, M.H.A. Effect of solvent pre-treatment on the physicochemical, thermal profiles and morphological behavior of Mangifera pajang seed fat. Heliyon 2021, 7, e08073. [Google Scholar] [CrossRef] [PubMed]
- Lieb, V.M.; Schuster, L.K.; Kronmüller, A.; Schmarr, H.G.; Carle, R.; Steingass, C.B. Fatty acids, triacylglycerols, and thermal behaviour of various mango (Mangifera indica L.) kernel fats. Food Res. Int. 2018, 116, 527–537. [Google Scholar] [CrossRef]
- Varnham, A. Seed Oil: Biological Properties: Health Benefits and Commercial Applications; Nova Science Publisher Inc.: New York, NY, USA, 2015. [Google Scholar]
- Hou, G.; Ablett, G.R.; Pauls, K.P.; Rajcan, I. Environmental effects on fatty acid levels in soybean seed oil. J. Am. Oil Chem. Soc. 2006, 83, 759–763. [Google Scholar] [CrossRef]
- Jahurul, M.H.; Zaidul, I.S.; Norulaini, N.N.; Sahena, F.; Jaffri, J.M.; Omar, A.M. Supercritical carbon dioxide extraction and studies of mango seed kernel for cocoa butter analogy fats. CyTA-J. Food. 2014, 12, 97–103. [Google Scholar] [CrossRef]
- Munchiri, D.R.; Mahungu, S.M.; Gituanja, S.N. Studies on mango (Mangifera indica L.) kernel fat of some Kenyan varieties in Meru. J. Am. Oil Chem. Soc. 2012, 89, 1567–1575. [Google Scholar] [CrossRef]
- Gunstone, F.D. Vegetable Oils in Food Technology Composition, Properties and Use; Willy-Blackwell: New York, NY, USA, 2011; pp. 291–343. [Google Scholar]
- Sonwai, S.; Kaphuekngam, P.; Flood, A. Blending of mango kernel fat and palm oil mid-fraction yo obtain cocoa butter equivalent. J. Food Sci. Technol. 2014, 51, 2357–2369. [Google Scholar] [CrossRef]
- Kadivar, S.; De Clercq, N.; Mokbul, M.; Dewettinck, K. Infulence of enzymatically produced sunflower oil based cocoa butter equivalents on the phase behavior of cocoa butter and quality of dark chocolate. LWT-Food Sci. Technol. 2016, 66, 48–55. [Google Scholar] [CrossRef]
- Norazura, A.M.H.; Sivaruby, K.; Noor Lida, H.M.D. Blended palm fractions as confectioenry fats: A preliminary study. J. Oil Palm Res. 2020, 33, 360–380. [Google Scholar] [CrossRef]
- Kang, K.K.; Kim, S.; Kim, I.H.; Lee, C.; Kim, B.H. Selective enrichment of symmetric monounsaturated triacylglycerols from palm stearin by double solvent fractionation. LWT-Food Sci. Technol. 2013, 51, 242–252. [Google Scholar] [CrossRef]
- Arishima, T.; Sagi, N.; Mori, H.; Sato, K. Polymorphism of POS. I. Occurrence and polymorphic transformation. J. Am. Oil Chem. 1991, 68, 710–715. [Google Scholar] [CrossRef]
- Koyona, T.; Hachiya, I.; Sato, K. Phase behavior of mixed system of SOS and OSO. J. Phys. Chem. 1992, 96, 10514–10520. [Google Scholar] [CrossRef]
- Minato, A.; Ueno, S.; Yano, J.; Smith, K.; Seto, H.; Amemiya, Y.; Sato, K. Thermal and structural properties of sn-1,3-dipalmitoyl-2-oleoylglycerol and sn-1,3-dioleoyl-2-palmitoylglycerol binary mixtures examined with synchroton radiation X-Ray diffraction. J. Am. Oil. Chem. 1997, 74, 1213–1220. [Google Scholar] [CrossRef]
- Jin, J.; Mu, H.; Wang, Y.; Pembe, W.; Liu, Y.; Huang, J.; Jin, Q.; Wang, X. Production of high-melting symmetrical monounsaturated triacylglycerol-rich fats from mango kernel fat by acetone fractionation. J. Am. Oil Chem. Soc. 2016, 94, 201–213. [Google Scholar] [CrossRef]
- Kaphuekngam, P.; Flood, A.; Sonwai, S. Production of cocoa butter equivalent from mango seed almond fat and palm oil midfraction. J. Food Agro-Ind. 2009, 2, 441–447. [Google Scholar]
- Lidefelt, J.O. Handbook of Vegetable Oils and Fats, 2nd ed.; Aarhus Karlshamn: Karlshmn, Sweden, 2007. [Google Scholar]
- Halcopek, M.; Lisa, M.; Jandera, P.; Kabatova, N. Quantitation of triacylglycerols in plant oils using HPLC with APCI-MS, evaporative light-scattering and UV detection. J. Sep. Sci. 2005, 28, 1315–1333. [Google Scholar]
- Ramel, P.R.; Campos, R.; Marangoni, A.G. Effect of shear and cooling rate on the crystallisation behavior and structure of cocoa butter: Shear applied during the early stages of nucleation. Cryst. Growth Des. 2017, 18, 1002–1011. [Google Scholar] [CrossRef]
- Çiftçi, O.N.; Fadiloğlu, S.; Göğüş, F. Conversion of olive pamoce oil to cocoa butter-like fat in a packed-bed enzyme reactor. Biores. Technol. 2009, 100, 324–329. [Google Scholar] [CrossRef]
- Salvatore, M.M.; Elvetico, A.; Gallo, M.; Salvatore, F.; DellaGreca, M.; Naviglio, D.; Andolfi, A. Fatty acids from Ganoderma lucidum Spores: Extraction, identification and quantification. Appl. Sci. 2020, 10, 3907. [Google Scholar] [CrossRef]
- Asep, E.; Jinap, S.; Tan, T.J.; Russly, A.; Harcharan, S.; Nazimah, S. The effects of particle size, fermentation and roasting of cocoa nibs on supercritical fluid extraction of cocoa butter. J. Food Eng. 2008, 85, 450–458. [Google Scholar] [CrossRef]
- Ajala, S.O.; Betiku, E. Yellow oleander seed oil extraction modeling and process parameters optimisation: Performance evaluation of artificial neural network and response surface methodology. J. Food Process. Preserv. 2015, 39, 1466–1474. [Google Scholar] [CrossRef]
Physicochemical Properties | Hexane | Petroleum Ether | Ethanol | Bambangan-Seed Fat [9,12] | Mango-Seed Fat [39,40,41] |
---|---|---|---|---|---|
Total fat content (%) | 7.70 ± 0.00 a | 6.40 ± 0.10 b | 2.21 ± 0.01 c | - | 5.73–7.74 |
Iodine value (g iodine/g) | 56.40 ± 0.00 b | 52.96 ± 0.00 c | 59.84 ± 0.00 a | 50.3–53.5 | 40.9–44.36 |
Slip melting point (°C) | 31.57 ± 0.51 c | 31.40 ± 0.52 b | 28.4 0 ± 0.5 1 a | 32.0–32.2 | 30.03–35.7 |
Composition (%) | Hexane | Petroleum Ether | Ethanol | Bambangan-Seed Fat [1,9,12] | Mango-Seed Fat [12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38] |
---|---|---|---|---|---|
C16:0 (Palmitic) | 8.24 ± 0.00 b | 9.32 ± 0.00 a | 8.67 ± 0.00 b | 8.35–14.91 | 4.9–14.91 |
C16:1 (Palmitoleic) | 0.32 ± 0.00 a | 0.17 ±0.00 b | 0.06 ± 0.00 c | - | - |
C18:0 (Stearic) | 29.29 ± 0.00 b | 33.40 ± 0.00 a | 27.84 ± 0.00 c | 36.35–40.39 | 24.2–47.6 |
C18:1 (Oleic) | 46.94 ± 0.00 b | 43.90 ± 0.00 c | 48.31 ± 0.00 a | 39.24–44.5 | 37.0–58.6 |
C18:2 (Linoleic) | 8.51 ± 0.00 b | 8.04 ± 0.00 c | 9.72 ± 0.00 a | 4.95–5.4 | 3.7–10.4 |
C18:3 (Linolenic) | 0.37 ± 0.00 b | 0.38 ± 0.00 c | 0.48 ± 0.00 a | 0.3–0.37 | 0.4–1.2 |
C20 (Arachidic) | 1.87 ± 0.00 a | 1.77 ± 0.00 b | 1.67 ± 0.00 c | - | - |
C20:1 (Eicosenoic acid) | 0.23 ± 0.00 a | 0.18 ± 0.00 c | 0.21 ± 0.00 b | - | - |
C22 (Behenic acid) | 0.36 ± 0.00 a | 0.31 ± 0.00 b | 0.30 ± 0.00 c | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ridhwan, N.M.; Mamat, H.; Akanda, M.J.H. Fatty-Acid Profiles, Triacylglycerol Compositions, and Crystalline Structures of Bambangan-Seed Fat Extracted Using Different Solvents. Appl. Sci. 2022, 12, 8180. https://doi.org/10.3390/app12168180
Ridhwan NM, Mamat H, Akanda MJH. Fatty-Acid Profiles, Triacylglycerol Compositions, and Crystalline Structures of Bambangan-Seed Fat Extracted Using Different Solvents. Applied Sciences. 2022; 12(16):8180. https://doi.org/10.3390/app12168180
Chicago/Turabian StyleRidhwan, Norazlina Mohammad, Hasmadi Mamat, and Md Jahurul Haque Akanda. 2022. "Fatty-Acid Profiles, Triacylglycerol Compositions, and Crystalline Structures of Bambangan-Seed Fat Extracted Using Different Solvents" Applied Sciences 12, no. 16: 8180. https://doi.org/10.3390/app12168180
APA StyleRidhwan, N. M., Mamat, H., & Akanda, M. J. H. (2022). Fatty-Acid Profiles, Triacylglycerol Compositions, and Crystalline Structures of Bambangan-Seed Fat Extracted Using Different Solvents. Applied Sciences, 12(16), 8180. https://doi.org/10.3390/app12168180