Optical Bullets and Their Modulational Instability Analysis
Abstract
:1. Introduction
2. Overview of Schemes
2.1. Description of PREM
2.2. Elucidation of BSEFM
3. Mathematical Analysis of the Model
4. Optical Bullet Solutions
4.1. Solving by PREM
4.2. Solving by BSEFM
5. Stability Analysis
6. Results and Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Merzhanov, A.; Khaikin, B. Theory of combustion waves in homogeneous media. Prog. Energy Combust. Sci. 1988, 14, 1–98. [Google Scholar] [CrossRef]
- Swinney, H.L.; Krinsky, V.I. Waves and Patterns in Chemical and Biological Media; MIT Press: Cambridge, MA, USA, 1991. [Google Scholar]
- Prade, B.; Vinet, J.Y. Guided optical waves in fibers with negative dielectric constant. J. Light. Technol. 1994, 12, 6–18. [Google Scholar] [CrossRef]
- Rose, J.L. Ultrasonic waves in solid media. J. Acoust. Soc. Am. 2000, 107, 1807. [Google Scholar] [CrossRef]
- Brekhovskikh, L. Waves in Layered Media; Elsevier: Amsterdam, The Netherlands, 2012; Volume 16. [Google Scholar]
- Winterbone, D.E.; Pearson, R.J.; Qatu, M.; Siavoshani, S. Theory of engine manifold design: Wave action methods for ic engineers. Appl. Mech. Rev. 2001, 54, B109–B110. [Google Scholar] [CrossRef]
- Gurnett, D.A.; Bhattacharjee, A. Introduction to Plasma Physics: With Space and Laboratory Applications; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Agrawal, G.P. Nonlinear fiber optics. In Nonlinear Science at the Dawn of the 21st Century; Springer: Berlin/Heidelberg, Germany, 2000; pp. 195–211. [Google Scholar]
- Yariv, A. Quantum Electronics; John Wiley & Sons: Abingdon, UK, 1989. [Google Scholar]
- Morgan, D. Surface Acoustic Wave Filters: With Applications to Electronic Communications and Signal Processing; Academic Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Redor, I.; Barthélemy, E.; Michallet, H.; Onorato, M.; Mordant, N. Experimental evidence of a hydrodynamic soliton gas. Phys. Rev. Lett. 2019, 122, 214502. [Google Scholar] [CrossRef]
- Rozenman, G.G.; Fu, S.; Arie, A.; Shemer, L. Quantum mechanical and optical analogies in surface gravity water waves. Fluids 2019, 4, 96. [Google Scholar] [CrossRef]
- Lannig, S.; Schmied, C.M.; Prüfer, M.; Kunkel, P.; Strohmaier, R.; Strobel, H.; Gasenzer, T.; Kevrekidis, P.G.; Oberthaler, M.K. Collisions of three-component vector solitons in Bose-Einstein condensates. Phys. Rev. Lett. 2020, 125, 170401. [Google Scholar] [CrossRef]
- Liu, J.; Lucas, E.; Raja, A.S.; He, J.; Riemensberger, J.; Wang, R.N.; Karpov, M.; Guo, H.; Bouchand, R.; Kippenberg, T.J. Photonic microwave generation in the X-and K-band using integrated soliton microcombs. Nat. Photonics 2020, 14, 486–491. [Google Scholar] [CrossRef]
- Wang, W.; Wang, L.; Zhang, W. Advances in soliton microcomb generation. Adv. Photonics 2020, 2, 034001. [Google Scholar] [CrossRef]
- Rozenman, G.G.; Shemer, L.; Arie, A. Observation of accelerating solitary wavepackets. Phys. Rev. E 2020, 101, 050201. [Google Scholar] [CrossRef]
- Rozenman, G.G.; Schleich, W.P.; Shemer, L.; Arie, A. Periodic Wave Trains in Nonlinear Media: Talbot Revivals, Akhmediev Breathers, and Asymmetry Breaking. Phys. Rev. Lett. 2022, 128, 214101. [Google Scholar] [CrossRef] [PubMed]
- Pernet, N.; St-Jean, P.; Solnyshkov, D.D.; Malpuech, G.; Carlon Zambon, N.; Fontaine, Q.; Real, B.; Jamadi, O.; Lemaître, A.; Morassi, M.; et al. Gap solitons in a one-dimensional driven-dissipative topological lattice. Nat. Phys. 2022, 18, 678–684. [Google Scholar] [CrossRef]
- Qi, Y.; Yang, S.; Wang, J.; Li, L.; Bai, Z.; Wang, Y.; Lv, Z. Recent advance of emerging low-dimensional materials for vector soliton generation in fiber lasers. Mater. Today Phys. 2022, 23, 100622. [Google Scholar] [CrossRef]
- Biswas, A.; Ekici, M.; Sonmezoglu, A.; Belic, M.R. Optical solitons in fiber Bragg gratings with dispersive reflectivity for quadratic–cubic nonlinearity by extended trial function method. Optik 2019, 185, 50–56. [Google Scholar] [CrossRef]
- Al-Ghafri, K.; Krishnan, E.; Biswas, A. W-shaped and other solitons in optical nanofibers. Results Phys. 2021, 23, 103973. [Google Scholar] [CrossRef]
- Al-Kalbani, K.K.; Al-Ghafri, K.; Krishnan, E.; Biswas, A. Solitons and modulation instability of the perturbed Gerdjikov–Ivanov equation with spatio-temporal dispersion. Chaos Solitons Fractals 2021, 153, 111523. [Google Scholar] [CrossRef]
- Zayed, E.M.; Alngar, M.E.; Biswas, A.; Kara, A.H.; Ekici, M.; Alzahrani, A.K.; Belic, M.R. Cubic-quartic optical solitons and conservation laws with Kudryashov’s sextic power-law of refractive index. Optik 2021, 227, 166059. [Google Scholar] [CrossRef]
- Hosseini, K.; Osman, M.; Mirzazadeh, M.; Rabiei, F. Investigation of different wave structures to the generalized third-order nonlinear Scrödinger equation. Optik 2020, 206, 164259. [Google Scholar] [CrossRef]
- Al-Kalbani, K.K.; Al-Ghafri, K.; Krishnan, E.; Biswas, A. Pure-cubic optical solitons by Jacobi’s elliptic function approach. Optik 2021, 243, 167404. [Google Scholar] [CrossRef]
- Ekici, M.; Sonmezoglu, A.; Biswas, A.; Belic, M.R. Optical solitons in (2+1)–Dimensions with Kundu–Mukherjee–Naskar equation by extended trial function scheme. Chin. J. Phys. 2019, 57, 72–77. [Google Scholar] [CrossRef]
- Krishnan, E.; Biswas, A.; Zhou, Q.; Alfiras, M. Optical soliton perturbation with Fokas–Lenells equation by mapping methods. Optik 2019, 178, 104–110. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Periodic and solitary waves in optical fiber Bragg gratings with dispersive reflectivity. Chin. J. Phys. 2020, 66, 401–405. [Google Scholar] [CrossRef]
- Zayed, E.M.; Alngar, M.E. Application of newly proposed sub-ODE method to locate chirped optical solitons to Triki–Biswas equation. Optik 2020, 207, 164360. [Google Scholar] [CrossRef]
- Yıldırım, Y.; Topkara, E.; Biswas, A.; Triki, H.; Ekici, M.; Guggilla, P.; Khan, S.; Belic, M.R. Cubic–quartic optical soliton perturbation with Lakshmanan–Porsezian–Daniel model by sine-Gordon equation approach. J. Opt. 2021, 50, 322–329. [Google Scholar] [CrossRef]
- Silberberg, Y. Collapse of optical pulses. Opt. Lett. 1990, 15, 1282–1284. [Google Scholar] [CrossRef]
- Biswas, A. Theory of Optical Bullets. PIER 2002, 36, 21–59. [Google Scholar] [CrossRef]
- Soto-Crespo, J.M.; Grelu, P.; Akhmediev, N. Optical bullets and "rockets" in nonlinear dissipative systems and their transformations and interactions. Opt. Express 2006, 14, 4013–4025. [Google Scholar] [CrossRef]
- Smetanina, E.; Kompanets, V.; Dormidonov, A.; Chekalin, S.; Kandidov, V. Light bullets from near-IR filament in fused silica. Laser Phys. Lett. 2013, 10, 105401. [Google Scholar] [CrossRef]
- Dormidonov, A.; Kompanets, V.; Chekalin, S.; Kandidov, V. Giantically blue-shifted visible light in femtosecond mid-IR filament in fluorides. Opt. Express 2015, 23, 29202–29210. [Google Scholar] [CrossRef]
- Chekalin, S.V.; Kompanets, V.O.; Dormidono, A.; Kandidov, V.P. Light bullet dynamics in uniform dielectrics:(50th anniversary of the Institute of Spectroscopy, Russian Academy of Sciences). Phys.-Uspekhi 2019, 62, 282. [Google Scholar] [CrossRef]
- Shumakova, V.; Ališauskas, S.; Baltuška, A.; Malevich, P.; Voronin, A.; Mitrofanov, A.; Sidorov-Biryukov, D.; Zheltikov, A.; Kartashov, D.; Pugžlys, A. Multi-mJ mid-IR light bullets in air. EPJ Web Conf. 2019, 205, 01004. [Google Scholar] [CrossRef]
- Zaloznaya, E.D.; Kompanets, V.O.; Chekalin, S.V.; Dormidonov, A.E.; Kandidov, V.P. Interference effects in the formation of the light bullet spectrum under axicon focusing. Quantum Electron. 2020, 50, 366. [Google Scholar] [CrossRef]
- Blagoeva, A.; Dinev, S.; Dreischuh, A.; Naidenov, A. Light bullets formation in a bulk media. IEEE J. Quantum Electron. 1991, 27, 2060–2065. [Google Scholar] [CrossRef]
- Malomed, B.A.; Drummond, P.; He, H.; Berntson, A.; Anderson, D.; Lisak, M. Spatiotemporal solitons in multidimensional optical media with a quadratic nonlinearity. Phys. Rev. E 1997, 56, 4725. [Google Scholar] [CrossRef]
- Fibich, G.; Ilan, B. Optical light bullets in a pure Kerr medium. Opt. Lett. 2004, 29, 887–889. [Google Scholar] [CrossRef]
- Belić, M.; Petrović, N.; Zhong, W.P.; Xie, R.H.; Chen, G. Analytical light bullet solutions to the generalized (3+1)-dimensional nonlinear Schrödinger equation. Phys. Rev. Lett. 2008, 101, 123904. [Google Scholar] [CrossRef]
- Petrović, N.Z.; Belić, M.; Zhong, W.P.; Xie, R.H.; Chen, G. Exact spatiotemporal wave and soliton solutions to the generalized (3+1)-dimensional Schrödinger equation for both normal and anomalous dispersion. Opt. Lett. 2009, 34, 1609–1611. [Google Scholar] [CrossRef]
- Minardi, S.; Eilenberger, F.; Kartashov, Y.V.; Szameit, A.; Röpke, U.; Kobelke, J.; Schuster, K.; Bartelt, H.; Nolte, S.; Torner, L.; et al. Three-dimensional light bullets in arrays of waveguides. Phys. Rev. Lett. 2010, 105, 263901. [Google Scholar] [CrossRef]
- Belyaeva, T.; Hasegawa, A.; Kovachev, L.; Serkin, V. 3D soliton-like bullets in nonlinear optics and Bose-Einstein condensates. In Proceedings of the 16th International School on Quantum Electronics: Laser Physics and Applications; SPIE: Bellingham, WA, USA, 2011; Volume 7747, pp. 343–352. [Google Scholar]
- He, J.; Song, Y.; Tiofack, C.; Taki, M. Rogue wave light bullets of the three-dimensional inhomogeneous nonlinear Schrödinger equation. Photonics Res. 2021, 9, 643–648. [Google Scholar] [CrossRef]
- Khalyapin, V.; Bugay, A. Analytical study of light bullets stabilization in the ionized medium. Chaos Solitons Fractals 2022, 156, 111799. [Google Scholar] [CrossRef]
- Radha, R.; Lakshmanan, M. Singularity structure analysis and bilinear form of a (2+1) dimensional non-linear Schrodinger (NLS) equation. Inverse Probl. 1994, 10, L29. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Z.; Dai, Z.; Chen, L. Rogue waves in the (2+1)-dimensional nonlinear Schrodinger equations. Int. J. Numer. Methods Heat Fluid Flow 2015, 25, 656–664. [Google Scholar] [CrossRef]
- Zhang, H.Q.; Liu, X.L.; Wen, L.L. Soliton, breather, and rogue wave for a (2+1)-dimensional nonlinear Schrödinger equation. Z. Für Naturforschung A 2016, 71, 95–101. [Google Scholar] [CrossRef]
- Rao, J.; Wang, L.; Liu, W.; He, J. Rogue-wave solutions of the Zakharov equation. Theor. Math. Phys. 2017, 193, 1783–1800. [Google Scholar] [CrossRef]
- Liu, Y.K.; Li, B. Rogue waves in the (2+1)-dimensional nonlinear Schrödinger equation with a parity-time-symmetric potential. Chin. Phys. Lett. 2017, 34, 010202. [Google Scholar] [CrossRef]
- Wang, J.; Chen, L.; Liu, C. Bifurcations and travelling wave solutions of a (2+1)-dimensional nonlinear Schrödinger equation. Appl. Math. Comput. 2014, 249, 76–80. [Google Scholar] [CrossRef]
- Gao, W.; Hu, Y. Traveling wave solutions of a nonlinear Schrödinger type equation by using first integral method. In Proceedings of the 2017 29th Chinese Control And Decision Conference (CCDC), Chongqing, China, 28–30 May 2017; pp. 6349–6354. [Google Scholar]
- Seadawy, A.R.; Cheemaa, N.; Biswas, A. Optical dromions and domain walls in (2+1)-dimensional coupled system. Optik 2021, 227, 165669. [Google Scholar] [CrossRef]
- Hosseini, K.; Sadri, K.; Mirzazadeh, M.; Salahshour, S. An integrable (2+1)-dimensional nonlinear Schrödinger system and its optical soliton solutions. Optik 2021, 229, 166247. [Google Scholar] [CrossRef]
- Çankal, P.D.; Yaşar, E. Optical soliton solutions to a (2+1) dimensional Schrödinger equation using a couple of integration architectures. Appl. Math. Nonlinear Sci. 2021, 6, 381–396. [Google Scholar] [CrossRef]
- Borzykh, A.V. The Hirota Method and Soliton Solutions to the Multidimensional Nonlinear Schrodinger Equation. Sib. Math. J. 2002, 43, 212–214. [Google Scholar] [CrossRef]
- Zhang, J.; Shen, S. Exact solutions of some nonlinear evolution systems. Phys. Lett. A 2006, 355, 465–467. [Google Scholar] [CrossRef]
- Wazwaz, A.M. The tanh method for traveling wave solutions of nonlinear equations. Appl. Math. Comput. 2004, 154, 713–723. [Google Scholar] [CrossRef]
- Zayed, E.; Gepreel, K.A. The (G′/G)-expansion method for finding traveling wave solutions of nonlinear partial differential equations in mathematical physics. J. Math. Phys. 2009, 50, 013502. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Ghafri, K.S.; Krishnan, E.V.; Khan, S.; Biswas, A. Optical Bullets and Their Modulational Instability Analysis. Appl. Sci. 2022, 12, 9221. https://doi.org/10.3390/app12189221
Al-Ghafri KS, Krishnan EV, Khan S, Biswas A. Optical Bullets and Their Modulational Instability Analysis. Applied Sciences. 2022; 12(18):9221. https://doi.org/10.3390/app12189221
Chicago/Turabian StyleAl-Ghafri, Khalil S., Edamana V. Krishnan, Salam Khan, and Anjan Biswas. 2022. "Optical Bullets and Their Modulational Instability Analysis" Applied Sciences 12, no. 18: 9221. https://doi.org/10.3390/app12189221
APA StyleAl-Ghafri, K. S., Krishnan, E. V., Khan, S., & Biswas, A. (2022). Optical Bullets and Their Modulational Instability Analysis. Applied Sciences, 12(18), 9221. https://doi.org/10.3390/app12189221