Low-Cost Microwave Sensor for Characterization and Adulteration Detection in Edible Oil
Abstract
:Featured Application
Abstract
1. Introduction
2. Design and Simulation
3. Experimental Results and Validation
3.1. Device Fabrication
3.2. Dielectric Characterization of Oil Samples
3.3. Sensitivity and Quality Factor
3.4. Adulteration Detection
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rahman, N.A.; Zakaria, Z.; Rahim, R.A.; Dasril, Y.; Bahar, A.A.M. Planar Microwave Sensors for Accurate Measurement of Material Characterization: A Review. TELKOMNIKA (Telecommun. Comput. Electron. Control) 2017, 15, 1108–1118. [Google Scholar] [CrossRef]
- Massoud, Y.; Nieuwoudt, A. Modeling and Design Challenges and Solutions for Carbon Nanotube-Based Interconnect in Future High Performance Integrated Circuits. ACM J. Emerg. Technol. Comput. Syst. 2006, 2, 155–196. [Google Scholar] [CrossRef]
- Nieuwoudt, A.; Massoud, Y. Understanding the Impact of Inductance in Carbon Nanotube Bundles for VLSI Interconnect using Scalable Modeling Techniques. IEEE Trans. Nanotechnol. 2006, 5, 758–765. [Google Scholar] [CrossRef]
- Nieuwoudt, A.; Massoud, Y. On the Optimal Design, Performance, and Reliability of Future Carbon Nanotube-Based Interconnect Solutions. IEEE Trans. Electron Devices 2008, 55, 2097–2110. [Google Scholar] [CrossRef]
- Hosseini, A.; Massoud, Y. Optical range microcavities and filters using multiple dielectric layers in metal-insulator-metal structures. J. Opt. Soc. Am. A 2007, 24, 221–224. [Google Scholar] [CrossRef]
- Hosseini, A.; Massoud, Y. A low-loss metal-insulator-metal plasmonic bragg reflector. Opt. Express 2006, 14, 11318–11323. [Google Scholar] [CrossRef]
- Hosseini, A.; Nejati, H.; Massoud, Y. Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors. Opt. Express 2008, 16, 1475–1480. [Google Scholar] [CrossRef]
- Hosseini, A.; Nieuwoudt, A.; Massoud, Y. Optimizing Dielectric Strips Over a Metallic Substrate for Subwavelength Light Confinement. IEEE Photonics Lett. 2007, 19, 522–524. [Google Scholar] [CrossRef]
- Muñoz-Enano, J.; Vélez, P.; Gil, M.; Martín, F. Planar Microwave Resonant Sensors: A Review and Recent Developments. Appl. Sci. 2020, 10, 2615. [Google Scholar] [CrossRef]
- Harnsoongnoen, S. Microwave Sensors Based on Coplanar Waveguide Loaded with Split Ring Resonators: A Review. Appl. Sci. Eng. Prog. 2019, 12, 224–234. [Google Scholar] [CrossRef] [Green Version]
- Nyfors, E. Industrial microwave sensors—A review. Subsurf. Sens. Technol. Appl. 2000, 1, 23–43. [Google Scholar] [CrossRef]
- Hosseini, A.; Massoud, Y. Nanoscale surface plasmon based resonator using rectangular geometry. Appl. Phys. Lett. 2007, 90, 181102. [Google Scholar] [CrossRef]
- Hosseini, A.; Nejati, H.; Massoud, Y. Design of a maximally flat optical low pass filter using plasmonic nanostrip waveguides. Opt. Express 2007, 15, 15280–15286. [Google Scholar] [CrossRef] [PubMed]
- Massoud, Y.; Majors, S.; Bustami, T.; White, J. Layout Techniques for Minimizing On-Chip Interconnect Self Inductance. In Proceedings of the 35th IEEE/ACM Design Automation Conference, San Francisco, CA, USA, 15–19 June 1998; pp. 566–571. [Google Scholar]
- Massoud, Y.; White, J. Managing On-Chip Inductive Effects. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2002, 10, 789–798. [Google Scholar] [CrossRef]
- Zarifi, M.H.; Sohrabi, A.; Shaibani, P.M.; Daneshmand, M.; Thundat, T. Detection of volatile organic compounds using microwave sensors. IEEE Sens. J. 2014, 15, 248–254. [Google Scholar] [CrossRef]
- Massoud, Y.; White, J. Simulation and Modeling of the Effect Substrate Conductivity on Coupling Inductance and Circuit Crosstalk. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2002, 10, 286–291. [Google Scholar] [CrossRef]
- Massoud, Y.; Ismail, Y. Grasping the Impact of On-Chip Inductance in High Speed ICs. IEEE Circuits Devices Mag. 2001, 17, 14–21. [Google Scholar] [CrossRef]
- Hosseini, A.; Ragheb, T.; Massoud, Y. A Fault-Aware Dynamic Routing Algorithm for On-Chip Networks. In Proceedings of the 2008 IEEE International Symposium on Circuits and Systems, Seattle, WA, USA, 18–21 May 2008; pp. 2653–2656. [Google Scholar]
- Hosseini, A.; Nieuwoudt, A.; Massoud, Y. Efficient simulation of subwavelength plasmonic waveguides using implicitly restarted Arnoldi. Opt. Express 2006, 14, 7291–7298. [Google Scholar] [CrossRef]
- Alam, M.; Massoud, Y. RLC ladder model for scattering in single metallic nanoparticles. IEEE Trans. Nanotechnol. 2006, 5, 491–498. [Google Scholar] [CrossRef]
- Alam, M.; Massoud, Y. A closed-form analytical model for single nanoshells. IEEE Trans. Nanotechnol. 2006, 5, 265–272. [Google Scholar] [CrossRef]
- Massoud, Y.; Kawa, J.; MacMillen, D.; White, J. Modeling and Analysis of Differential Signaling for Minimizing Inductive Cross-Talk. In Proceedings of the 38th IEEE/ACM Design Automation Conference, Las Vegas, NE, USA, 18–22 June 2001; pp. 804–809. [Google Scholar]
- Nieuwoudt, A.; Massoud, Y. On the Impact of Process Variations for Carbon Nanotube Bundles for VLSI Interconnect. IEEE Trans. Electron Devices 2007, 54, 446–455. [Google Scholar]
- Javed, A.; Arif, A.; Zubair, M.; Mehmood, M.Q.; Riaz, K. A low-cost multiple complementary split-ring resonator-based microwave sensor for contactless dielectric characterization of liquids. IEEE Sens. J. 2020, 20, 11326–11334. [Google Scholar]
- Massoud, Y.; White, J. Improving the Generality of the Fictitious Magnetic Charge Approach to Computing Inductances in the Presence of Permeable Materials. In Proceedings of the IEEE/ACM Design Automation Conference, New Orleans, LA, USA, 10–14 June 2002; pp. 552–555. [Google Scholar]
- Massoud, Y.; White, J. FastMag: A 3-D Fast Inductance Extraction Program for Structures with Permeable materials. In Proceedings of the IEEE/ACM International Conference on Computer Aided Design, San Jose, CA, USA, 10–14 November 2002; pp. 478–484. [Google Scholar]
- Massoud, Y.; Alam, M.; Nieuwoudt, A. On the Selection of Spectral Zeros for Generating Passive Reduced Order Models. In Proceedings of the International Workshop on System-on-Chip for Real-Time Applications, Cairo, Egypt, 27–29 December 2006; pp. 160–164. [Google Scholar]
- Soffiatti, A.; Max, Y.; Silva, S.G.; de Mendonça, L.M. Microwave metamaterial-based sensor for dielectric characterization of liquids. Sensors 2018, 18, 1513. [Google Scholar]
- Jha, A.K.; Akhtar, M.J. A generalized rectangular cavity approach for determination of complex permittivity of materials. IEEE Trans. Instrum. Meas. 2014, 63, 2632–2641. [Google Scholar]
- Ebrahimi, A.; Scott, J.; Ghorbani, K. Ultrahigh-Sensitivity Microwave Sensor for Microfluidic Complex Permittivity Measurement. IEEE Trans. Microw. Theory Tech. 2019, 67, 4269–4277. [Google Scholar]
- Tiwari, N.K.; Singh, S.P.; Akhtar, M.J. Novel Improved Sensitivity Planar Microwave Probe for Adulteration Detection in Edible Oils. IEEE Microw. Wirel. Compon. Lett. 2018, 29, 164–166. [Google Scholar]
- Muhammed Shafi, K.T.; Jha, A.K.; Akhtar, M.J. Non-destructive technique for detection of adulteration in edible oils using planar RF sensor. In Proceedings of the 2016 IEEE MTT-S International Microwave and RF Conference (IMaRC), New Delhi, India, 5–9 December 2016; pp. 1–4. [Google Scholar]
- Kakani, P.N.; Chandu, D.S.; Karthikeyan, S.S. Open complementary split ring resonator based RF sensor with improved sensitivity for detection and estimation of adulteration in edible oils. In Proceedings of the 2019 TEQIP III Sponsored International Conference on Microwave Integrated Circuits, Photonics and Wireless Networks (IMICPW), Tiruchirappalli, India, 22–24 May 2019; pp. 479–482. [Google Scholar]
- Baena, J.D.; Bonache, J.; Martin, F.; Sillero, R.M.; Falcone, F.; Lopetegi, T.; Laso, M.A.G.; Garcia-Garcia, J.; Gil, I.; Portillo, M.F.; et al. Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines. IEEE Trans. Microw. Theory Tech. 2005, 53, 1451–1461. [Google Scholar]
- Alahnomi, R.A.; Zakaria, Z.; Yussof, Z.M.; Althuwayb, A.A.; Alhegazi, A.; Alsariera, H.; Rahman, N.A. Review of recent microwave planar resonator-based sensors: Techniques of complex permittivity extraction, applications, open challenges and future research directions. Sensors 2021, 21, 2267. [Google Scholar]
- Zarifi, M.H.; Rahimi, M.; Daneshmand, M.; Thundat, T. Microwave ring resonator-based non-contact interface sensor for oil sands applications. Sens. Actuators B Chem. 2016, 224, 632–639. [Google Scholar]
Samples | Frequency (GHz) | Δf (GHz) |
---|---|---|
Castor oil sim. | 4.825 | 0.405 |
Castor oil exp. | 4.832 | 0.398 |
Mustard oil sim. | 4.860 | 0.370 |
Mustard oil exp. | 4.890 | 0.340 |
Olive oil sim. | 4.952 | 0.278 |
Olive oil exp. | 4.953 | 0.277 |
Flaxseed oil sim. | 5.045 | 0.185 |
Flaxseed oil exp. | 5.030 | 0.200 |
OUT | Dielectric Constant | Loss Tangent | Complex Permittivity | Error |
---|---|---|---|---|
ϵ | tan δ | ϵ″ | ||
Castor oil | 4.80 | 0.03 | 0.15 | ±2% |
Mustard oil | 3.91 | 0.32 | 0.12 | ±1.5% |
Olive oil | 3.10 | 0.33 | 0.10 | ±1% |
Flaxseed oil | 2.40 | 0.03 | 0.091 | ±1% |
Free-space | 1.02 | - | - |
OUT | Q-Factor | Sensitivity |
---|---|---|
Q | S (%) | |
Castor oil | 39.28 | 1.9 |
Mustard oil | 37.61 | 2.1 |
Olive oil | 28.12 | 3.2 |
Flaxseed oil | 25.15 | 4.6 |
Air | - | - |
Sample | Adulteration in Percentage | Resonance Frequency | Shift in Frequency |
---|---|---|---|
1.5 mL mustard oil contamination | 10% | 4.92 GHz | 290 MHz |
3 mL mustard oil contamination | 20% | 4.86 GHz | 350 MHz |
4.5 mL mustard oil contamination | 30% | 4.69 GHz | 520 MHz |
1.5 mL castor oil contamination | 10% | 4.88 GHz | 330 MHz |
3 mL castor oil contamination | 20% | 4.78 GHz | 430 MHz |
4.5 mL castor oil contamination | 30% | 4.68 GHz | 530 MHz |
1.5 mL argemone oil contamination | 10% | 4.80 GHz | 400 MHz |
3 mL argemone oil contamination | 20% | 4.78 GHz | 430 MHz |
4.5 mL argemone oil contamination | 30% | 4.61 GHz | 600 MHz |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhatti, M.H.; Jabbar, M.A.; Khan, M.A.; Massoud, Y. Low-Cost Microwave Sensor for Characterization and Adulteration Detection in Edible Oil. Appl. Sci. 2022, 12, 8665. https://doi.org/10.3390/app12178665
Bhatti MH, Jabbar MA, Khan MA, Massoud Y. Low-Cost Microwave Sensor for Characterization and Adulteration Detection in Edible Oil. Applied Sciences. 2022; 12(17):8665. https://doi.org/10.3390/app12178665
Chicago/Turabian StyleBhatti, Muhammad Hamza, Muhammad Abdul Jabbar, Muhammad Atif Khan, and Yehia Massoud. 2022. "Low-Cost Microwave Sensor for Characterization and Adulteration Detection in Edible Oil" Applied Sciences 12, no. 17: 8665. https://doi.org/10.3390/app12178665
APA StyleBhatti, M. H., Jabbar, M. A., Khan, M. A., & Massoud, Y. (2022). Low-Cost Microwave Sensor for Characterization and Adulteration Detection in Edible Oil. Applied Sciences, 12(17), 8665. https://doi.org/10.3390/app12178665