Trends for the Thermal Degradation of Polymeric Materials: Analysis of Available Techniques, Issues, and Opportunities
Abstract
:1. Introduction
2. Thermal Pyrolysis
2.1. Feedstock Types and Possible Degradation Reactions
- Polyolefins, such as PE/PP, are extremely inert and hydrophobic, with a low density.
- Poly(tetrafluoroethylene) PTFE (Teflon) has an ethylene backbone and four fluorine molecules that are covalently bonded.
- Poly (vinyl chloride) PVC has an ethylene backbone with one covalently bonded chlorine
- Silicone -Si-O- has a backbone with a variable chain length and crosslinks that govern its mechanical properties and ranges from liquid oil to gel to rubber elastomer. Polyolefin silicones are notable for being hydrophobic and biostable elastomers.
- Methacrylate’s (PMMA) properties include substantial stiffness, and its primary application is in medical applications (orthopaedics and dentistry).
- Polyesters are biodegradable and biostable polymers that are also used in biomedicine (drug-eluting coatings, orthopaedic applications, etc.).
- Polyurethane can be synthesised in a variety of chemistries and characteristics. This large group’s structure is flexible due to the combination of hard and soft segments.
2.2. Feedstock Closed-Loop Disposal
2.3. Degradation Reactions
2.4. Process Limitation and Restrictions Related to the Reactor Type
2.5. Co-Pyrolysis and Catalytic Pyrolysis
2.6. Influence of Polymer Type on Technological Aspects of Pyrolysis and Catalytic Pyrolysis Requirements
3. Evaluation of Polymeric Materials in Thermal Processes
Thermal and Chemical Utilisation of Polymeric Materials and Their Waste and Environmental Impact
4. Opportunities for Polymeric Materials Thermal Decomposition and Degradation
5. A Different Method to Increase the Process Efficiency
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Statista (2021)-Annual Production of Plastics Worldwide from 1950 to 2020. Available online: https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950/ (accessed on 7 October 2021).
- Migdał, A.R.; Kijeński, J.; Kawalec, A.; Kędziora, A.; Rejewski, P.; Śmigiera, E. Odzysk Energetyczny Materiałów Odpadowych Z Tworzyw Sztucznych. Chemik 2014, 68, 1056–1073. [Google Scholar]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, Use, and Fate of All Plastics Ever Made. Sci. Adv. 2017, 3, e1700872. [Google Scholar] [CrossRef] [PubMed]
- Plastic the Facts 2012–2019. Available online: https://www.plasticseurope.org/en/resources/market-data (accessed on 28 March 2022).
- Shahnawaz, M.; Sangale, M.K.; Ade, A.B. Bioremediation Technology for Plastic Waste; Springer: Singapore, 2019; ISBN 978-981-13-7491-3. [Google Scholar]
- Varda, D.N.A. Mehta Production and Evaluation of Microbial Plastics for Its Degradation Capabilities Project: PRACRITI-PRogrAmme on Climate Change Research. In Terrestrial Environment View Project Perils of Plastic: Are We Leaving behind? View Project; Indian Research Programme: Bangalore, India, 2014. [Google Scholar]
- Payne, J.; McKeown, P.; Jones, M.D. A Circular Economy Approach to Plastic Waste. Polym. Degrad. Stab. 2019, 165, 170–181. [Google Scholar] [CrossRef]
- Gertsakis, J.; Lewis, H. Sustainability and the Waste Management Hierarchy—A Discussion Paper; Victoria: Singapore, 2003. [Google Scholar]
- Gałko, G.; Król, D. Evaluation of Selected Sewage Sludge Gasification Technological Parameters. In Proceedings of the E3S Web of Conferences, IWA YWP 2017 Conference, Cracow, Poland, 12–13 September 2018; Volume 30. [Google Scholar]
- Król, D.; GaŁko, G. Studies on Sewage Sludge Gasification. Przem. Chem. 2017, 1, 96. [Google Scholar] [CrossRef]
- Król, D.; Gałko, G. Stoichometric Equilibrium Model of Sewage Sludge Gasification with Athmospheric Air. Przem. Chem. 2018, 97, 1698–1702. [Google Scholar] [CrossRef]
- Sajdak, M.; Muzyka, R. Use of Plastic Waste as a Fuel in the Co-Pyrolysis of Biomass. Part I: The Effect of the Addition of Plastic Waste on the Process and Products. J. Anal. Appl. Pyrolysis 2014, 107, 267–275. [Google Scholar] [CrossRef]
- Sajdak, M.; Słowik, K. Use of Plastic Waste as a Fuel in the Co-Pyrolysis of Biomass: Part II. Variance Analysis of the Co-Pyrolysis Process. J. Anal. Appl. Pyrolysis 2014, 109, 152–158. [Google Scholar] [CrossRef]
- Partial Report Preventing Plastic Waste EEA Report; Euroepan Environment Agency: Kopehnagen, Denmark, 2019.
- Bridgwater, A.V. Catalysis in Thermal Biomass Conversion. Appl. Catal. A Gen. 1994, 116, 5–47. [Google Scholar] [CrossRef]
- Molino, A.; Chianese, S.; Musmarra, D. Biomass Gasification Technology: The State of the Art Overview. J. Energy Chem. 2016, 25, 10–25. [Google Scholar] [CrossRef]
- Gałko, G. The Influence of Infiltration of Leachate from Landfills on the Changes of Chemical Parameters of the Soil. J. Ecol. Eng. 2015, 198–205. [Google Scholar] [CrossRef]
- Lombardi, L.; Carnevale, E.; Corti, A. A Review of Technologies and Performances of Thermal Treatment Systems for Energy Recovery from Waste. Waste Manag. 2015, 37, 26–44. [Google Scholar] [CrossRef] [PubMed]
- Gałko, G.; Rejdak, M.; Tercki, D.; Bogacka, M.; Sajdak, M. Evaluation of the Applicability of Polymeric Materials to BTEX and Fine Product Transformation by Catalytic and Non-Catalytic Pyrolysis as a Part of the Closed Loop Material Economy. J. Anal. Appl. Pyrolysis 2021, 154, 105017. [Google Scholar] [CrossRef]
- Buxbaum, L.H. The Degradation of Poly(Ethylene Terephthalate). Angew. Chem. Int. Ed. 1968, 7, 182–190. (In English) [Google Scholar] [CrossRef]
- Zimmermann, H. Degradation and Stabilisation of Polyesters in Developments in Polymer Degradation. Appl. Sci. 1984, 5, 79–119. [Google Scholar]
- Zhang, Z.; Baroutian, S.; Munir, M.T.; Young, B.R. Variation in Metals during Wet Oxidation of Sewage Sludge. Bioresour. Technol. 2017, 245, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Munir, M.T.; Kheirkhah, H.; Baroutian, S.; Quek, S.Y.; Young, B.R. Subcritical Water Extraction of Bioactive Compounds from Waste Onion Skin. J. Clean. Prod. 2018, 183, 487–494. [Google Scholar] [CrossRef]
- Bertanza, G.; Galessi, R.; Menoni, L.; Salvetti, R.; Slavik, E.; Zanaboni, S. Wet Oxidation of Sewage Sludge: Full-Scale Experience and Process Modeling. Environ. Sci. Pollut. Res. 2015, 22, 7306–7316. [Google Scholar] [CrossRef] [PubMed]
- Menoni, L.; Bertanza, G. Wet Oxidation of Sewage Sludge: A Mathematical Model for Estimating the Performance Based on the VSS/TSS Ratio. Chem. Eng. J. 2016, 306, 685–692. [Google Scholar] [CrossRef]
- Zhou, W.; Zhong, H.; Jin, F. Hydrothermal Oxidation of Polyethylene (PE) Plastic to Short-Chain Fatty Acids (C1-C5). In IOP Conference Series: Earth and Environmental Science; Institute of Physics Publishing: Bristol, UK, 2020; Volume 450, p. 12049. [Google Scholar]
- Anthraper, D.; McLaren, J.; Baroutian, S.; Munir, M.T.; Young, B.R. Hydrothermal Deconstruction of Municipal Solid Waste for Solid Reduction and Value Production. J. Clean. Prod. 2018, 201, 812–819. [Google Scholar] [CrossRef]
- Maitz, M.F. Applications of Synthetic Polymers in Clinical Medicine. Biosurface Biotribology 2015, 1, 161–176. [Google Scholar] [CrossRef]
- Qureshi, M.S.; Oasmaa, A.; Pihkola, H.; Deviatkin, I.; Tenhunen, A.; Mannila, J.; Minkkinen, H.; Pohjakallio, M.; Laine-Ylijoki, J. Pyrolysis of Plastic Waste: Opportunities and Challenges. J. Anal. Appl. Pyrolysis 2020, 152, 104804. [Google Scholar] [CrossRef]
- Eze, W.U.; Umunakwe, R.; Obasi, H.C.; Ugbaja, M.I.; Uche, C.C.; Madufor, I.C.; Eze, W.U.; Umunakwe, R.; Obasi, H.C.; Ugbaja, M.I.; et al. Plastics Waste Management: A Review of Pyrolysis Technology. Clean Technol. Recycl. 2021, 1, 50–69. [Google Scholar] [CrossRef]
- Sharuddin, S.D.A.; Abnisa, F.; Daud, W.M.A.W.; Aroua, M.K. Pyrolysis of Plastic Waste for Liquid Fuel Production as Prospective Energy Resource. In IOP Conference Series: Material Science and Engineering, 3rd ed.; ICChESA 2017; Institute of Physics Publishing: Bristol, UK, 2018; Volume 334. [Google Scholar] [CrossRef]
- Chanda, M. Chemical Aspects of Polymer Recycling. Adv. Ind. Eng. Polym. Res. 2021, 4, 133–150. [Google Scholar] [CrossRef]
- Dwivedi, P.; Mishra, P.K.; Mondal, M.K.; Srivastava, N. Non-Biodegradable Polymeric Waste Pyrolysis for Energy Recovery. Heliyon 2019, 5, e02198. [Google Scholar] [CrossRef]
- Sherwood, J. Closed-Loop Recycling of Polymers Using Solvents. Johns. Matthey Technol. Rev. 2020, 64, 4–15. [Google Scholar] [CrossRef]
- Yang, Y.; Boom, R.; Irion, B.; van Heerden, D.J.; Kuiper, P.; de Wit, H. Recycling of Composite Materials. Chem. Eng. Process. Process Intensif. 2012, 51, 53–68. [Google Scholar] [CrossRef]
- Ye, S.Y.; Bounaceur, A.; Soudais, Y.; Barna, R. Parameter Optimization of the Steam Thermolysis: A Process to Recover Carbon Fibres from Polymer-Matrix Composites. Waste Biomass Valorization 2013, 4, 73–86. [Google Scholar] [CrossRef]
- Wind, G.; Council, E. Gwec|Global Wind Report 2021; Global Wind Energy Council: Brussels, Belgium, 2021. [Google Scholar]
- Devic, A.-C.; Ierides, M.; Fernandez, V.; Verbenkov, M.; Bax, L. Polymer Composites Circularity. SusChem 2018, 21. [Google Scholar]
- Vollmer, I.; Jenks, M.J.F.; Roelands, M.C.P.; White, R.J.; van Harmelen, T.; de Wild, P.; van der Laan, G.P.; Meirer, F.; Keurentjes, J.T.F.; Weckhuysen, B.M. Beyond Mechanical Recycling: Giving New Life to Plastic Waste. Angew. Chem. Int. Ed. 2020, 59, 15402–15423. [Google Scholar] [CrossRef]
- Li, S.; Li, J.; Xu, J. Investigating the Release Behavior of Biomass and Coal during the Co-Pyrolysis Process. Int. J. Hydrogen Energy 2021, 46, 34652–34662. [Google Scholar] [CrossRef]
- Farzad, S.; Mandegari, M.; Görgens, J.F. A Novel Approach for Valorization of Waste Tires into Chemical and Fuel (Limonene and Diesel) through Pyrolysis: Process Development and Techno Economic Analysis. Fuel Process. Technol. 2021, 224, 107006. [Google Scholar] [CrossRef]
- Su, G.; Ong, H.C.; Mofijur, M.; Mahlia, T.M.I.; Ok, Y.S. Pyrolysis of Waste Oils for the Production of Biofuels: A Critical Review. J. Hazard. Mater. 2022, 424, 127396. [Google Scholar] [CrossRef] [PubMed]
- Su, G.; Ong, H.C.; Fattah, I.M.R.; Ok, Y.S.; Jang, J.H.; Wang, C.T. State-of-the-Art of the Pyrolysis and Co-Pyrolysis of Food Waste: Progress and Challenges. Sci. Total Environ. 2022, 809, 151170. [Google Scholar] [CrossRef] [PubMed]
- Joo, J.; Kwon, E.E.; Lee, J. Achievements in Pyrolysis Process in E-Waste Management Sector. Environ. Pollut. 2021, 287, 117621. [Google Scholar] [CrossRef] [PubMed]
- Speight, J.G. Handbook of Industrial Hydrocarbon Processes; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 9780128099230. [Google Scholar]
- Jasso-Gestinel, C.F.K.J.M. Modification of Polymer Properties; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 9780323443531. [Google Scholar]
- Farris, S.; Pozzoli, S.; Biagioni, P.; Duó, L.; Mancinelli, S.; Piergiovanni, L. The Fundamentals of Flame Treatment for the Surface Activation of Polyolefin Polymers—A Review. Polymer 2010, 51, 3591–3605. [Google Scholar] [CrossRef]
- Kumar, A.; Jones, D.; Hanna, M. Thermochemical Biomass Gasification: A Review of the Current Status of the Technology. Energies 2009, 2, 556–581. [Google Scholar] [CrossRef]
- Serrano, D.P.; Aguado, J.; Escola, J.M. Catalytic Conversion of Polystyrene over HMCM-41, HZSM-5 and Amorphous SiO2–Al2O3: Comparison with Thermal Cracking. Appl. Catal. B Environ. 2000, 25, 181–189. [Google Scholar] [CrossRef]
- de La Puente, G.; Klocker, C.; Sedran, U. Conversion of Waste Plastics into Fuels Recycling Polyethylene in FCC. Appl. Catal. B Environ. 2002, 36, 279–285. [Google Scholar] [CrossRef]
- Karagöz, S.; Yanik, J.; Uçar, S.; Saglam, M.; Song, C. Catalytic and Thermal Degradation of High-Density Polyethylene in Vacuum Gas Oil over Non-Acidic and Acidic Catalysts. Appl. Catal. A Gen. 2003, 242, 51–62. [Google Scholar] [CrossRef]
- Miskolczi, N.; Nagy, R. Hydrocarbons Obtained by Waste Plastic Pyrolysis: Comparative Analysis of Decomposition Described by Different Kinetic Models. Fuel Process. Technol. 2012, 104, 96–104. [Google Scholar] [CrossRef]
- Faravelli, T.; Pinciroli, M.; Pisano, F.; Bozzano, G.; Dente, M.; Ranzi, E. Thermal Degradation of Polystyrene. J. Anal. Appl. Pyrolysis 2001, 60, 103–121. [Google Scholar] [CrossRef]
- McNeill, I.C.; Zulfiqar, M.; Kousar, T. A Detailed Investigation of the Products of the Thermal Degradation of Polystyrene. Polym. Degrad. Stab. 1990, 28, 131–151. [Google Scholar] [CrossRef]
- Liu, Y.; Qian, J.; Wang, J. Pyrolysis of Polystyrene Waste in a Fluidized-Bed Reactor to Obtain Styrene Monomer and Gasoline Fraction. Fuel Process. Technol. 2000, 63, 45–55. [Google Scholar] [CrossRef]
- Salamah, S.; Aktawan, A. Product Distribution of Pyrolysis of Polystyrene Foam Waste Using Catalyst of Natural Zeolite and Nickel/Silica. In IOP Conference Series: Earth and Environmental Science; Institute of Physics Publishing: Bristol, UK, 2018; Volume 175, p. 012012. [Google Scholar] [CrossRef]
- Folger, H.S. Elements of Chemical Reaction Engineering, 3rd ed.; The University of Michigan: Ann Arbor, MI, USA, 1987; Volume 42. [Google Scholar]
- Saad, J.M.; Nahil, M.A.; Williams, P.T. Influence of Process Conditions on Syngas Production from the Thermal Processing of Waste High Density Polyethylene. J. Anal. Appl. Pyrolysis 2015, 113, 35–40. [Google Scholar] [CrossRef]
- Elordi, G.; Olazar, M.; Castaño, P.; Artetxe, M.; Bilbao, J. Polyethylene Cracking on a Spent FCC Catalyst in a Conical Spouted Bed. Ind. Eng. Chem. Res. 2012, 51, 14008–14017. [Google Scholar] [CrossRef]
- Araduman, A.; Simsek, E.H.; Cicek, B.; Bilgesu, A.Y. Flash Pyrolysis of Polystyrene Wastes in a Free-Fall Reactor under Vacuum. J. Anal. Appl. Pyrolysis 2001, 60, 179–186. [Google Scholar] [CrossRef]
- Undri, A.; Frediani, M.; Rosi, L.; Frediani, P. Reverse Polymerization of Waste Polystyrene through Microwave Assisted Pyrolysis. J. Anal. Appl. Pyrolysis 2014, 105, 35–42. [Google Scholar] [CrossRef]
- Miandad, R.; Rehan, M.; Barakat, M.A.; Aburiazaiza, A.S.; Khan, H.; Ismail, I.M.I.; Dhavamani, J.; Gardy, J.; Hassanpour, A.; Nizami, A.S. Catalytic Pyrolysis of Plastic Waste: Moving toward Pyrolysis Based Biorefineries. Front. Energy Res. 2019, 7, 27. [Google Scholar] [CrossRef]
- Elordi, G.; Olazar, M.; Lopez, G.; Amutio, M.; Artetxe, M.; Aguado, R.; Bilbao, J. Catalytic Pyrolysis of HDPE in Continuous Mode over Zeolite Catalysts in a Conical Spouted Bed Reactor. J. Anal. Appl. Pyrolysis 2009, 1–2, 345–351. [Google Scholar] [CrossRef]
- Odian, G. Principles of Polymerization, 4th ed.; John Wiley & Sons: New York, NY, USA, 2004. [Google Scholar]
- Montaudo, G.; Puglisi, C.; Samperi, F. Primary Thermal Degradation Mechanisms of PET and PBT. Polym. Degrad. Stab. 1993, 42, 13–28. [Google Scholar] [CrossRef]
- Zhang, L.; Bao, Z.; Xia, S.; Lu, Q.; Walters, K.B. Catalytic Pyrolysis of Biomass and Polymer Wastes. Catalysts 2018, 8, 659. [Google Scholar] [CrossRef] [Green Version]
- Vijayakumar, A.; Sebastian, J. Pyrolysis Process to Produce Fuel from Different Types of Plastic–a Review. In IOP Conference Series: Materials Science and Engineering; Institute of Physics Publishing: Bristol, UK, 2018; Volume 396, p. 012062. [Google Scholar] [CrossRef]
- Munir, M.T.; Li, B.; Boiarkina, I.; Baroutian, S.; Yu, W.; Young, B.R. Phosphate Recovery from Hydrothermally Treated Sewage Sludge Using Struvite Precipitation. Bioresour. Technol. 2017, 239, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Gin, A.W.; Hassan, H.; Ahmad, M.A.; Hameed, B.H.; Mohd Din, A.T. Recent Progress on Catalytic Co-Pyrolysis of Plastic Waste and Lignocellulosic Biomass to Liquid Fuel: The Influence of Technical and Reaction Kinetic Parameters. Arab. J. Chem. 2021, 14, 103035. [Google Scholar] [CrossRef]
- Sajdak, M.M. Optimization Frameworks in Resource Management and Process Engineering. In Plastics to Energy: Fuel, Chemicals, and Sustainability Implications; William Andrew: Norwich, NY, USA, 2019; pp. 425–442. [Google Scholar] [CrossRef]
- Sieradzka, M.; Rajca, P.; Zajemska, M.; Mlonka-Mędrala, A.; Magdziarz, A. Prediction of Gaseous Products from Refuse Derived Fuel Pyrolysis Using Chemical Modelling Software-Ansys Chemkin-Pro. J. Clean. Prod. 2020, 248, 119277. [Google Scholar] [CrossRef]
- Sieradzka, M.; Gao, N.; Quan, C.; Mlonka-Mędrala, A.; Magdziarz, A. Biomass Thermochemical Conversion via Pyrolysis with Integrated CO2 Capture. Energies 2020, 13, 1050. [Google Scholar] [CrossRef]
- Ash, M.; Ash, I. Handbook of Paint and Coating Raw Materials, 2nd ed.; Ashgate Brookfield Vermont: Gower, UK, 2013; Volume 1. [Google Scholar]
- Chen, D.; Yin, L.; Wang, H.; He, P. Pyrolysis Technologies for Municipal Solid Waste: A Review. Waste Manag. 2014, 34, 2466–2486. [Google Scholar] [CrossRef] [PubMed]
- Al-Salem, S. Plastics to Energy; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 9780128131404. [Google Scholar]
- Lin, Y.-H.; Yang, M.-H. Catalytic Pyrolysis of Polyolefin Waste into Valuable Hydrocarbons over Reused Catalyst from Refinery FCC Units. Appl. Catal. A Gen. 2007, 328, 132–139. [Google Scholar] [CrossRef]
- Serrano, D.P.; Aguado, J.; Escola, J.M.; Garagorri, E. Conversion of Low Density Polyethylene into Petrochemical Feedstocks Using a Continuous Screw Kiln Reactor. J. Anal. Appl. Pyrolysis 2001, 58–59, 789–801. [Google Scholar] [CrossRef]
- Al-Salem, S.M.; Lettieri, P.; Baeyens, J. Recycling and Recovery Routes of Plastic Solid Waste (PSW): A Review. Waste Manag. 2009, 29, 2625–2643. [Google Scholar] [CrossRef]
- Gałko, G.; Król, D. Experimental Research of Oily Sawdust Air Gasification. Environ. Sci. Pollut. Res. 2021, 28, 14293–14298. [Google Scholar] [CrossRef]
- Zhang, X.; Lei, H.; Yadavalli, G.; Zhu, L.; Wei, Y.; Liu, Y. Gasoline-Range Hydrocarbons Produced from Microwave-Induced Pyrolysis of Low-Density Polyethylene over ZSM-5. Fuel 2015, 144, 33–42. [Google Scholar] [CrossRef]
- Lopez, G.; Artetxe, M.; Amutio, M.; Bilbao, J.; Olazar, M. Thermochemical Routes for the Valorization of Waste Polyolefinic Plastics to Produce Fuels and Chemicals. A Review. Renew. Sustain. Energy Rev. 2017, 73, 346–368. [Google Scholar] [CrossRef]
- Wu, M.S.; Jin, B.C.; Li, X.; Nutt, S. A Recyclable Epoxy for Composite Wind Turbine Blades. Adv. Manuf. Polym. Compos. Sci. 2019, 5, 114–127. [Google Scholar] [CrossRef]
- del Remedio Hernández, M.; García, Á.N.; Marcilla, A. Study of the Gases Obtained in Thermal and Catalytic Flash Pyrolysis of HDPE in a Fluidized Bed Reactor. J. Anal. Appl. Pyrolysis 2005, 73, 314–322. [Google Scholar] [CrossRef]
- Mastral, F.J.; Esperanza, E.; Berrueco, C.; Juste, M.; Ceamanos, J. Fluidized Bed Thermal Degradation Products of HDPE in an Inert Atmosphere and in Air–Nitrogen Mixtures. J. Anal. Appl. Pyrolysis 2003, 70, 1–17. [Google Scholar] [CrossRef]
- Artetxe, M.; Lopez, G.; Amutio, M.; Elordi, G.; Bilbao, J.; Olazar, M. Cracking of High Density Polyethylene Pyrolysis Waxes on HZSM-5 Catalysts of Different Acidity. Ind. Eng. Chem. Res. 2013, 52, 10637–10645. [Google Scholar] [CrossRef]
- Chmielniak, T.; Słowik, K.; Sajdak, M. Mercury Removal by Mild Thermal Treatment of Coal. Fuel 2017, 195, 290–298. [Google Scholar] [CrossRef]
- Sajdak, M.; Muzyka, R.; Hrabak, J.; Słowik, K. Use of Plastic Waste as a Fuel in the Co-Pyrolysis of Biomass: Part III: Optimisation of the Co-Pyrolysis Process. J. Anal. Appl. Pyrolysis 2015, 112, 298–305. [Google Scholar] [CrossRef]
- Kim, S.-S.; Kim, S. Pyrolysis Characteristics of Polystyrene and Polypropylene in a Stirred Batch Reactor. Chem. Eng. J. 2004, 98, 53–60. [Google Scholar] [CrossRef]
- Jung, S.-H.; Cho, M.-H.; Kang, B.-S.; Kim, J.-S. Pyrolysis of a Fraction of Waste Polypropylene and Polyethylene for the Recovery of BTX Aromatics Using a Fluidized Bed Reactor. Fuel Process. Technol. 2010, 91, 277–284. [Google Scholar] [CrossRef]
- Ratnasari, D.K.; Nahil, M.A.; Williams, P.T. Catalytic Pyrolysis of Waste Plastics Using Staged Catalysis for Production of Gasoline Range Hydrocarbon Oils. J. Anal. Appl. Pyrolysis 2017, 124, 631–637. [Google Scholar] [CrossRef]
- Xu, X.; Jiang, E.; Li, Z.; Sun, Y. BTX from Anisole by Hydrodeoxygenation and Transalkylation at Ambient Pressure with Zeolite Catalysts. Fuel 2018, 221, 440–446. [Google Scholar] [CrossRef]
- Gaurh, P.; Pramanik, H. Production of Benzene/Toluene/Ethyl Benzene/Xylene (BTEX) via Multiphase Catalytic Pyrolysis of Hazardous Waste Polyethylene Using Low Cost Fly Ash Synthesized Natural Catalyst. Waste Manag. 2018, 77, 114–130. [Google Scholar] [CrossRef]
- Huang, W.C.; Huang, M.S.; Huang, C.F.; Chen, C.C.; Ou, K.L. Thermochemical Conversion of Polymer Wastes into Hydrocarbon Fuels over Various Fluidizing Cracking Catalysts. Fuel 2010, 89, 2305–2316. [Google Scholar] [CrossRef]
- Falcke, H.; Holbrook, S.; Clenahan, I.; Carretero, A.L.; Sanalan, T.; Brinkmann, T.; Joze, R.; Benoît, Z.; Serge, R.; Sancho, L.D. Best Available Techniques (BAT) Reference Document for the Production of Large Volume Organic Chemicals; Publications Office: Luxembourg, 2018; Available online: https://data.europa.eu/doi/10.2760/773042018 (accessed on 10 August 2021).
- What Is BTEX. Available online: https://www.aeroqual.com/what-is-btex (accessed on 10 August 2021).
- Almeida, D.; de Fátima Marques, M. Thermal and Catalytic Pyrolysis of Plastic Waste. Polímeros 2016, 26, 44–51. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, J.; Sun, Y.; Zhong, Z.; Wang, X.; Xia, H.; Liu, G.; Pang, S.; Wang, K.; Li, M.; et al. Recycling Benzene and Ethylbenzene from In-Situ Catalytic Fast Pyrolysis of Plastic Wastes. Energy Convers. Manag. 2019, 200, 112088. [Google Scholar] [CrossRef]
- Bornschein, C.; Werkmeister, S.; Wendt, B.; Jiao, H.; Alberico, E.; Baumann, W.; Junge, H.; Junge, K.; Beller, M. Mild and Selective Hydrogenation of Aromatic and Aliphatic (Di)Nitriles with a Well-Defined Iron Pincer Complex. Nat. Commun. 2014, 5, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Hao, L.; Luo, B.; Li, X.; Jin, M.; Fang, Y.; Tang, Z.; Jia, Y.; Liang, M.; Thomas, A.; Yang, J.; et al. Terephthalonitrile-Derived Nitrogen-Rich Networks for High Performance Supercapacitors. Energy Environ. Sci. 2012, 5, 9747–9751. [Google Scholar] [CrossRef]
- Kim, J.; Kim, H.J.; Chang, S. Synthesis of Aromatic Nitriles Using Nonmetallic Cyano-Group Sources. Angew. Chem. Int. Ed. 2012, 51, 11948–11959. [Google Scholar] [CrossRef]
- Kholkhoev, B.C.; Burdukovskii, V.F.; Mognonov, D.M. Synthesis of Polyamidines Based on 1,4-Dicyanobenzene and 4,4´-Diaminodiphenyl Oxide in Ionic Liquids. Russ. Chem. Bull. 2010, 11, 2159–2160. [Google Scholar] [CrossRef]
- Springer-Verlag, C.; Kobayashi, M.; Nagasawa, T.; Yamada, H. Applied Microbiology Biotechnology Regiospecific Hydrolysis of Dinitrile Compounds by Nitrilase from Rhodococcus Rhodochrous J1. Appl. Microbiol. Biotechnol. 1988, 29, 231–233. [Google Scholar]
- Shen, Y.; Yuan, R. Pyrolysis of Agroforestry Bio-Wastes with Calcium/Magnesium Oxides or Carbonates–Focusing on Biochar as Soil Conditioner. Biomass Bioenergy 2021, 155, 106277. [Google Scholar] [CrossRef]
- Dionisio, K.L.; Phillips, K.; Price, P.S.; Grulke, C.M.; Williams, A.; Biryol, D.; Hong, T.; Isaacs, K.K. The Chemical and Products Database, a Resource for Exposure-Relevant Data on Chemicals in Consumer Products. Sci. Data 2018, 5, 1–9. [Google Scholar] [CrossRef]
- Rajca, P.; Poskart, A.; Chrubasik, M.; Sajdak, M.; Zajemska, M.; Skibiński, A.; Korombel, A. Technological and Economic Aspect of Refuse Derived Fuel Pyrolysis. Renew. Energy 2020, 161, 482–494. [Google Scholar] [CrossRef]
- dos Santos, I.F.S.; Mensah, J.H.R.; Gonçalves, A.T.T.; Barros, R.M. Incineration of Municipal Solid Waste in Brazil: An Analysis of the Economically Viable Energy Potential. Renew. Energy 2020, 149, 1386–1394. [Google Scholar] [CrossRef]
- Singh, R.K.; Ruj, B.; Sadhukhan, A.K.; Gupta, P. Impact of Fast and Slow Pyrolysis on the Degradation of Mixed Plastic Waste: Product Yield Analysis and Their Characterization. J. Energy Inst. 2019, 92, 1647–1657. [Google Scholar] [CrossRef]
- Williams, P.T.; Williams, E.A. Fluidised Bed Pyrolysis of Low Density Polyethylene to Produce Petrochemical Feedstock. J. Anal. Appl. Pyrolysis 1999, 51, 107–126. [Google Scholar] [CrossRef]
- Schirmer, J.; Kim, J.S.; Klemm, E. Catalytic Degradation of Polyethylene Using Thermal Gravimetric Analysis and a Cycled-Spheres-Reactor. J. Anal. Appl. Pyrolysis 2001, 60, 205–217. [Google Scholar] [CrossRef]
- Miandad, R.; Barakat, M.A.; Aburiazaiza, A.S.; Rehan, M.; Nizami, A.S. Catalytic Pyrolysis of Plastic Waste: A Review. Process Saf. Environ. Prot. 2016, 102, 822–838. [Google Scholar] [CrossRef]
- Arabiourrutia, M.; Elordi, G.; Lopez, G.; Borsella, E.; Bilbao, J.; Olazar, M. Characterization of the Waxes Obtained by the Pyrolysis of Polyolefin Plastics in a Conical Spouted Bed Reactor. J. Anal. Appl. Pyrolysis 2012, 94, 230–237. [Google Scholar] [CrossRef]
- Xu, L.; Na, X.W.; Zhang, L.Y.; Dong, Q.; Dong, G.H.; Wang, Y.T.; Fang, Z. Selective Production of Terephthalonitrile and Benzonitrile via Pyrolysis of Polyethylene Terephthalate (PET) with Ammonia over Ca(OH)2/Al2O3 Catalysts. Catalysts 2019, 9, 436. [Google Scholar] [CrossRef]
- Stoye, D.; Freitag, W. Paints, Coatings, and Solvents, 2nd ed.; Completely Edition; Willey-Vch: Weinheim, Germany, 2007. [Google Scholar]
- Hasanova, A.M.; Aliyev, F.Y.; Mammadli, S.B.; Mammadov, B.A. Synthesis of Binary Cooligomers of α-Methylstyrene with Decylmethacrylate and Their Investigation as Additives for Oils. PPOR 2017, 18, 351–360. [Google Scholar]
- McNaught, A.D.; Wilkinson, A. Compendium of Chemical Terminology—The “Gold Book”, 2nd ed.; Nic, M., Jirat, J., Kosata, B., Eds.; IUPAC: Zurich, Switzerland, 1997. [Google Scholar]
- Bertanza, G.; Galessi, R.; Menoni, L.; Zanaboni, S. Wet Oxidation of Sewage Sludge from Municipal and Industrial WWTPs. Desalination Water Treat. 2016, 57, 2422–2427. [Google Scholar] [CrossRef]
- Kim, Y.M.; Jeong, J.; Ryu, S.; Lee, H.W.; Jung, J.S.; Siddiqui, M.Z.; Jung, S.C.; Jeon, J.K.; Jae, J.; Park, Y.K. Catalytic Pyrolysis of Wood Polymer Composites over Hierarchical Mesoporous Zeolites. Energy Convers. Manag. 2019, 195, 727–737. [Google Scholar] [CrossRef]
- Baroutian, S.; Smit, A.M.; Andrews, J.; Young, B.; Gapes, D. Hydrothermal Degradation of Organic Matter in Municipal Sludge Using Non-Catalytic Wet Oxidation. Chem. Eng. J. 2015, 260, 846–854. [Google Scholar] [CrossRef]
- Abnisa, F.; Alaba, P.A. Recovery of Liquid Fuel from Fossil-Based Solid Wastes via Pyrolysis Technique: A Review. J. Environ. Chem. Eng. 2021, 9, 106593. [Google Scholar] [CrossRef]
- Sun, X.; Zhu, Z.; Zaman, F.; Huang, Y.; Guan, Y. Detection and Kinetic Simulation of Animal Hair/Wool Wastes Pyrolysis toward High-Efficiency and Sustainable Management. Waste Manag. 2021, 131, 305–312. [Google Scholar] [CrossRef]
- Kharasch, M.S.; Beck, T.M. The Chemistry of Organic Gold Compounds. V. Auration of Aromatic Nitriles. J. Am. Chem. Soc. 2002, 56, 2057–2060. [Google Scholar] [CrossRef]
Thermochemical Process | Primary Products | Conversion Technology | Secondary Products |
---|---|---|---|
Pyrolysis | Char | ||
Liquid | Extraction Upgrading Boiler | Chemicals Biofuels Electricity and Combined Heat and Power | |
Gas | |||
Gasification | Syngas | Upgrading Turbine Synthesis Engine Boiler Fuel cell | Biofuels Electricity and Combined Heat and Power Chemicals, Methanol, Ammonia Electricity and Combined Heat and Power Electricity and Combined Heat and Power Electricity and Combined Heat and Power |
Combustion | Heat | Boiler | Electricity and Combined Heat and Power |
Solvolysis | Liquids | Liquefaction | Monomers and dimers |
Solid fraction | Glass or/and carbon fibres |
Type of Polymers for Plastics | Proximate Analysis of Plastics | Global Consumption % | |||
---|---|---|---|---|---|
Moisture (wt. %) | FC (Fixed Carbon) * (wt. %) | Volatile Matter (wt. %) | Ash (wt. %) | ||
Polyethylene terephthalate (PET) | 0.46 | 7.77 | 91.75 | 0.02 | 5.5 |
Polyethylene (PE) High-density polyethylene (HDPE) | 0.10 | 0.04 | 98.87 | 0.99 | 33.5 |
Polyvinyl chloride (PVC) | 0.00 | 6.3 | 93.7 | 0 | 16.5 |
Polypropylene (PP) | 0.15 | 1.22 | 95.08 | 3.55 | 19.5 |
Polystyrene (PS) | 0.25 | 0.12 | 99.63 | 0 | 8.5 |
Acrylonitrile butadiene styrene (ABS) | 0.00 | 1.12 | 97.88 | 1.00 | 3.5 |
Polyamide (PA) or Nylons | 0.00 | 0.69 | 99.31 | 0.00 | |
Polybutylene terephthalate (PBT) | 0.00 | 2.88 | 97.12 | 0.00 | |
Blends, high performance and specialty plastics, thermosetting plastics | - | - | - | - | 13.00 |
Pyrolysis Products | Fractions | Products Temperature Degradation |
---|---|---|
Styrene | Low boiling fraction (G1) | 300, 350, 420 °C |
Toluene | 300, 350, 420 °C | |
Benzene | 300 °C | |
Naphthalene | 300, 350 °C | |
Xylene | 300, 350, 420 °C | |
a-Methyl styrene | 300, 350, 420 °C | |
1-Methylindene | 300, 350 °C | |
3-Phenylopropene | 300, 350 °C | |
1,2-Diphenylethane | Medium boiling fraction (G2) | 350 °C |
1,3-Diphenylopropane | 350 °C | |
2,4-Diphenyl-1-butadene (Dimer) | 350 °C | |
2,4-Diphenyl-1-pentene | 350 °C | |
Alpha-Methyl-Styrene | 350 °C | |
3-Phenylopropene | 350 °C | |
Naphthalene | 350 °C | |
Dimethyl indene | 350 °C | |
Trans-2methylstyrene | 350 °C | |
3-Methylindane | 350 °C | |
1-Methylindene | 350 °C | |
4-Phenyl-1-butene | 350 °C | |
Styrene | 300, 350, 420 °C | |
Toluene | 300, 350, 420 °C | |
Styrene | High boiling fraction (G3) | 300, 350, 420 °C |
Toluene | 300, 350, 420 °C | |
Ethylbenzene | 420 °C | |
2,4,6-Triphenyl-1-hexene (Trimer) | 420 °C | |
Others | 420 °C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gałko, G.; Sajdak, M. Trends for the Thermal Degradation of Polymeric Materials: Analysis of Available Techniques, Issues, and Opportunities. Appl. Sci. 2022, 12, 9138. https://doi.org/10.3390/app12189138
Gałko G, Sajdak M. Trends for the Thermal Degradation of Polymeric Materials: Analysis of Available Techniques, Issues, and Opportunities. Applied Sciences. 2022; 12(18):9138. https://doi.org/10.3390/app12189138
Chicago/Turabian StyleGałko, Grzegorz, and Marcin Sajdak. 2022. "Trends for the Thermal Degradation of Polymeric Materials: Analysis of Available Techniques, Issues, and Opportunities" Applied Sciences 12, no. 18: 9138. https://doi.org/10.3390/app12189138
APA StyleGałko, G., & Sajdak, M. (2022). Trends for the Thermal Degradation of Polymeric Materials: Analysis of Available Techniques, Issues, and Opportunities. Applied Sciences, 12(18), 9138. https://doi.org/10.3390/app12189138