Special Issue on the Applications of Molecularly Imprinted Films
1. Introduction
2. Molecularly Imprinted Films
3. Future of Molecularly Imprinted Films
Funding
Acknowledgments
Conflicts of Interest
References
- Long, J.P.; Chen, Z.B. Preparation and Adsorption Property of Solanesol Molecular Imprinted Polymers. Des. Monomers Polym. 2015, 18, 641–649. [Google Scholar] [CrossRef]
- Liu, X.; Wu, F.; Au, C.; Tao, Q.; Pi, M.; Zhang, W. Synthesis of Molecularly Imprinted Polymer by Suspension Polymerization for Selective Extraction of p-hydroxybenzoic Acid from Water. J. Appl. Polym. Sci. 2019, 136, 46984. [Google Scholar] [CrossRef]
- Zhao, G.; Liu, J.; Liu, M.; Han, X.; Peng, Y.; Tian, X.; Liu, J.; Zhang, S. Synthesis of Molecularly Imprinted Polymer via Emulsion Polymerization for Application in Solanesol Separation. Appl. Sci. 2020, 10, 2868. [Google Scholar] [CrossRef]
- Bakhtiar, S.; Bhawani, S.A.; Shafqat, S.R. Synthesis and Characterization of Molecular Imprinting Polymer for the Removal of 2-phenylphenol from Spiked Blood Serum and River Water. Chem. Biol. Technol. Agric. 2019, 6, 15. [Google Scholar] [CrossRef]
- Moein, M.M.; Abdel-Rehim, A.; Abdel-Rehim, M. Recent Applications of Molecularly Imprinted Sol-Gel Methodology in Sample Preparation. Molecules 2019, 24, 2889. [Google Scholar] [CrossRef] [PubMed]
- Gavrila, A.-M.; Nicolescu (Iordache), T.-V.; Sandu, T.; Zaharia (Lungu), A.; Radu, A.L.; Branger, C.; Brisset, H.; Stoica, E.B.; Apostol, S.; Sarbu, A. Molecularly Imprinted Polymer Pearls Obtained by Phase Inversion for the Selective Recognition of Hypericin. Mater. Plast. 2019, 56, 315–320. [Google Scholar] [CrossRef]
- Ye, L.; Zhou, T.; Shen, X. Molecular imprinting in particle-stabilized emulsions: Enlarging template size from small molecules to proteins and cells. Mol. Impr. 2015, 3, 8–16. [Google Scholar] [CrossRef]
- Shen, X.; Xu, C.; Ye, L. Imprinted polymer beads enabling direct and selective molecular separation in water. Soft Matter 2012, 27, 7169–7176. [Google Scholar] [CrossRef]
- Florea, A.-M.; Iordache, T.-V.; Branger, C.; Ghiurea, M.; Avramescu, S.; Hubca, G.; Sarbu, A. An innovative approach to prepare hypericin molecularly imprinted pearls using a “phyto-template”. Talanta 2016, 148, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Roshan, S.; Mujahid, A.; Afzal, A.; Nisar, I.; Ahmad, M.N.; Hussain, T.; Bajwa, S.Z. Molecularly Imprinted Polymer-Silica Hybrid Particles for Biomimetic Recognition of Target Drugs. Adv. Polym. Technol. 2019, 2019, 9432412. [Google Scholar] [CrossRef]
- Scrivano, L.; Parisi, O.I.; Iacopetta, D.; Ruffo, M.; Ceramella, J.; Sinicropi, M.S.; Puoci, F. Molecularly Imprinted Hydrogels for Sustained Release of Sunitinib in Breast Cancer Therapy. Polym. Adv. Technol. 2019, 30, 743–748. [Google Scholar] [CrossRef]
- Pereira, I.; Rodrigues, M.F.; Chaves, A.R.; Vaz, B.G. Molecularly Imprinted Polymer (MIP) Membrane Assisted Direct Spray Ionization Mass Spectrometry for Agrochemicals Screening in Foodstuffs. Talanta 2018, 178, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Shahhoseini, F.; Langille, E.A.; Azizi, A.; Bottaro, C.S. Thin Film Molecularly Imprinted Polymer (TF-MIP), a Selective and Single-use Extraction Device for High-throughput Analysis of Biological Samples. Analyst 2021, 146, 3157–3168. [Google Scholar] [CrossRef] [PubMed]
- Gavrila, A.-M.; Radu, I.-C.; Stroescu, H.; Zaharia, A.; Stoica, E.-B.; Ciurlica, A.-L.; Iordache, T.-V.; Sârbu, A. Role of Functional Monomers upon the Properties of Bisphenol A Molecularly Imprinted Silica Films. Appl. Sci. 2021, 11, 2956. [Google Scholar] [CrossRef]
- Pesavento, M.; Cennamo, N.; Zeni, L.; De Maria, L. A Molecularly Imprinted Polymer Based SPR Sensor for 2-Furaldehyde Determination in Oil Matrices. Appl. Sci. 2021, 11, 10390. [Google Scholar] [CrossRef]
- Ribeiro, S.C.; Fernandes, R.; Moreira, F.T.C.; Sales, M.G.F. Potentiometric Biosensor Based on Artificial Antibodies for an Alzheimer Biomarker Detection. Appl. Sci. 2022, 12, 3625. [Google Scholar] [CrossRef]
- Gavrila, A.-M.; Stoica, E.-B.; Iordache, T.-V.; Sârbu, A. Modern and Dedicated Methods for Producing Molecularly Imprinted Polymer Layers in Sensing Applications. Appl. Sci. 2022, 12, 3080. [Google Scholar] [CrossRef]
- Totito, T.C.; Laatikainen, K.; Pereao, O.; Bode-Aluko, C.; Petrik, L. Adsorptive Recovery of Cu2+ from Aqueous Solution by Polyethylene Terephthalate Nanofibres Modified with 2-(Aminomethyl)Pyridine. Appl. Sci. 2021, 11, 11912. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarbu, A. Special Issue on the Applications of Molecularly Imprinted Films. Appl. Sci. 2022, 12, 8533. https://doi.org/10.3390/app12178533
Sarbu A. Special Issue on the Applications of Molecularly Imprinted Films. Applied Sciences. 2022; 12(17):8533. https://doi.org/10.3390/app12178533
Chicago/Turabian StyleSarbu, Andrei. 2022. "Special Issue on the Applications of Molecularly Imprinted Films" Applied Sciences 12, no. 17: 8533. https://doi.org/10.3390/app12178533
APA StyleSarbu, A. (2022). Special Issue on the Applications of Molecularly Imprinted Films. Applied Sciences, 12(17), 8533. https://doi.org/10.3390/app12178533