Flocculating Activity of a Bioflocculant from Bacillus megaterium BMBF in Treatment of Domestic and Coal Mine Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Media
2.2. Bacterium, Extraction and Purification
2.3. Chemical Compounds
2.4. Characterisation of the Bioflocculant
2.5. Impact of Dosage Size and Metal Ions
2.6. pH and Thermal Stabilities of the Bioflocculant
2.7. Cytotoxicity
2.8. Reduction of Pollutants in Wastewater
2.9. Statistical Analysis
3. Results and Discussion
3.1. B. megaterium BMBF’s Bioflocculant Yield
3.2. Chemical Components
3.3. Characterisation of the Bioflocculant
3.4. Impact of Dosage and Metal Ions
3.5. pH and Thermal Stabilities of the Bioflocculant
3.6. Cytotoxicity
3.7. Reduction of Pollutants in Wastewater
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, O.; Lu, C.; Liu, A.; Zhu, L.; Wang, P.-M.; Qian, C.-D.; Jiang, X.-H.; Wu, X.-C. Optimization and characterization of polysaccharide-based bioflocculant produced by Paenibacillus elgii B69 and its application in wastewater treatment. Bioresour. Technol. 2013, 134, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Guest, J.S.; Peters, C.A.; Zhu, X.; Rau, G.H.; Ren, Z.J. Wastewater treatment for carbon capture and utilization. Nat. Sustain. 2018, 1, 750–758. [Google Scholar] [CrossRef]
- Sato, T.; Qadir, M.; Yamamoto, S.; Endo, T.; Zahoor, A. Global, regional, and country level need for data on wastewater generation, treatment, and use. Agric. Water Manag. 2013, 130, 1–13. [Google Scholar] [CrossRef]
- Yang, Q.; Luo, K.; Liao, D.X.; Li, X.M.; Wang, D.B.; Liu, X.; Zeng, G.M.; Li, X. A novel bioflocculant produced by Klebsiella sp. and its application to sludge dewatering. Water Environ. J. 2012, 26, 560–566. [Google Scholar] [CrossRef]
- Manetu, W.M.; Karanja, A.M. Waterborne disease risk factors and intervention practices: A review. Open Access Libr. J. 2021, 8, e7401. [Google Scholar] [CrossRef]
- Dao, V.H.; Cameron, N.R.; Saito, K. Synthesis, properties and performance of organic polymers employed in flocculation applications. Polym. Chem. 2016, 7, 11–25. [Google Scholar] [CrossRef]
- Luo, F.; Wu, Z.; Wang, M.; Shu, X.; Jia, P.; Li, Q. High-performance flocculants for purification: Solving the problem of waste incineration bottom ash and unpurified water. ACS Omega 2020, 5, 13259–13267. [Google Scholar] [CrossRef]
- Liu, C.; Sun, D.; Liu, J.; Zhu, J.; Liu, W. Recent advances and perspectives in efforts to reduce the production and application cost of microbial flocculants. Bioresour. Bioprocess. 2021, 8, 51. [Google Scholar] [CrossRef]
- Li, H.; Wu, S.; Du, C.; Zhong, Y.; Yang, C. Preparation, performances, and mechanisms of microbial flocculants for wastewater treatment. Int. J. Environ. Res. Public Health 2020, 17, 1360. [Google Scholar] [CrossRef]
- Maćczak, P.; Kaczmarek, H.; Ziegler-Borowska, M. Recent achievements in polymer bio-based flocculants for water treatment. Materials 2020, 13, 3951. [Google Scholar] [CrossRef]
- Mabinya, L.V.; Cosa, S.; Mkwetshana, N.; Okoh, A.I. Halomonas sp. OKOH—A marine bacterium isolated from the bottom sediment of Algoa Bay—Produces a polysaccharide bioflocculant: Partial characterization and biochemical analysis of its properties. Molecules 2011, 16, 4358–4370. [Google Scholar] [CrossRef] [PubMed]
- Brostow, W.; Lobland, H.H.; Pal, S.; Singh, R.P. Polymeric flocculants for wastewater and industrial effluent treatment. J. Mater. Educ. 2009, 31, 157–166. [Google Scholar]
- Ajao, V.; Fokkink, R.; Leermakers, F.; Bruning, H.; Rijnaarts, H.; Temmink, H. Bioflocculants from wastewater: Insights into adsorption affinity, flocculation mechanisms and mixed particle flocculation based on biopolymer size-fractionation. J. Colloid Interface Sci. 2021, 581, 533–544. [Google Scholar] [CrossRef] [PubMed]
- Ajao, V.; Bruning, H.; Rijnaarts, H.; Temmink, H. Natural flocculants from fresh and saline wastewater: Comparative properties and flocculation performances. Chem. Eng. J. 2018, 349, 622–632. [Google Scholar] [CrossRef]
- Ugbenyen, A.M.; Simonis, J.J.; Basson, A.K. Screening for bioflocculant-producing bacteria from the marine environment of Sodwana Bay, South Africa. Ann. Sci. Technol. 2018, 3, 16–20. [Google Scholar] [CrossRef]
- Abu Tawila, Z.M.; Ismail, S.; Dadrasnia, A.; Usman, M.M. Production and characterization of a bioflocculant produced by Bacillus salmalaya 139SI-7 and its applications in wastewater treatment. Molecules 2018, 23, 2689. [Google Scholar] [CrossRef]
- Joshi, N.; Rathod, M.; Vyas, D.; Kumar, R.; Mody, K. Multiple pollutants removal from industrial wastewaters using a novel bioflocculant produced by Bacillus licheniformis NJ3. Environ. Prog. Sustain. Energy 2019, 38, S306–S314. [Google Scholar] [CrossRef]
- Pu, L.; Zeng, Y.-J.; Xu, P.; Li, F.-Z.; Zong, M.-H.; Yang, J.-G.; Lou, W.-Y. Using a novel polysaccharide BM2 produced by Bacillus megaterium strain PL8 as an efficient bioflocculant for wastewater treatment. Int. J. Biol. Macromol. 2020, 162, 374–384. [Google Scholar] [CrossRef]
- Luo, L.; Zhao, Z.; Huang, X.; Du, X.; Wang, C.A.; Li, J.; Wang, L.; Xu, Q. Isolation, identification, and optimization of culture conditions of a bioflocculant-producing bacterium Bacillus megaterium SP1 and its application in aquaculture wastewater treatment. BioMed Res. Int. 2016, 2016, 2758168. [Google Scholar] [CrossRef]
- Okaiyeto, K.; Nwodo, U.U.; Mabinya, L.V.; Okoli, A.S.; Okoh, A.I. Evaluation of flocculating performance of a thermostable bioflocculant produced by marine Bacillus sp. Environ. Technol. 2016, 37, 1829–1842. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.T.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Li, J.; Kisara, K.; Danielsson, S.; Lindström, M.E.; Gellerstedt, G. An improved methodology for the quantification of uronic acid units in xylans and other polysaccharides. Carbohydr. Res. 2007, 342, 1442–1449. [Google Scholar] [CrossRef]
- Nie, Y.; Wang, Z.; Zhang, R.; Ma, J.; Zhang, H.; Li, S.; Li, J. Aspergillus oryzae, a novel eco-friendly fungal bioflocculant for turbid drinking water treatment. Sep. Purif. Technol. 2021, 279, 119669. [Google Scholar] [CrossRef]
- Rasulov, B.A.; Li, L.; Liu, Y.-H.; Mohamad, O.A.; Xiao, M.; Ma, J.-B.; Li, W.-J. Production, characterization and structural modification of exopolysaccharide-based bioflocculant by Rhizobium radiobacter SZ4S7S14 and media optimization. 3 Biotech 2017, 7, 179. [Google Scholar] [CrossRef]
- Adebayo-Tayo, B.C.; Adebami, G.E. Production, characterization and effect of cultural condition on bioflocculant produced by Alcaligenes aquatilis AP4. J. Appl. Life Sci. Int. 2017, 14, 1–12. [Google Scholar] [CrossRef]
- Dlamini, N.G.; Basson, A.K.; Pullabhotla, V. Biosynthesis and characterization of copper nanoparticles using a bioflocculant extracted from Alcaligenis faecalis HCB2. Adv. Sci. Eng. Med. 2019, 11, 1064–1070. [Google Scholar] [CrossRef]
- Makapela, B.; Okaiyeto, K.; Ntozonke, N.; Nwodo, U.U.; Green, E.; Mabinya, L.V.; Okoh, A.I. Assessment of Bacillus pumilus isolated from fresh water milieu for bioflocculant production. Appl. Sci. 2016, 6, 211. [Google Scholar] [CrossRef]
- Masuku, S.K. Synthesis and Application of a Grafted Flocculant Produced from a Chemical Combination of a Bioflocculant TKT and Acrylamide (AM). Ph.D. Thesis, University of Zululand, Richards Bay, South Africa, 2019. [Google Scholar]
- He, P.; Geng, L.; Wang, Z.; Mao, D.; Wang, J.; Xu, C. Fermentation optimization, characterization and bioactivity of exopolysaccharides from Funalia trogii. Carbohydr. Polym. 2012, 89, 17–23. [Google Scholar] [CrossRef]
- Ntozonke, N.; Okaiyeto, K.; Okoli, A.S.; Olaniran, A.O.; Nwodo, U.U.; Okoh, A.I. A marine bacterium, Bacillus sp. isolated from the sediment samples of Algoa Bay in South Africa produces a polysaccharide-bioflocculant. Int. J. Environ. Res. Public Health 2017, 14, 1149. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Zaki, S.A.; Elkady, M.F.; Farag, S.; Abd-El-Haleem, D. Characterization and flocculation properties of a carbohydrate bioflocculant from a newly isolated Bacillus velezensis 40B. J. Environ. Biol. 2013, 34, 51. [Google Scholar] [PubMed]
- Zulkeflee, Z.; Shamsuddin, Z.H.; Aris, A.Z.; Yusoff, M.K.; Komilis, D.; Sánchez, A. Glutamic acid independent production of bioflocculants by Bacillus subtilis UPMB13. Environ. Process. 2016, 3, 353–367. [Google Scholar] [CrossRef]
- Xiong, Y.; Wang, Y.; Yu, Y.; Li, Q.; Wang, H.; Chen, R.; He, N. Production and characterization of a novel bioflocculant from Bacillus licheniformis. Appl. Environ. Microbiol. 2010, 76, 2778–2782. [Google Scholar] [CrossRef]
- Natarajan, K. Production and characterization of bioflocculants for mineral processing applications. Int. J. Miner. Process. 2015, 137, 15–25. [Google Scholar]
- Chen, H.; Zhang, J.-F.; Jiang, P.-J. Composition and characterization of microbiological flocculant SC06. Environ. Chem. 2002, 21, 360–364. [Google Scholar]
- Tsilo, P.H.; Basson, A.K.; Ntombela, Z.G.; Maliehe, T.S.; Pullabhotla, V.R. Production and characterization of a bioflocculant from Pichia kudriavzevii MH545928. 1 and Its Application in Wastewater Treatment. Int. J. Environ. Res. Public Health 2022, 19, 3148. [Google Scholar] [CrossRef]
- Maliehe, T.; Simonis, J.; Basson, A.; Reve, M.; Ngema, S.; Xaba, P. Production, characterisation and flocculation mechanism of bioflocculant TMT-1 from marine Bacillus pumilus JX860616. Afr. J. Biotechnol. 2016, 15, 2352–2367. [Google Scholar]
- Tsilo, P.H.; Basson, A.K.; Ntombela, Z.G.; Maliehe, T.S.; Pullabhotla, R.V. Isolation and optimization of culture conditions of a bioflocculant-producing fungi from Kombucha tea SCOBY. Microbiol. Res. 2021, 12, 950–966. [Google Scholar] [CrossRef]
- Dlamini, N.G.; Basson, A.K.; Pullabhotla, R.V. Wastewater treatment by a polymeric bioflocculant and iron nanoparticles synthesized from a bioflocculant. Polymers 2020, 12, 1618. [Google Scholar] [CrossRef]
- Alias, J.; Hasan, H.A.; Abdullah, S.R.S.; Othman, A.R. Properties of bioflocculant-producing bacteria for high flocculating activity efficiency. Environ. Technol. Innov. 2022, 27, 102529. [Google Scholar] [CrossRef]
- Jiang, B.; Fu, L.; Cao, W.; Zhang, B.; Li, F.; Liu, Y. Microbial flocculant produced by a novel Paenibacillus sp., strain A9, using food processing wastewater to replace fermentation medium and its application for the removal of Pb (II) from aqueous solution. Adsorpt. Sci. Technol. 2019, 37, 683–697. [Google Scholar] [CrossRef]
- Wang, L.; Ma, F.; Qu, Y.; Sun, D.; Li, A.; Guo, J.; Yu, B. Characterization of a compound bioflocculant produced by mixed culture of Rhizobium radiobacter F2 and Bacillus sphaeicus F6. World J. Microbiol. Biotechnol. 2011, 27, 2559–2565. [Google Scholar] [CrossRef]
- Maliehe, T.; Basson, A.; Singh, M. Wastewater treatment by a novel bioflocculant from a consortium of Bacillus pumilus JX860616 and Bacillus Subtilis CSM5. Biosci. Res. 2020, 17, 1610–1625. [Google Scholar]
- Maliehe, T.S.; Basson, A.K.; Dlamini, N.G. Removal of pollutants in mine wastewater by a non-cytotoxic polymeric bioflocculant from Alcaligenes faecalis HCB2. Int. J. Environ. Res. Public Health 2019, 16, 4001. [Google Scholar] [CrossRef] [PubMed]
- Tawila, Z.M.A.; Ismail, S.; Amr, S.S.A.; Abou Elkhair, E.K. A novel efficient bioflocculant QZ-7 for the removal of heavy metals from industrial wastewater. RSC Adv. 2019, 9, 27825–27834. [Google Scholar] [CrossRef]
- Aljuboori, A.H.R.; Uemura, Y.; Osman, N.B.; Yusup, S. Production of a bioflocculant from Aspergillus niger using palm oil mill effluent as carbon source. Bioresour. Technol. 2014, 171, 66–70. [Google Scholar] [CrossRef]
- Makapela, B. Evaluation of Bioflocculant-Producing Potential of Bacillus pumilus Strain Isolated from Tyume River in the Eastern Cape Province of South Africa. Master’s Thesis, University of Fort Hare, East London, South Africa, 2015. [Google Scholar]
- Cosa, S.; Okoh, A. Bioflocculant production by a consortium of two bacterial species and its potential application in industrial wastewater and river water treatment. Pol. J. Environ. Stud. 2014, 23, 689–696. [Google Scholar]
- Agunbiade, M.O.; Van Heerden, E.; Pohl, C.H.; Ashafa, A.T. Flocculating performance of a bioflocculant produced by Arthrobacter humicola in sewage waste water treatment. BMC Biotechnol. 2017, 17, 51. [Google Scholar] [CrossRef]
- Li, X.-M.; Yang, Q.; Huang, K.; Zeng, G.-M.; Liao, D.-X.; Liu, J.-J.; Long, W.-F. Screening and characterization of a bioflocculant produced by Aeromonas sp. Biomed. Environ. Sci. 2007, 20, 274. [Google Scholar]
- He, J.; Zou, J.; Shao, Z.; Zhang, J.; Liu, Z.; Yu, Z. Characteristics and flocculating mechanism of a novel bioflocculant HBF-3 produced by deep-sea bacterium mutant Halomonas sp. V3a’. World J. Microbiol. Biotechnol. 2010, 26, 1135–1141. [Google Scholar] [CrossRef]
- Lee, J.W.; Yeomans, W.G.; Allen, A.L.; Deng, F.; Gross, R.A.; Kaplan, D.L. Biosynthesis of novel exopolymers by Aureobasidium pullulans. Appl. Environ. Microbiol. 1999, 65, 5265–5271. [Google Scholar] [CrossRef]
- Pathak, M.; Devi, A.; Bhattacharyya, K.; Sarma, H.; Subudhi, S.; Lal, B. Production of a non-cytotoxic bioflocculant by a bacterium utilizing a petroleum hydrocarbon source and its application in heavy metal removal. RSC Adv. 2015, 5, 66037–66046. [Google Scholar] [CrossRef]
- Gong, W.-X.; Wang, S.-G.; Sun, X.-F.; Liu, X.-W.; Yue, Q.-Y.; Gao, B.-Y. Bioflocculant production by culture of Serratia ficaria and its application in wastewater treatment. Bioresour. Technol. 2008, 99, 4668–4674. [Google Scholar] [CrossRef]
Components | Composition (%) (w/w) |
---|---|
Proteins | 12 |
Carbohydrates | 27 |
Uronic acid | 61 |
Elements | Composition (%) (w/w) |
---|---|
Potassium | 0.5 |
Oxygen | 17.5 |
Nitrogen | 1.1 |
Carbon | 61 |
Magnesium | 2.8 |
Chlorine | 0.9 |
Phosphorus | 8.1 |
Sodium | 1.7 |
Calcium | 6.4 |
Dosage (mg/mL) | %FE ± SD | Metal Ions | %FE ± SD | pH | %FE ± SD | Temperature (°C) | %FE ± SD |
---|---|---|---|---|---|---|---|
0.2 | 95 ± 2.0 a | Na+ | 59 ± 2.3 a | 3 | 89 ± 1.3 a | 50 | 98 ± 0.0 a |
0.4 | 93 ± 1.5 a | K+ | 75 ± 3.4 b | 4 | 89 ± 3.1 a | 60 | 98 ± 1.0 a |
0.6 | 93 ± 2.5 a | Li+ | 91 ± 0.6 c | 5 | 89 ± 2.5 a | 70 | 96 ± 1.5 a |
0.8 | 92 ± 1.3 a | Mg2+ | 72 ± 3.4 b | 6 | 90 ± 2.0 a | 80 | 96 ± 2.0 a |
Mn2+ | 69 ± 0.6 b | 7 | 99 ± 0.5 a | 90 | 93 ± 0.2 a | ||
Ba2+ | 95 ± 1.5 c | 8 | 95 ± 1.0 a | 100 | 89 ± 0.5 a | ||
Ca2+ | 96 ± 6.1 c | 9 | 93 ± 0.5 a | ||||
Fe3+ | 82 ± 2.8 b,c | 10 | 92 ± 0.5 a | ||||
Control | 71 ± 1.0 b | 11 | 92 ± 2.1 a |
Sample | Bovine Dermis | Vero |
---|---|---|
Bioflocculant | 59 ± 0.8 | 240 ± 2.0 |
5-fluorouracil | 15 ± 0.5 | 25 ± 4.8 |
Flocculants | Local Coal Mine Wastewater | Erwat Wastewater | ||
---|---|---|---|---|
COD | BOD | COD | BOD | |
Bioflocculant | 97 ± 0.3 a | 99.3 ± 2.0 a | 99.2 ± 3.3 a | 93 ± 2.6 a |
Aluminium chloride | 92 ± 2.3 a | 95 ± 1.8 a | 97.2 ± 0.6 a | 80± 1.3 a |
Ferric chloride | 93 ± 1.0 a | 96 ± 0.3 a | 98 ± 1.3 a | 84 ± 0.4 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Selepe, T.N.; Akanbi, R.; Maliehe, T.S.; Moganedi, K.; Masoko, P. Flocculating Activity of a Bioflocculant from Bacillus megaterium BMBF in Treatment of Domestic and Coal Mine Wastewater. Appl. Sci. 2022, 12, 8312. https://doi.org/10.3390/app12168312
Selepe TN, Akanbi R, Maliehe TS, Moganedi K, Masoko P. Flocculating Activity of a Bioflocculant from Bacillus megaterium BMBF in Treatment of Domestic and Coal Mine Wastewater. Applied Sciences. 2022; 12(16):8312. https://doi.org/10.3390/app12168312
Chicago/Turabian StyleSelepe, Tlou Nelson, Remilekun Akanbi, Tsolanku Sidney Maliehe, Kgabo Moganedi, and Peter Masoko. 2022. "Flocculating Activity of a Bioflocculant from Bacillus megaterium BMBF in Treatment of Domestic and Coal Mine Wastewater" Applied Sciences 12, no. 16: 8312. https://doi.org/10.3390/app12168312
APA StyleSelepe, T. N., Akanbi, R., Maliehe, T. S., Moganedi, K., & Masoko, P. (2022). Flocculating Activity of a Bioflocculant from Bacillus megaterium BMBF in Treatment of Domestic and Coal Mine Wastewater. Applied Sciences, 12(16), 8312. https://doi.org/10.3390/app12168312