A Global Analysis of Research Outputs on Neurotoxicants from 2011–2020: Adverse Effects on Humans and the Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Search, Extraction, and Analysis
2.2. Data Processing
3. Results and Discussion
3.1. Main Information
3.2. Annual Trend of Production and Citation
3.3. Most Productive Authors
3.4. Most Relevant Organizations
3.5. Most Relevant Sources
3.6. Most Globally Cited Documents and Locally Cited References
3.7. Most Relevant Countries
3.8. Authors, Institutions, and Countries Collaboration Networks
3.9. Co-Citation Network Analyses
3.10. Co-Occurrence Keywords Network
3.11. Study Limitations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spencer, P.S.; Lein, P.J. Neurotoxicity. In Encyclopedia of Toxicology, 3rd ed.; Wexler, P., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2014; Volume 3, pp. 489–500. ISBN 9780123864543. [Google Scholar]
- Bedrosian, K.; Charest, J.; DeVault, V.; Lumley, E. Neurotoxic Chemicals in the Environment. 2008. Available online: https://web.wpi.edu/Pubs/E-project/Available/E-project-042808-121944/unrestricted/Neurotoxic_Chemicals_in_the_Environment.pdf (accessed on 11 May 2021).
- Legradi, J.B.; di Paolo, C.; Kraak, M.H.S.; van der Geest, H.G.; Schymanski, E.L.; Williams, A.J.; Dingemans, M.M.L.; Massei, R.; Brack, W.; Cousin, X.; et al. An ecotoxicological view on neurotoxicity assessment: Review. Environ. Sci. Eur. 2018, 30, 34. [Google Scholar] [CrossRef] [PubMed]
- USEPA (United States Environmental Protection Agency). Mercury Study Report to Congress, 1997, Volume I: Executive Summary. EPA-452/R-97-003, p. 95. Available online: https://www.epa.gov/sites/default/files/2015-09/documents/volume1.pdf (accessed on 25 August 2021).
- Schofield, K. An Important Need to Monitor from an Early Age the Neurotoxins in the Blood or by an Equivalent Biomarker. Int. J. Environ. Res. Public Health 2019, 16, 3425. [Google Scholar] [CrossRef] [PubMed]
- USEPA (United States Environmental Protection Agency). Guidelines for Neurotoxicity Risk Assessment. EPA/630/R-95/001F, 1998, p. 89. Available online: https://www.epa.gov/sites/default/files/2014-11/documents/neuro_tox.pdf (accessed on 25 August 2021).
- Grandjean, P.; Herz, K.T. Trace elements as paradigms of developmental neurotoxicants: Lead, methylmercury and arsenic. J. Trace Elem. Med. Biol. 2015, 31, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Anetor, J.I.; Anetor, G.O.; Iyanda, A.A.; Adeniyi, F.A.A. Environmental Chemicals and Human Neurotoxicity: Magnitude, Prognosis and Markers: Review Article. Afr. J. Biomed. Res. 2008, 11, 1–12. [Google Scholar]
- Grandjean, P.; Landrigan, P.J. Neurobehavioural Effects of Developmental Toxicity. Lancet Neurol. 2014, 13, 330–338. [Google Scholar] [CrossRef]
- Wasserman, G.A.; Liu, X.; Parvez, F.; Ahsan, H.; Factor-Litvak, P.; Kline, J.; van Geen, A.; Slavkovich, V.; LoIacono, N.J.; Levy, D.; et al. Water arsenic exposure and intellectual function in 6-year-old children in Araihazar, Bangladesh. Environ. Health Perspect. 2007, 115, 285–289. [Google Scholar] [CrossRef]
- Budtz-Jorgensen, E.; Bellinger, D.; Lanphear, B.; Grandjean, P. An international pooled analysis for obtaining a benchmark dose for environmental lead exposure in children. Risk Anal. 2013, 33, 450–461. [Google Scholar] [CrossRef]
- Kobayashi, H.; Suzuki, T.; Sato, I.; Matrusatu, N. Neurotoxicological aspects of organotin and Lead Compounds on Cellular and Molecular Mechanisms. Toxicol. Ecotoxicol. News 1994, 1, 23–31. [Google Scholar]
- Uttara, B.; Singh, A.V.; Zamboni, P.; Mahajan, R.T. Oxidative Stress and Neurodegenerative Diseases: A Review of Upstream and Downstream Antioxidant Therapeutic Options. Curr. Neuropharmacol. 2009, 7, 65–74. [Google Scholar] [CrossRef]
- Popoff, M.R.; Poulain, B. Bacterial Toxins and the Nervous System: Neurotoxins and Multipotential Toxins Interacting with Neuronal Cells. Toxins 2010, 2, 683–737. [Google Scholar] [CrossRef]
- Giordano, G.; Costa, L.G. Developmental Neurotoxicity: Some Old and New Issues. Int. Sch. Res. Not. 2012, 2012, 814795. [Google Scholar] [CrossRef] [PubMed]
- Donkin, S.G.; Williams, P.L. Neurotoxicity: Toxic responses of the nervous system. In Principles of Toxicology; Williams, P.L., James, R.C., Roberts, S.M., Eds.; John Wiley and Sons: Hoboken, NJ, USA, 2000; pp. 145–156. Available online: http://ndl.ethernet.edu.et/bitstream/123456789/33058/1/Phillip%20L.%20Williams.pdf (accessed on 2 August 2021).
- NRC (National Research Council). Scientific Frontiers in Developmental Toxicology and Risk Assessment; National Academies Press: Washington, DC, USA, 2000.
- Grandjean, P.; Landrigan, P.J. Developmental neurotoxicity of industrial chemicals. Lancet 2006, 368, 2167–2178. [Google Scholar] [CrossRef]
- Bellinger, D.C. Interpreting epidemiologic studies of developmental neurotoxicity: Conceptual and analytic issues. Neurotoxicol. Teratol. 2009, 31, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Landrigan, P.J.; Lambertini, L.; Birnbaum, L.S. A research strategy to discover the environmental causes of autism and neurodevelopmental disabilities. Environ. Health Perspect. 2012, 120, a258–a260. [Google Scholar] [CrossRef]
- Bloom, B.; Cohen, R.A.; Freeman, G. Summary health statistics for U.S. children: National Health Interview Survey, 2009. Vital Health Stat. 2010, 10, 1–82. [Google Scholar]
- Gould, E. Childhood lead poisoning: Conservative estimates of the social and economic benefits of lead hazard control. Environ. Health Perspect. 2009, 117, 1162–1167. [Google Scholar] [CrossRef]
- Wang, Y.; Zhai, X.; Liu, C.; Wang, N.; Wang, Y. Trends of triple negative breast cancer research (2007–2015): A bibliometric study. Medicine 2016, 95, e5427. [Google Scholar] [CrossRef]
- Zou, Y.; Luo, Y.; Zhang, J.; Xia, N.; Tan, G.; Huang, C. Bibliometric analysis of oncolytic virus research, 2000 to 2018. Medicine 2019, 98, e16817. [Google Scholar] [CrossRef]
- Olisah, C.; Adams, J.B. Systematic mapping of organophosphate contaminant (OPC) research trends between 1990 and 2018. Environ. Geochem. Health 2020, 42, 3481–3505. [Google Scholar] [CrossRef]
- Zhao, Y.; Cong, L.; Lukiw, W.J. Lipopolysaccharide (LPS) accumulates in neocortical neurons of Alzheimer’s disease (AD) brain and impairs transcription in human neuronal-glial primary co-cultures. Front. Aging Neurosci. 2017, 9, 407. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Bairwa, M.; Gowthamghosh, B.; Gupta, S.D.; Mangal, D.K. A bibliometric analysis of the published road traffic injuries research in India, post-1990. Health Res. Policy Syst. 2018, 16, 18. [Google Scholar] [CrossRef]
- Li, K.; Rollins, J.; Yan, E. Web of Science use in published research and review papers 1997–2017: A selective, dynamic, cross-domain, content-based analysis. Scientometrics 2018, 115, 1–20. [Google Scholar] [CrossRef]
- Liu, W. The data source of this study is Web of Science Core Collection? Not enough. Scientometrics 2019, 121, 1815–1824. [Google Scholar] [CrossRef]
- Zarrabeitia-Bilbao, E.; Álvarez-Meaza, I.; Río-Belver, R.; Garechana-Anacabe, G. Additive manufacturing technologies for biomedical engineering applications: Research trends and scientific impact. El Prof. De La Inf. 2019, 28, e280220. [Google Scholar] [CrossRef]
- Okaiyeto, K.; Oguntibeju, O.O. Trends in diabetes research outputs in South Africa over 30 years from 2010 to 2019: A bibliometric analysis. Saudi J. Biol. Sci. 2021, 28, 2914–2924. [Google Scholar] [CrossRef]
- Ho, Y.S. Rebuttal to: “The neurotoxicity of nanoparticles: A bibliometric analysis”, Vol. 34, pp. 922–929. Toxicol. Ind. Health 2019, 35, 399–402. [Google Scholar] [CrossRef]
- Wei, X.; Yang, F.; Chen, D.; Li, J.; Shi, X.; Li, B.; Zhang, C. Analyzing nanoparticle-induced neurotoxicity: A bibliometric analysis. Toxicol. Ind. Health 2020, 36, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Zheng, T.; Wang, J.; Wang, Q.; Meng, H.; Wang, L. Research trends in electrochemical technology for water and wastewater treatment. Appl. Water Sci. 2017, 7, 13–30. [Google Scholar] [CrossRef]
- Olisah, C.; Okoh, O.O.; Okoh, A.I. A bibliometric analysis of investigations of polybrominated diphenyl ethers (PBDEs) in biological and environmental matrices from 1992–2018. Heliyon 2018, 4, e00964. [Google Scholar] [CrossRef] [PubMed]
- Dhital, S.; Rupakheti, D. Bibliometric analysis of global research on air pollution and human health: 1998–2017. Environ. Sci. Pollut. Res. 2019, 26, 13103–13114. [Google Scholar] [CrossRef] [PubMed]
- Olisah, C.; Okoh, O.O.; Okoh, A.I. Global evolution of organochlorine pesticides research in biological and environmental matrices from 1992 to 2018: A bibliometric approach. Emerg. Contam. 2019, 5, 157–167. [Google Scholar] [CrossRef]
- Ekundayo, T.C.; Okoh, A.I. A global bibliometric analysis of Plesiomonas-related research (1990 e 2017). PLoS ONE 2018, 13, e0207655. [Google Scholar] [CrossRef] [PubMed]
- Okaiyeto, K.; Ekundayo, T.C.; Okoh, A.I. Global research trends on bioflocculant potentials in wastewater remediation from 1990 to 2019 using a bibliometric approach. Lett. Appl. Microbiol. 2020, 71, 567–579. [Google Scholar] [CrossRef] [PubMed]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Ekundayo, T.C.; Okoh, A.I. Systematic Assessment of Mycobacterium avium Subspecies Paratuberculosis Infections from 1911–2019: A Growth Analysis of Association with Human Autoimmune Diseases. Microorganisms 2020, 8, 1212. [Google Scholar] [CrossRef]
- Aksnes, D.W.; Langfeldt, L.; Wouters, P. Citations, citation indicators, and research quality: An overview of basic concepts and theories. SAGE Open 2019, 9, 1–17. [Google Scholar] [CrossRef]
- Huang, X.Q.; Fan, X.; Ying, W.J.; Chen, S.Y. Emerging trends and research foci in gastrointestinal microbiome. J. Transl. Med. 2019, 17, 67. [Google Scholar] [CrossRef] [PubMed]
- Jones, T.; Huggett, S.; Kamalski, J. Finding a way through the scientific literature: Indexes and measures. World Neurosurg. 2011, 76, 36–38. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, J.E. An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci. USA 2005, 102, 16569–16572. [Google Scholar] [CrossRef] [PubMed]
- Guilak, F.; Jacobs, C.R. The H-index: Use and overuse. J. Biomech. 2011, 44, 208–209. [Google Scholar] [CrossRef]
- Miao, Y.; Zhang, Y.; Yin, L.H. Trends in hepatocellular carcinoma research from 2008 to 2017: A bibliometric analysis. PeerJ 2018, 6, e5477. [Google Scholar] [CrossRef] [PubMed]
- Su, B.; Guan, Q.; Yu, S. The neurotoxicity of nanoparticles: A bibliometric analysis. Toxicol. Ind. Health 2018, 34, 922–929. [Google Scholar] [CrossRef] [PubMed]
- Stern, R.S.; Arndt, K.A. Top cited authors in dermatology: A citation study from 24 journals: 1982–1996. Arch. Dermatol. 1999, 135, 299–302. [Google Scholar] [CrossRef]
- Leydesdorff, L.; Rafols, I. A global map of science based on the ISI subject categories. J. Am. Soc. Inf. Sci. Technol. 2009, 60, 348–362. [Google Scholar] [CrossRef]
- Singh, K.P.; Bebi, D. Application of Bradford’s law on journal citations: A study of PhD theses in social sciences of University of Delhi. Ann. Libr. Inf. Stud. 2014, 61, 112–120. [Google Scholar]
- Kurniasih, N.; Wanabuliandari, S.; Ristiyani, R. Bibliometrics Analysis in Articles of Verbal Bullying in Schools. Libr. Philos. Pract. 2020, 4087, 1–10. [Google Scholar]
- Baek, S.; Yoon, D.Y.; Lim, K.J.; Cho, Y.K.; Seo, Y.L.; Yun, E.J. The most downloaded and most cited articles in radiology journals: A comparative bibliometric analysis. Eur. Radiol. 2018, 28, 4832–4838. [Google Scholar] [CrossRef] [PubMed]
- Mo, Z.; Fu, H.Z.; Ho, Y.S. Highly cited articles in wind tunnel-related research: A bibliometric analysis. Environ. Sci. Pollut. Res. 2018, 25, 15541–15553. [Google Scholar] [CrossRef]
- Meyerholz, D.K.; Flaherty, H.A. The evolving significance and future relevance of the impact factor. Vet. Pathol. 2017, 54, 721–722. [Google Scholar] [CrossRef]
- Deus, R.M.; Bezerra, B.S.; Battistelle, R.A.G. Solid waste indicators and their implications for management practice. Int. J. Environ. Sci. Technol. 2019, 16, 1129–1144. [Google Scholar] [CrossRef]
- Sivankalai, S.; Virumandi, A.; Sivasekaran, K.; Bala Sankar, B.; Balamurugan, B.; Sharmila, M.; Kaladevi, P. Scientometric Analysis and Visualization of Astrovirus based on R-packages. Libr. Philos. Pract. 2021, 3, 1–15. [Google Scholar]
- Eskenazi, B.; Chevrier, J.; Rauch, S.A.; Kogut, K.; Harley, K.G.; Johnson, C. In Utero and Childhood Polybrominated Diphenyl Ether (PBDE) Exposures and Neurodevelopment in the CHAMACOS Study. Environ. Health Perspect. 2013, 121, 257–262. [Google Scholar] [CrossRef]
- Dishaw, L.V.; Powers, C.M.; Ryde, I.T.; Roberts, S.C.; Seidler, F.J.; Slotkin, T.A.; Stapleton, H.M. Is the PentaBDE Replacement, Tris (1,3-dichloro-2-propyl) Phosphate (TDCPP), a Developmental Neurotoxicant? Studies in PC12 Cells. Toxicol. Appl. Pharmacol. 2011, 256, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wuliji, O.; Li, W.; Jiang, Z.; Ghanbari, H.A. Oxidative Stress and Neurodegenerative Disorders. Int. J. Mol. Sci. 2013, 14, 24438–24475. [Google Scholar] [CrossRef] [PubMed]
- Roberts, A.L.; Lyall, K.; Hart, J.E.; Laden, F.; Just, A.C.; Bobb, J.F.; Koenen, K.C.; Ascherio, A.; Weisskopf, M.G. Perinatal Air Pollutant Exposures and Autism Spectrum Disorder in the Children of Nurses’ Health Study II Participants. Environ. Health Perspect. 2013, 121, 978–984. [Google Scholar] [CrossRef] [PubMed]
- Tahim, A.; Patel, K.; Bridle, C.; Holmes, S. The 100 most cited articles in facial trauma: A bibliometric analysis. J. Oral Maxillofac. Surg. 2016, 74, 2240.e1–2240.e14. [Google Scholar] [CrossRef]
- Faggion, C.M.; Ma’laga, L.; Monje, A.; Trescher, A.L.; Listl, S.; Alarco’n, M.A. The 300 most cited articles published in periodontology. Clin. Oral Investig. 2017, 21, 2021–2028. [Google Scholar] [CrossRef] [PubMed]
- Cheek, J.; Garnham, B.; Quan, J. What’s in a number? Issues in providing evidence of impact and quality of research(ers). Qual. Health Res. 2006, 16, 423–435. [Google Scholar] [CrossRef] [PubMed]
- Feijoo, J.F.; Limeres, J.; Ferna’ndez-Varela, M.; Ramos, I.; Diz, P. The 100 most cited articles in dentistry. Clin. Oral Investig. 2014, 18, 699–706. [Google Scholar] [CrossRef]
- Rice, D.; Barone, S., Jr. Critical periods of vulnerability for the developing nervous system: Evidence from humans and animal models. Environ. Health Perspect. 2000, 108, 511–533. [Google Scholar]
- Crofton, K.M.; Mundy, W.R.; Lein, P.J.; Bal-Price, A.; Coecke, S.; Seiler, A.E. Developmental neurotoxicity testing: Recommendations for developing alternative methods for the screening and prioritization of chemicals. Altex 2011, 28, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Herbstman, J.B.; Sjodin, A.; Kurzon, M.; Lederman, S.A.; Jones, R.S.; Rauh, V. Prenatal exposure to PBDEs and neurodevelopment. Environ. Health Perspect. 2010, 118, 712–719. [Google Scholar] [CrossRef] [PubMed]
- Wenwen, W.U.; Yaofei, X.I.E.; Xiangxiang, L.I.U.; Yaohua, G.U.; Yuting Zhang, X.T.; Xiaodong, T.A.N. Analysis of scientific collaboration networks among authors, institutions, and countries studying adolescent myopia prevention and control: A review article. Iran. J. Publ. Health 2019, 48, 621. [Google Scholar]
- Bukvova, H. Studying Research Collaboration: A Literature Review; Association for Information Systems: Atlanta, GA, USA, 2010; Volume 10, Available online: https://aisel.aisnet.org/sprouts_all/326/ (accessed on 8 August 2021).
- Jeong, S.; Choi, J.Y.; Kim, J. The determinants of research collaboration modes: Exploring the effects of research and researcher characteristics on co-authorship. Scientometrics 2011, 89, 967–983. [Google Scholar] [CrossRef]
- Bozeman, B.; Fay, D.; Slade, C.P. Research collaboration in universities and academic entrepreneurship: The-state-of-the-art. J. Technol. Transf. 2013, 38, 1–67. [Google Scholar] [CrossRef]
- Liu, H.; Peng, K.; Li, W.; Cao, Y. Investigation on the trends and characteristics of articles on submerged macrophytes: Perception from bibliometrics between 1991 and 2018. J. Freshw. Ecol. 2019, 34, 703–713. [Google Scholar] [CrossRef]
- Sweileh, W.M.; AbuTaha, A.S.; Sawalha, A.F.; Al-Khalil, S.; Al-Jabi, S.W.; Zyoud, S.H. Bibliometric analysis of worldwide publications on multi-, extensively, and totally drug-resistant tuberculosis (2006–2015). Multidiscip. Respir. Med. 2016, 11, 45. [Google Scholar] [CrossRef]
- Mao, X.; Chen, C.; Wang, B.; Hou, J.; Xiang, C. A global bibliometric and visualized analysis in the status and trends of subchondral bone research. Medicine 2020, 99, e20406. [Google Scholar] [CrossRef] [PubMed]
- Synnestvedt, M.B.; Chen, C.; Holmes, J.H. CiteSpace II: Visualization and knowledge discovery in bibliographic databases. AMIA Annu. Symp. Proc. 2005, 2005, 724–728. [Google Scholar]
- Strain, J.J.; Davidson, P.W.; Bonham, M.P.; Duffy, E.M.; Stokes-Riner, A.; Thurston, S.W.; Wallace, J.M.W.; Robson, P.J.; Shamlaye, C.F.; Georger, L.A.; et al. Associations of maternal long-chain polyunsaturated fatty acids, methyl mercury, and infant development in the Seychelles Child Development Nutrition Study. Neurotoxicology 2008, 29, 776–782. [Google Scholar] [CrossRef]
- Riojas-Rodriguez, H.; Solis-Vivanco, R.; Schilmann, A.; Montes, S.; Rodríguez, S.; Ríos, C.; Rodríguez-Agudelo, Y. Intellectual function in Mexican children living in a mining area and environmentally exposed to manganese. Environ. Health Perspect. 2010, 118, 1465–1470. [Google Scholar] [CrossRef] [PubMed]
- Khan, K.; Wasserman, G.A.; Liu, X.; Ahmed, E.; Parvez, F.; Slavkovich, V.; Levy, D.; Mey, J.; van Geen, A.; Graziano, J.H.; et al. Manganese exposure from drinking water and children’s academic achievement. Neurotoxicology 2012, 33, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Scholz, N.L.; Truelove, N.K.; Labenia, J.S.; Baldwin, D.H.; Collier, T.K. Dose additive inhibition of chinook salmon acetylcholinesterase activity by mixtures of organophosphate and carbamate insecticides. Environ. Toxicol. Chem. 2006, 25, 1200–1207. [Google Scholar] [CrossRef]
- Relyea, R.A. A cocktail of contaminants: How mixtures of pesticides at low concentrations affect aquatic communities. Oecologia 2009, 159, 363–376. [Google Scholar] [CrossRef]
- Pape-Lindstrom, P.A.; Lydy, M.J. Synergistic toxicity of atrazine and organophosphate insecticides contravenes the response addition mixture model. Environ. Toxicol. Chem. 1997, 16, 2415–2420. [Google Scholar] [CrossRef]
- Deneer, J.W. Toxicity of mixtures of pesticides in aquatic systems. Pest Manag. Sci. 2000, 56, 516–520. [Google Scholar] [CrossRef]
- Laetz, C.A.; Baldwin, D.H.; Collier, T.K.; Hebert, V.; Stark, J.D.; Scholz, N.L. The synergistic toxicity of pesticide mixtures: Implications for risk assessment and the conservation of endangered Pacific salmon. Environ. Health Perspect. 2009, 117, 348. [Google Scholar] [CrossRef]
- APDA (American Parkinson Disease Association). Parkinson’s Disease Handbook; American Parkinson Disease Association, Inc.: New York, NY, USA, 2019; p. 48. Available online: https://www.apdaparkinson.org/wp-content/uploads/2017/02/APDA1703_Basic-Handbook-D5V4-4web.pdf (accessed on 3 August 2021).
- Ekundayo, T.C.; Olasehinde, T.A.; Okaiyeto, K.; Okoh, A.I. Microbial Pathogenesis and Pathophysiology of Alzheimer’s disease: A Systematic Assessment of Microorganisms’ Implications in the Neurodegenerative Disease. Front. Neurosci. 2021, 15, 648484. [Google Scholar] [CrossRef]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health: Review Article. Oxid. Med. Cell. Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef]
- Perez, M.; Cuadros, R.; Smith, M.A.; Perry, G.; Avila, J. Phosphorylated, but not native, tau protein assembles following reaction with the lipid peroxidation product, 4-hydroxy-2-nonenal. FEBS Lett. 2000, 486, 270–274. [Google Scholar] [CrossRef]
- Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative Stress: A Key Modulator in Neurodegenerative Diseases: Review. Molecules 2019, 24, 1583. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Lee, H.G.; Liu, Q.; Perry, G.; Smith, M.A.; Sayre, L.M. 4-Oxo-2-nonenal is both more neurotoxic and more protein reactive than 4-hydroxy-2-nonenal. Chem. Res. Toxicol. 2005, 18, 1219–1231. [Google Scholar] [CrossRef]
- Pollack, M.; Yang, I.Y.; Kim, H.Y.; Blair, I.A.; Moriya, M. Translesion DNA Synthesis across the heptanone––Etheno2′-deoxycytidine adduct in cells. Chem. Res. Toxicol. 2006, 19, 1074–1079. [Google Scholar] [CrossRef] [PubMed]
- Sayre, L.M.; Perry, G.; Smith, M.A. Oxidative Stress and Neurotoxicity. Chem. Res. Toxicol. 2008, 21, 172–188. [Google Scholar] [CrossRef]
- Behl, T.; Makkar, R.; Sehgal, A.; Singh, S.; Sharma, N.; Zengin, G.; Bungau, S.; Andronie-Cioara, F.L.; Munteanu, M.A.; Brisc, M.C.; et al. Current Trends in Neurodegeneration: Cross Talks between Oxidative Stress, Cell Death, and Inflammation. Int. J. Mol. Sci. 2021, 22, 7432. [Google Scholar] [CrossRef] [PubMed]
Description | Results |
---|---|
MAIN INFORMATION ABOUT DATA | |
Timespan | 2011:2020 |
Sources (Journals, Books, etc.) | 138 |
Documents | 321 |
Average years from publication | 5.25 |
Average citations per documents | 26.31 |
Average citations per year per doc | 3.761 |
References | 19,413 |
DOCUMENT TYPES | |
Article | 256 |
Correction | 1 |
Editorial Material | 2 |
Letter | 1 |
Meeting Abstract | 2 |
News Item | 1 |
Review | 58 |
DOCUMENT CONTENTS | |
Keywords Plus (ID) | 1682 |
Author’s Keywords (DE) | 1107 |
AUTHORS | |
Authors | 1467 |
Author Appearances | 1727 |
Authors of single-authored documents | 21 |
Authors of multi-authored documents | 1446 |
AUTHORS COLLABORATION | |
Single-authored documents | 24 |
Documents per Author | 0.219 |
Authors per Document | 4.57 |
Co-Authors per Document | 5.38 |
Collaboration Index | 4.87 |
Author | h_index | TC | NP |
---|---|---|---|
Slotkin TA | 10 | 331 | 14 |
Seidler FJ | 9 | 460 | 13 |
Leist M | 6 | 137 | 8 |
Shafer TJ | 6 | 208 | 7 |
Dorea JG | 4 | 122 | 6 |
Skavicus S | 5 | 72 | 6 |
Aschner M | 4 | 69 | 5 |
Card J | 5 | 60 | 5 |
Costa LG | 5 | 302 | 5 |
Mundy WR | 5 | 160 | 5 |
Bellinger DC | 4 | 44 | 4 |
Chen H | 3 | 90 | 4 |
Delp J | 3 | 47 | 4 |
Grandjean P | 4 | 835 | 4 |
Gutbier S | 2 | 47 | 4 |
Harrill JA | 4 | 107 | 4 |
Hoelting L | 3 | 108 | 4 |
O’callaghan JP | 4 | 202 | 4 |
Padilla S | 4 | 211 | 4 |
Wright RO | 4 | 116 | 4 |
Affiliations | Articles | Country | Organization Type |
---|---|---|---|
Univ Konstanz | 41 | Germany | University |
Duke Univ | 37 | USA | University |
Univ Washington | 24 | USA | University |
Harvard Univ | 23 | USA | University |
Univ Calif Davis | 18 | USA | University |
Boston Univ | 14 | USA | University |
Harvard Med Sch | 13 | USA | Medical School |
Natl Hlth and Environm Effects Res Lab | 13 | USA | Research Laboratory |
Univ Brasilia | 13 | Brazil | University |
Univ Fed Santa Catarina | 13 | Brazil | University |
Columbia Univ | 12 | USA | University |
Penn State Univ | 11 | USA | University |
Res Triangle Pk | 11 | USA | Research Park |
Univ Calif San Diego | 11 | USA | University |
Albert Einstein Coll Med | 10 | USA | College of Medicine |
Ctr Dis Control And Prevent | 10 | USA | National Public Health Agency |
Fujian Med Univ | 9 | China | Medical University |
Icahn Sch Med Mt Sinai | 9 | USA | Private Medical School |
Inst Hlth and Consumer Protect | 9 | Italy | Joint Research Centre |
Univ Cincinnati | 9 | USA | University |
Source | IF | h_Index | g_Index | m_Index | TC | NP | PY_Start | NP per Year | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | ||||||||
Neurotoxicology | 4.294 | 15 | 26 | 1.36 | 722 | 29 | 2011 | 3 | 8 | 4 | 4 | 2 | 3 | 1 | 3 | 0 | 1 |
Toxicological Sciences | 4.849 | 9 | 16 | 0.82 | 265 | 18 | 2011 | 1 | 1 | 0 | 1 | 2 | 0 | 2 | 2 | 7 | 2 |
Neurotoxicology and Teratology | 3.763 | 11 | 17 | 1 | 428 | 17 | 2011 | 3 | 3 | 2 | 1 | 5 | 1 | 1 | 1 | 0 | 0 |
Toxicology | 7.563 | 9 | 12 | 1 | 283 | 12 | 2013 | 0 | 0 | 2 | 0 | 4 | 2 | 3 | 0 | 1 | 0 |
Archives of Toxicology | 5.153 | 8 | 11 | 0.8 | 430 | 11 | 2012 | 0 | 1 | 2 | 1 | 1 | 0 | 2 | 1 | 1 | 2 |
Environmental Health Perspectives | 9.031 | 5 | 8 | 0.46 | 636 | 8 | 2011 | 1 | 0 | 3 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
Toxicology and Applied Pharmacology | 4.219 | 7 | 8 | 0.64 | 377 | 8 | 2011 | 2 | 0 | 1 | 1 | 0 | 0 | 0 | 3 | 0 | 1 |
Ecotoxicology and Environmental Safety | 6.291 | 5 | 5 | 1 | 42 | 5 | 2017 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 4 | 0 |
Environmental Health | 5.984 | 4 | 5 | 0.67 | 69 | 5 | 2016 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 0 |
Environmental Research | 6.498 | 4 | 5 | 0.44 | 140 | 5 | 2013 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
Toxicologic Pathology | 1.902 | 3 | 5 | 0.27 | 42 | 5 | 2011 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
Toxicology In Vitro | 3.500 | 4 | 5 | 0.44 | 87 | 5 | 2013 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 |
Brain Research Bulletin | 4.077 | 4 | 4 | 0.36 | 49 | 4 | 2011 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |
Chemical Research in Toxicology | 3.739 | 3 | 4 | 0.38 | 37 | 4 | 2014 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
Environment International | 9.621 | 4 | 4 | 0.36 | 134 | 4 | 2011 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
Environmental Pollution | 8.071 | 2 | 4 | 0.5 | 22 | 4 | 2018 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 2 |
Neurotoxicity Research | 3.911 | 3 | 4 | 0.27 | 71 | 4 | 2011 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
Plos One | 3.240 | 4 | 4 | 0.5 | 129 | 4 | 2014 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
Science of the Total Environment | 7.963 | 3 | 4 | 0.3 | 43 | 4 | 2012 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 2 |
Toxicology Letters | 4.372 | 3 | 4 | 0.33 | 183 | 4 | 2013 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 |
Total | 15 | 16 | 17 | 17 | 19 | 11 | 15 | 15 | 18 | 17 |
Paper | Title | Total Citations | TC per Year |
---|---|---|---|
Grandjean P, 2014, Lancet Neurol | Neurobehavioral effects of developmental toxicity | 749 | 93.62 |
Eskenazi B, 2013, Environ Health Perspect | In utero and childhood polybrominated diphenyl ether (PBDE) exposures and neurodevelopment in the CHAMACOS study | 256 | 28.44 |
Dishaw LV, 2011, Toxicol Appl Pharmacol | Is the PentaBDE replacement, tris (1,3-dichloro-2-propyl) phosphate (TDCPP), a developmental neurotoxicant? Studies in PC12 cells | 227 | 20.64 |
Li J, 2013, Int J Mol Sci | Oxidative Stress and Neurodegenerative Disorders | 196 | 21.78 |
Roberts AL, 2013, Environ Health Perspect | Perinatal air pollutant exposures and autism spectrum disorder in the children of Nurses’ Health Study II participants | 161 | 17.89 |
White RF, 2016, Cortex | Recent research on Gulf War illness and other health problems in veterans of the 1991 Gulf War: Effects of toxicant exposures during deployment | 156 | 26 |
Linares V, 2015, Arch Toxicol | Human exposure to PBDE and critical evaluation of health hazards | 155 | 22.14 |
Chen A, 2011, Environ Health Perspect | Developmental Neurotoxicants in E-Waste: An Emerging Health Concern | 152 | 13.82 |
Costa LG, 2014, Toxicol Lett | A mechanistic view of polybrominated diphenyl ether (PBDE) developmental neurotoxicity | 136 | 17 |
Fairbrother A, 2014, Environ Toxicol Chem | Risks of neonicotinoid insecticides to honeybees | 133 | 16.63 |
Heusinkveld HJ, 2016, Neurotoxicology | Neurodegenerative and neurological disorders by small inhaled particles | 115 | 19.17 |
Mariussen E, 2012, Arch Toxicol | Neurotoxic effects of perfluoroalkylated compounds: mechanisms of action and environmental relevance | 107 | 10.7 |
Powers CM, 2011, Neurotoxicol Teratol | Silver Nanoparticles Alter Zebrafish Development and Larval Behavior: Distinct Roles for Particle Size, Coating, and Composition | 107 | 9.73 |
Winneke G, 2011, J Neurol Sci | Developmental aspects of environmental neurotoxicology: lessons from lead and polychlorinated biphenyls | 107 | 9.73 |
Nehlig A, 2013, Br J Clin Pharmacol | The neuroprotective effects of cocoa flavanol and its influence on cognitive performance | 103 | 11.44 |
Hogberg HT, 2011, Neurotoxicology | Application of micro-electrode arrays (MEAs) as an emerging technology for developmental neurotoxicity: evaluation of domoic acid-induced effects in primary cultures of rat cortical neurons | 91 | 8.27 |
Slotkin TA, 2011, Reprod Toxicol | Does early-life exposure to organophosphate insecticides lead to prediabetes and obesity? | 85 | 7.73 |
Llop S, 2013, Toxicology | Gender differences in the neurotoxicity of metals in children | 82 | 9.11 |
Mitchell MM, 2012, Environ Mol Mutagen | Levels of select PCB and PBDE congeners in human post-mortem brain reveal possible environmental involvement in 15q11-q13 duplication autism spectrum disorder | 80 | 8 |
Tilton FA, 2011, Comp Biochem Physiol C-Toxicol Pharmacol | Swimming impairment and acetylcholinesterase inhibition in zebrafish exposed to copper or chlorpyrifos separately, or as mixtures | 80 | 7.27 |
Cited References | Title | Citations |
---|---|---|
Grandjean P, 2006, Lancet, V368, P2167, https://doi.org/10.1016/S0140-6736(06)69665-7 | Developmental neurotoxicity of industrial chemicals | 49 |
Grandjean P, 2014, Lancet Neurol, V13, P330, https://doi.org/10.1016/S1474-4422(13)70278-3 | Neurobehavioural effects of developmental toxicity | 29 |
Rice D, 2000, Environ Health Persp, V108, P511, https://doi.org/10.2307/3454543 | Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. | 23 |
Crofton KM, 2011, Altex-Altern Anim Ex, V28, P9 | Developmental neurotoxicity testing: recommendations for developing alternative methods for the screening and prioritization of chemicals | 17 |
Herbstman JB, 2010, Environ Health Persp, V118, P712, https://doi.org/10.1289/Ehp.0901340 | Prenatal PBDEs and Neurodevelopment: Herbstman et al. Respond to Goodman et al. and to Banasik and Strosznajder | 17 |
Howard AS, 2005, Toxicol Appl Pharm, V207, P112, https://doi.org/10.1016/J.Taap.2004.12.008 | Chlorpyrifos exerts opposing effects on axonal and dendritic growth in primary neuronal cultures | 15 |
Canfield RL, 2003, New Engl J Med, V348, P1517, https://doi.org/10.1056/Nejmoa022848 | Intellectual Impairment in Children with Blood Lead Concentrations below 10 μg per Deciliter | 14 |
Costa LG, 2007, Neurotoxicology, V28, P1047, https://doi.org/10.1016/J.Neuro.2007.08.007 | Developmental neurotoxicity of polybrominated diphenyl ether (PBDE) flame retardants | 14 |
Krug AK, 2013, Arch Toxicol, V87, P123, https://doi.org/10.1007/S00204-012-0967-3 | Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach | 14 |
Livak KJ, 2001, Methods, V25, P402, https://doi.org/10.1006/Meth.2001.1262 | Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method | 14 |
Rauh VA, 2006, Pediatrics, V118, Pe1845, https://doi.org/10.1542/Peds.2006-0338 | Impact of prenatal chlorpyrifos exposure on neurodevelopment in the first 3 years of life among inner-city children | 14 |
Eskenazi B, 2013, Environ Health Persp, V121, P257, https://doi.org/10.1289/EHP.1205597 | In utero and childhood polybrominated diphenyl ether (PBDE) exposures and neurodevelopment in the CHAMACOS study | 13 |
Bal-Price AK, 2012, Altex-Altern Anim Ex, V29, P202, https://doi.org/10.14573/ALTEX.2012.2.202 | Advancing the science of developmental neurotoxicity (DNT): Testing for better safety evaluation | 12 |
Coecke S, 2007, Environ Health Persp, V115, P924, https://doi.org/10.1289/EHP.9427 | Workgroup Report: Incorporating In Vitro Alternative Methods for Developmental Neurotoxicity into International Hazard and Risk Assessment Strategies | 12 |
Radio NM, 2008, Toxicol Sci, V105, P106, https://doi.org/10.1093/TOXSCI/KFN114 | Assessment of chemical effects on neurite outgrowth in PC12 cells using high content screening | 12 |
Scholz D, 2011, J Neurochem, V119, P957, https://doi.org/10.1111/J.1471-4159.2011.07255.X | Rapid, complete, and large-scale generation of post-mitotic neurons from the human LUHMES cell line | 12 |
Bal-Price A, 2015, Arch Toxicol, V89, P269, https://doi.org/10.1007/S00204-015-1464-2 | International STakeholder NETwork (ISTNET): creating a developmental neurotoxicity (DNT) testing road map for regulatory purposes | 11 |
Grandjean P, 1997, Neurotoxicol Teratol, V19, P417, https://doi.org/10.1016/S0892-0362(97)00097-4 | Cognitive deficit in 7-year-old children with prenatal exposure to methylmercury | 11 |
Landrigan PJ, 2005, Environ Health Persp, V113, P1230, https://doi.org/10.1289/EHP.7571 | Early environmental origins of neurodegenerative disease in later life | 11 |
Rauh V, 2011, Environ Health Persp, V119, P1196, https://doi.org/10.1289/EHP.1003160 | Seven-Year Neurodevelopmental Scores and Prenatal Exposure to Chlorpyrifos, a Common Agricultural Pesticide | 11 |
Country | Articles | Freq | SCP | MCP | MCP_Ratio |
---|---|---|---|---|---|
USA | 160 | 0.50314 | 122 | 38 | 0.237 |
China | 20 | 0.06289 | 11 | 9 | 0.45 |
Germany | 19 | 0.05975 | 12 | 7 | 0.368 |
Italy | 16 | 0.05031 | 10 | 6 | 0.375 |
Brazil | 15 | 0.04717 | 10 | 5 | 0.333 |
Spain | 11 | 0.03459 | 7 | 4 | 0.364 |
India | 10 | 0.03145 | 9 | 1 | 0.1 |
Japan | 8 | 0.02516 | 6 | 2 | 0.25 |
United Kingdom | 7 | 0.02201 | 4 | 3 | 0.429 |
France | 5 | 0.01572 | 3 | 2 | 0.4 |
Korea | 5 | 0.01572 | 4 | 1 | 0.2 |
Canada | 4 | 0.01258 | 4 | 0 | 0 |
Australia | 3 | 0.00943 | 1 | 2 | 0.667 |
Czech Republic | 3 | 0.00943 | 0 | 3 | 1 |
Argentina | 2 | 0.00629 | 0 | 2 | 1 |
Colombia | 2 | 0.00629 | 1 | 1 | 0.5 |
Denmark | 2 | 0.00629 | 2 | 0 | 0 |
Kuwait | 2 | 0.00629 | 1 | 1 | 0.5 |
Mexico | 2 | 0.00629 | 1 | 1 | 0.5 |
Poland | 2 | 0.00629 | 2 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tywabi-Ngeva, Z.; Adeniji, A.O.; Okaiyeto, K. A Global Analysis of Research Outputs on Neurotoxicants from 2011–2020: Adverse Effects on Humans and the Environment. Appl. Sci. 2022, 12, 8275. https://doi.org/10.3390/app12168275
Tywabi-Ngeva Z, Adeniji AO, Okaiyeto K. A Global Analysis of Research Outputs on Neurotoxicants from 2011–2020: Adverse Effects on Humans and the Environment. Applied Sciences. 2022; 12(16):8275. https://doi.org/10.3390/app12168275
Chicago/Turabian StyleTywabi-Ngeva, Zikhona, Abiodun Olagoke Adeniji, and Kunle Okaiyeto. 2022. "A Global Analysis of Research Outputs on Neurotoxicants from 2011–2020: Adverse Effects on Humans and the Environment" Applied Sciences 12, no. 16: 8275. https://doi.org/10.3390/app12168275
APA StyleTywabi-Ngeva, Z., Adeniji, A. O., & Okaiyeto, K. (2022). A Global Analysis of Research Outputs on Neurotoxicants from 2011–2020: Adverse Effects on Humans and the Environment. Applied Sciences, 12(16), 8275. https://doi.org/10.3390/app12168275