Influence of Different Treatments and Conditions on Optical Properties of Monolithic Zirconia: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Focused Question
2.3. Information Sources and Search Strategy
2.4. Article Selection Procedure
2.5. Data Extraction Process
2.6. Quality Assessment
3. Results
3.1. Study Selection
3.2. Primary Characteristics of Included Studies
3.3. Optical Properties Outcomes
3.4. Quality Assessment Outcome
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hajhamid, B.; Alfrisany, N.; Somogyi-Ganss, E. The effect of accelerated aging on crystalline structures and optical properties of different monolithic zirconia: A qualitative systematic review. Dent. Mater. 2022, 38, 569–586. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.L.; Buciumeanu, M.; Silva, F.S.; Souza, J.C.; Nascimento, R.M.; Motta, F.V.; Henriques, B. Tribological behavior of zirconia reinforced glass-ceramic composites in artificial saliva. Tribol. Int. 2016, 103, 379–387. [Google Scholar] [CrossRef]
- Piconi, C.; Maccauro, G. Zirconia as a ceramic biomaterial. Biomaterials 1999, 20, 1–25. [Google Scholar] [CrossRef]
- Bergamo, E.T.P.; da Silva, W.; Cesar, P.F.; Del Bel Cury, A. Fracture load and phase transformation of monolithic zirconia crowns submitted to different aging protocols. Oper. Dent. 2016, 41, E118–E130. [Google Scholar] [CrossRef] [PubMed]
- Christel, P.; Meunier, A.; Heller, M.; Torre, J.; Peille, C. Mechanical properties and short-term in vivo evaluation of yttrium-oxide-partially-stabilized zirconia. J. Biomed. Mater. Res. 1989, 23, 45–61. [Google Scholar] [CrossRef]
- Tsalouchou, E.; Cattell, M.J.; Knowles, J.C.; Pittayachawan, P.; McDonald, A. Fatigue and fracture properties of yttria partially stabilized zirconia crown systems. Dent. Mater. 2008, 24, 308–318. [Google Scholar] [CrossRef]
- Att, W.; Kurun, S.; Gerds, T.; Strub, J.R. Fracture resistance of single-tooth implant-supported all-ceramic restorations: An in vitro study. J. Prosthet. Dent. 2006, 95, 111–116. [Google Scholar] [CrossRef]
- Pjetursson, B.E.; Sailer, I.; Makarov, N.A.; Zwahlen, M.; Thoma, D.S. All-ceramic or metal-ceramic tooth-supported fixed dental prostheses (FDPs)? A systematic review of the survival and complication rates. Part II: Multiple-unit FDPs. Dent. Mater. 2015, 31, 624–639. [Google Scholar] [CrossRef]
- Schley, J.S.; Heussen, N.; Reich, S.; Fischer, J.; Haselhuhn, K.; Wolfart, S. Survival probability of zirconia-based fixed dental prostheses up to 5 yr: A systematic review of the literature. Eur. J. Oral Sci. 2010, 118, 443–450. [Google Scholar] [CrossRef]
- Sax, C. 10-year clinical outcomes of fixed dental prostheses with zirconia frameworks. Int. J. Comput. Dent. 2011, 14, 183–202. [Google Scholar]
- Zhang, Y. Making yttria-stabilized tetragonal zirconia translucent. Dent. Mater. 2014, 30, 1195–1203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beuer, F.; Stimmelmayr, M.; Gueth, J.-F.; Edelhoff, D.; Naumann, M. In vitro performance of full-contour zirconia single crowns. Dent. Mater. 2012, 28, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Johansson, C.; Kmet, G.; Rivera, J.; Larsson, C.; Vult von Steyern, P. Fracture strength of monolithic all-ceramic crowns made of high translucent yttrium oxide-stabilized zirconium dioxide compared to porcelain-veneered crowns and lithium disilicate crowns. Acta Odontol. Scand. 2014, 72, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Stawarczyk, B.; Keul, C.; Eichberger, M.; Figge, D.; Edelhoff, D.; Lümkemann, N. Three generations of zirconia: From veneered to monolithic. Part I. Quintessence Int. 2017, 48, 369–380. [Google Scholar] [PubMed]
- Shahmiri, R.; Standard, O.C.; Hart, J.N.; Sorrell, C.C. Optical properties of zirconia ceramics for esthetic dental restorations: A systematic review. J. Prosthet. Dent. 2018, 119, 36–46. [Google Scholar] [CrossRef]
- Tabatabaian, F. Color aspect of monolithic zirconia restorations: A review of the literature. J. Prosthodont. 2019, 28, 276–287. [Google Scholar] [CrossRef]
- Baldissara, P.; Wandscher, V.F.; Marchionatti, A.M.E.; Parisi, C.; Monaco, C.; Ciocca, L. Translucency of IPS e. max and cubic zirconia monolithic crowns. J. Prosthet. Dent. 2018, 120, 269–275. [Google Scholar] [CrossRef]
- Zadeh, P.N.; Lümkemann, N.; Sener, B.; Eichberger, M.; Stawarczyk, B. Flexural strength, fracture toughness, and translucency of cubic/tetragonal zirconia materials. J. Prosthet. Dent. 2018, 120, 948–954. [Google Scholar] [CrossRef]
- Zhang, Y.; Lawn, B. Novel zirconia materials in dentistry. J. Dent. Res. 2018, 97, 140–147. [Google Scholar] [CrossRef]
- Basso, G.; Kodama, A.; Pimentel, A.; Kaizer, M.; Bona, A.D.; Moraes, R.; Boscato, N. Masking colored substrates using monolithic and bilayer CAD-CAM ceramic structures. Oper. Dent. 2017, 42, 387–395. [Google Scholar] [CrossRef]
- Sagirkaya, E.; Arikan, S.; Sadik, B.; Kara, C.; Karasoy, D.; Cehreli, M. A randomized, prospective, open-ended clinical trial of zirconia fixed partial dentures on teeth and implants: Interim results. Int. J. Prosthodont 2012, 25, 221–231. [Google Scholar] [PubMed]
- Kurbad, A. Microveneering technique for esthetic enhancement of monolithic zirconia restorations Die ästhetische Optimierung monolithischer Strukturen aus Zirkonoxid mittels „Micro-Veneering“. Int. J. Comput. Dent. 2016, 19, 165–178. [Google Scholar] [PubMed]
- Raut, A.; Rao, P.L.; Ravindranath, T. Zirconium for esthetic rehabilitation: An overview. Indian J. Dent. Res. 2011, 22, 140–143. [Google Scholar] [CrossRef] [PubMed]
- Walczak, K.; Meibner, H.; Range, U.; Sakkas, A.; Boening, K.; Wieckiewicz, M.; Konstantinidis, I. Translucency of zirconia ceramics before and after artificial aging. J. Prosthodont. 2019, 28, e319–e324. [Google Scholar] [CrossRef] [PubMed]
- Tabatabaian, F.; Dalirani, S.; Namdari, M. Effect of thickness of zirconia ceramic on its making ability: An in vitro study. J. Prosthodont. 2019, 28, 666–671. [Google Scholar] [CrossRef] [PubMed]
- Tabatabaian, F.; Shabani, S.; Namdari, M.; Sadeghpour, K. Masking ability of a zirconia ceramic on composite resin on substrate shades. J. Prosthet. Res. 2017, 14, 389–394. [Google Scholar] [CrossRef]
- Rosentritt, M.; Rembs, A.; Behr, M.; Hahnel, S.; Preis, V. In vitro performance of implant-supported monolithic zirconia crowns: Influence of patient-specific tooth-coloured abutments with titanium adhesive bases. J. Dent. 2015, 43, 839–845. [Google Scholar] [CrossRef]
- Sulaiman, T.A.; Abdulmajeed, A.A.; Donovan, T.E.; Ritter, A.V.; Valittu, P.K.; Narhi, T.O.; Lassila, L.V. Optical properties and light irradiance of monolithic zirconia at variable thicknesses. Dent. Mater. 2015, 31, 1180–1187. [Google Scholar] [CrossRef]
- Sulaiman, T.A.; Abdulmajeed, A.A.; Donovan, T.E.; Valittu, P.K.; Narhi, T.O.; Lassila, L.V. The effect of staining and vacuum sintering on optical and mechanical properties of partially and fully stabilized monolithic zirconia. Dent. Mater. 2015, 34, 605–610. [Google Scholar] [CrossRef]
- Malkondu, O.; Tinastepe, N.; Kazazoglu, E. Influence of type of cement on the color and translucency of monolithic zirconia. J. Prosthet. Dent. 2016, 116, 902–908. [Google Scholar] [CrossRef]
- Alp, G.; Subasi, M.G.; Seghi, R.R.; Johnston, W.M.; Yilmaz, B. Effect of shading technique and thickness on color stability and translucency of new generation translucent zirconia. J. Dent. 2018, 73, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Barão, V.A.R.; Gennari-Filho, H.; Goiato, M.C.; dos Santos, D.M.; Pesqueira, A.A. Factors to achieve aesthetics in all-ceramic restorations. J. Craniofac. Surg. 2010, 21, 2007–2012. [Google Scholar] [CrossRef] [PubMed]
- Agingu, C.; Jiang, N.-w.; Cheng, H.; Yu, H. Effect of different coloring procedures on the aging behavior of dental monolithic zirconia. J. Spectrosc. 2018, 2018, 2137091. [Google Scholar] [CrossRef]
- Kelch, M.; Schulz, J.; Edelhoff, D.; Sener, B.; Stawarczyk, B. Impact of different pretreatments and aging procedures on the flexural strength and phase structure of zirconia ceramics. Dent. Mater. 2019, 35, 1439–1449. [Google Scholar] [CrossRef] [PubMed]
- Moqbel, N.M.; Al-Akhali, M.; Wille, S.; Kern, M. Influence of aging on biaxial flexural strength and hardness of translucent 3Y-TZP. Materials 2019, 13, 27. [Google Scholar] [CrossRef] [PubMed]
- Alghazzawi, T.F. The effect of extended aging on the optical properties of different zirconia materials. J. Prosthodont. Res. 2017, 61, 305–314. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef]
- Miller, S.A.; Forrest, J.L. Enhancing your practice through evidence-based decision making: PICO, learning how to ask good questions. J. Evid.-Based Dent. Pract. 2001, 1, 136–141. [Google Scholar] [CrossRef]
- Faggion, C.M., Jr. Guidelines for reporting pre-clinical in vitro studies on dental materials. J. Evid.-Based Dent. Pract. 2012, 12, 182–189. [Google Scholar] [CrossRef]
- Kurt, M.; Bal, B.T. Effects of accelerated artificial aging on the translucency and color stability of monolithic ceramics with different surface treatments. J. Prosthet. Dent. 2019, 121, 712.e1–712.e8. [Google Scholar] [CrossRef]
- Lümkemann, N.; Stawarczyk, B. Impact of hydrothermal aging on the light transmittance and flexural strength of colored yttria-stabilized zirconia materials of different formulations. J. Prosthet. Dent. 2021, 125, 518–526. [Google Scholar] [CrossRef]
- Corcodel, N.; Herpel, C.; Seceleanu, I.; Rion, K.; Hassel, A.J.; Rammelsberg, P. Effect of grinding adjustments on the color of monolithic zirconia. J Prosthet Dent, 2021; in press. [Google Scholar]
- Farzin, M.; Ansarifard, E.; Taghva, M.; Imanpour, R. Effect of external staining on the optical properties and surface roughness of monolithic zirconia of different thicknesses. J. Prosthet. Dent. 2021, 126, 687.e1–687.e8. [Google Scholar] [CrossRef] [PubMed]
- Sehovic, E.; Ioannidis, A.; Hämmerle, C.H.; Özcan, M.; Mühlemann, S. Effect of tooth brush abrasion on the color, gloss and surface roughness of internally and externally stained monolithic ceramic materials. J. Prosthodont. Res. 2022, 66, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Tavangar, M.S.; Mousavipour, E.; Ansarifard, E. The effect of bleaching on the optical and physical properties of externally stained monolithic zirconia. Clin. Exp. Dent. Res. 2021, 7, 861–867. [Google Scholar] [CrossRef]
- Raneem, A.S.; Ragad, A.M.; Yasmeen, A.A.; Alofi, S.A. Effect of artificial gastric acid and brushing on the optical properties and surface hardness of colored zirconia. Int. J. Med. Dent. 2021, 25, 49–54. [Google Scholar]
- Habib, A.W.; Aboushelib, M.N.; Habib, N.A. Effect of chemical aging on color stability and surface properties of stained all-ceramic restorations. J. Esthet. Restor. Dent. 2021, 33, 636–647. [Google Scholar] [CrossRef]
- Herpel, C.; Rammelsberg, P.; Rues, S.; Zenthöfer, A.; Seceleanu, I.; Corcodel, N. Color stability of individually stained monolithic zirconia following occlusal adjustment. J. Esthet. Restor. Dent. 2021, 33, 387–393. [Google Scholar] [CrossRef]
- Lee, W.-F.; Iwasaki, N.; Peng, P.-W.; Takahashi, H. Effect of toothbrushing on the optical properties and surface roughness of extrinsically stained high-translucency zirconia. Clin. Oral Investig. 2022, 26, 3041–3048. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, S.-H.; Han, J.-S.; Yeo, I.-S.L.; Yoon, H.-I. Optical and surface properties of monolithic zirconia after simulated toothbrushing. Materials 2019, 12, 1158. [Google Scholar] [CrossRef]
- Mühlemann, S.; Stromeyer, S.; Ioannidis, A.; Attin, T.; Hämmerle, C.H.; Özcan, M. Change in Color and Gloss Parameters of Stained Monolithic Resin-Ceramic CAD/CAM Materials After Simulated Aging: An In Vitro Study. Int. J. Prosthodont 2021, 34, 79–87. [Google Scholar] [CrossRef]
- Fathy, S.M.; El-Fallal, A.A.; El-Negoly, S.A.; El Bedawy, A.B. Translucency of monolithic and core zirconia after hydrothermal aging. Acta Biomater. Odontol. Scand. 2015, 1, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Baldissara, P.; Llukacej, A.; Ciocca, L.; Valandro, F.L.; Scotti, R. Translucency of zirconia copings made with different CAD/CAM systems. J. Prosthet. Dent. 2010, 104, 6–12. [Google Scholar] [CrossRef]
- Heffernan, M.J.; Aquilino, S.A.; Diaz-Arnold, A.M.; Haselton, D.R.; Stanford, C.M.; Vargas, M.A. Relative translucency of six all-ceramic systems. Part I: Core materials. J. Prosthet. Dent. 2002, 88, 4–9. [Google Scholar] [PubMed]
- Kulkarni, A.; Rothrock, J.; Thompson, J. Impact of gastric acid induced surface changes on mechanical behavior and optical characteristics of dental ceramics. J. Prosthodont. 2020, 29, 207–218. [Google Scholar] [CrossRef]
- Volpato, C.Â.M.; Cesar, P.F.; Bottıno, M.A. Influence of accelerated aging on the color stability of dental zirconia. J. Esthet. Restor. Dent. 2016, 28, 304–312. [Google Scholar] [CrossRef]
- Dikicier, S.; Ayyildiz, S.; Ozen, J.; Sipahi, C. Effect of varying core thicknesses and artificial aging on the color difference of different all-ceramic materials. Acta Odontol. Scand. 2014, 72, 623–629. [Google Scholar] [CrossRef]
- Pires-de, F.d.C.P.; Casemiro, L.A.; Garcia, L.d.F.R.; Cruvinel, D.R. Color stability of dental ceramics submitted to artificial accelerated aging after repeated firings. J. Prosthet. Dent. 2009, 101, 13–18. [Google Scholar]
- Ertan, A.; Şahin, E. Colour stability of low fusing porcelains: An in vitro study. J. Oral Rehabil. 2005, 32, 358–361. [Google Scholar] [CrossRef]
- Atay, A.; Oruç, S.; Ozen, J.; Sipahi, C. Effect of accelerated aging on the color stability of feldspathic ceramic treated with various surface treatments. Quintessence Int. 2008, 39, 603–609. [Google Scholar]
- Harada, K.; Raigrodski, A.J.; Chung, K.-H.; Flinn, B.D.; Dogan, S.; Mancl, L.A. A comparative evaluation of the translucency of zirconias and lithium disilicate for monolithic restorations. J. Prosthet. Dent. 2016, 116, 257–263. [Google Scholar] [CrossRef]
- Harianawala, H.H.; Kheur, M.G.; Apte, S.K.; Kale, B.B.; Sethi, T.S.; Kheur, S.M. Comparative analysis of transmittance for different types of commercially available zirconia and lithium disilicate materials. J. Adv. Prosthodont. 2014, 6, 456–461. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-K.; Kim, S.-H. Effect of the number of coloring liquid applications on the optical properties of monolithic zirconia. Dent. Mater. 2014, 30, e229–e237. [Google Scholar] [CrossRef] [PubMed]
Study | Sample Cleaning Medium | Study Group and Sample Size | Material Composition | Optical Properties Assessed | Color Assessment Method |
---|---|---|---|---|---|
(Kurt et al., 2019) [40] Turkey | Distilled water |
| ZZ: ZrO2 (92.27); Y2O3 (4–6); Al2O3 (<1); SiO2 (0.02); Fe2O3 (0.01); Na2O (0.04) IPS: SiO2 (57–80); Li2O (11–19); K2O (0–13); P2O5 (0–11); ZrO2 (0–8); ZnO (0–8); other oxides and ceramic pigments (0–10) | Color stability Translucency |
|
(Lümkemann et al., 2021) [41] Germany | 96% ethanol |
| 3Y-TZP0.25: ZrO2 + HfO2 + Y2O3 (>99.0); Y2O3 (4.5–5.6); HfO2 (<0.5); Al2O3 (<0.5); other oxides (<0.5) 3Y-TZP0.05: ZrO2 + HfO2 + Y2O3 (≥99.0); Y2O3 (4.5–5.6); HfO2 (≤5); Al2O3 (≤0.5); other oxides (≤1) 5Y-TZP: ZrO2 + HfO2 + Y2O3 (>99.0); Y2O3 (9.15–9.55); HfO2 (≤5); Al2O3 (≤0.5); other oxides (≤1) 4Y-TZP 4Y-TZPspeed: ZrO2 + HfO2 + Y2O3 (≥99.0); Y2O3 (6.7–7.0); HfO2 (≤5); Al2O3 (≤0.5); other oxides (≤1) pre4Y-TZPspeed: ZrO2 + HfO2 + Y2O3 (≥99); Y2O3 (6.7–7.2); HfO2 (≤5); Al2O3 (≤0.5); other oxides (≤1) LiSi2: SiO2 (57–80); Li2O (11–19); K2O (0–13); P2O5 (0–11); ZrO2 (0–8); ZnO (0–8); other oxides and ceramic pigments (0–10) | Translucency |
|
(Corcodel et al., 2021) [42] Germany | N/R |
| MZR: Y2O3 (5%); HfO2 (<3%); <2% Al2O3; SiO2, and other oxides | Color stability |
|
(Farzin et al., 2021) [43] Iran | 99% isopropanol |
| NR | Color stability Translucency Surface roughness |
|
(Sehovic et al., 2022) [44] Switzerland | Distilled water |
| PFM: N/A PC: Li2Si2O5 (70%); SiO2 (57–80%); Li2O (11–19%); K2O (0–13%); P2O5 (0–11%); ZrO2 (0–8%); ZnO (0–8%); other oxides and ceramic pigments (0–10%) MC: SiO2 and other components: Li2O, K2O, MgO, Al2O3, P2O5 & other oxides ZR: ≥99% ZrO2 + HfO2 + Y2O3; Y2O3 > 4.5 ≤ 6.0%; HfO2 ≤ 5.0%; Al2O3 + other oxides ≤ 1.0% | Color stability Gloss Surface roughness |
|
(Tavangar et al., 2021) [45] Iran | Distilled water |
| MZR: Cubic zirconia system; 5Y-TZP; super high translucent Office bleaching agent: Opalescence Boost 40% H2O2 Home bleaching agent: Opalescence 20% CH6N2O3 | Color stability Translucency Surface roughness Surface hardness |
|
(Raneem et al., 2021) [46] Saudi Arabia | Distilled water |
| NR | Color stability Gloss Surface hardness |
|
(Habib et al., 2021) [47] Egypt | Distilled water |
| NR | Color stability Translucency Surface roughness | ∙ CIELAB system∙ Spectrophotometer (Cary 5000 Spectrophotometer, Agilent Technologies, Santa Clara, CA, USA) |
(Herpel et al., 2021) [48] Germany | 70% alcohol solution |
| White ZR: ZrO2; Y2O3 (5%); HfO2 (<3%); Al2O3; SiO2 (<1%). | Color stability |
|
(Lee et al., 2022) [49] Taiwan | NR |
| ZR with 5 mol% yttria | Color stability Translucency Surface roughness |
|
(Lee et al., 2019) [50] Korea | Distilled water |
| MZR: ZrO2; Y2O3 (4–6%); HfO2 (5%); Al2O3 (1%); other oxides | Color stability Translucency Gloss Surface roughness |
|
(Mühlemann et al., 2021) [51] Switzerland | Distilled water |
| CER: 71 wt% nanoceramic fillers (silica 20 nm, barium glass 300 nm); Acrylate polymer network. ENA: 86 wt% (65 vol%) nanoceramic fillers (zirconia filler 4–11 nm, silica filler 20 nm, aggregated zirconia/silica cluster filler); 10 wt% (35 vol%) acrylate polymer matrix. LVU: 80 wt% (65 vol%) nanoceramic fillers (zirconia filler 4–11 nm, silica filler 20 nm, aggregated zirconia/silica cluster filler); 10 wt% (35 vol%) acrylate polymer matrix. VM2: <20 wt% feldspathic particles (average particle size 4 μm); >80 wt% glass matrix | Color stability Surface gloss |
|
Outcomes | |||||
---|---|---|---|---|---|
Study | Color Stability Outcomes (Mean ± SD) | Translucency (Mean ± SD) | Gloss (Mean ± SD) | Treatment (s) | General Outcomes |
(Kurt et al., 2019) [40] | ZZ (p = 0.005 *): G: 4.91 ± 1.23 R: 4.59 ± 1.42 P: 6.03 ± 0.78 IPS (p = 0.147): G: 0.36 ± 0.19 R: 0.37 ± 0.31 P: 0.61 ± 0.36 | ZZ (p = 0.588): G: −0.39 ± 0.57 R: −0.16 ± 0.36 P: −0.02 ± 0.65 IPS (p = 0.305): G: −0.16 ± 0.26 R: −0.10 ± 0.62 P: −0.20 ± 0.34 | N/A | Aging (accelerated artificial) |
|
(Lümkemann et al., 2021) [41] | N/A | 3Y-TZP0.25: 7.2 ± 0.5 (p = 0.091) 3Y-TZP0.05: 6.5 ± 0.4 (p = 0.775) 5Y-TZP: 19.4 ± 0.7 (p = 0.370) 4Y-TZP: 13.6 ± 0.7 (p = 0.619) 4Y-TZPspeed: 0.1 ± 0.0 (p < 0.001 *) pre4Y-TZPspeed: 9.0 ± 1.2 (p = 0.006 *) LiSi2: 29.2 ± 1.7 (N/A) | N/A | Aging (hydrothermal) |
|
(Corcodel et al., 2021) [42] | W-A2: 13.73 ± 0.45 (p > 0.05) W-A3.5: 13.53 ± 1.79 (p > 0.05) W-A4: 14.48 ± 0.28 (p > 0.05) P-A2: 2.39 ± 0.22 (p > 0.05) P-A3.5: 2.28 ± 0.28 (p > 0.05) P-A4: 2.64 ± 0.26 (p > 0.05) | N/A | N/A | Grinding |
|
(Farzin et al., 2021) [43] | Super-high cubeX2: L-V: 3.88 ± 0.0 (p < 0.001 *) SPS-3: 9.32 ± 0.01 (p < 0.001 *) High ZX2: L-V: 3.46 ± 0.03 (p < 0.001 *) SPS-3: 9.01 ± 0.02 (p < 0.001 *) | Super-high cubeX2: L-V: 16.20 ± 0.45 (p > 0.05) SPS-3: 14.33 ± 0.68 (p > 0.05) High ZX2: L-V: 11.76 ± 0.33 (p > 0.05) SPS-3: 10.18 ± 1.02 (p > 0.05) | N/A | External staining |
|
(Sehovic et al., 2022) [44] | PFM: 0.29 ± 0.09 (p = 0.002 *) PC: 0.73 ± 0.38 (p = 0.003 *) MC: 0.69 ± 0.71 (p < 0.001 *) ZR: 0.41 ± 0.22 (p = 0.003 *) | N/A | PFM: 48.32 ± 2.47 (p < 0.001 *) PC: 48.32 ± 2.47 (p = 0.003 *) MC: 51.51 ± 1.02 (p = 0.002 *) ZR: 55.78 ± 0.43 (p = 0.002 *) | Toothbrushing |
|
(Tavangar et al., 2021) [45] | OV: 2.06 ± 0.402 (p > 0.05) OY: 2.71 ± 0.568 (p > 0.05) HV: 2.28 ± 0.378 (p > 0.05) HY: 2.81 ± 0.398 (p > 0.05) | OV: −0.724 ± 0.74 (p > 0.05) OY: 0.782 ± 0.39 (p > 0.05) HV: −1.019 ± 0.98 (p > 0.05) HY: 0.112 ± 1.15 (p > 0.05) | N/A | Bleaching |
|
(Raneem et al., 2021) [46] | Control (p > 0.05): Monochromatic ZR: 0.12 ± 0.04 Colored ZR: 0.12 ± 0.06 Acid (p > 0.05): Monochromatic ZR: 2.91 ± 1.79 Colored ZR: 2.72 ± 1.09 Acid and brushing (p > 0.05): Monochromatic ZR: 3.38 ± 2.30 Colored ZR: 2.01 ± 1.33 | N/A | Control (p > 0.05): Monochromatic ZR: 175.83 ± 7.32 Colored ZR: 178.39 ± 5.93 Acid (p > 0.05): Monochromatic ZR: 185.21 ± 11.26 Colored ZR: 183.49 ± 5.2 Acid and brushing (p > 0.05): Monochromatic ZR: 181.23 ± 10.35 Colored ZR: 182.35 ± 4.33 | Artificial gastric acid Toothbrushing |
|
(Habib et al., 2021) [47] | IPS Ivocolor (p < 0.001*): Mark II: 5.11 Empress CAD: 5.24 e.max CAD: 4.55 ZirCAD LT: 3.87 ZirCAD MT Multi: 4.06 Suprinity: 4.80 VITA Akzent (p > 0.05): Mark II: 5.26 Empress CAD: 4.17 e.max CAD: 4.88 ZirCAD LT: 3.38 ZirCAD MT Multi: 3.62 Suprinity: 5.42 | IPS Ivocolor (p > 0.05): Mark II: 5.1 Empress CAD: 5.2 e.max CAD: 4.5 ZirCAD LT: 3.8 ZirCAD MT Multi: 4.0 Suprinity: 4.7 VITA Akzent (p > 0.05): Mark II: 5.5 Empress CAD: 4.1 e.max CAD: 4.8 ZirCAD LT: 3.3 ZirCAD MT Multi: 3.6 Suprinity: 5.4 | N/A | Aging (chemical) |
|
(Herpel et al., 2021) [48] | V-A2: 13.7 ± 0.4 (p < 0.05 *) V-A3.5: 13.5 ± 1.7 (p < 0.05 *) V-A4: 14.5 ± 0.3 (p < 0.05 *) | N/A | N/A | Occlusal adjustment |
|
(Lee et al., 2022) [49] | 5Y-PSZ (control): 1.1 (p > 0.05) VT: 1.0 (p > 0.05) SH: 1.5 (p > 0.05) IV: 0.8 (p > 0.05) GL: 0.9 (p > 0.05) | 5Y-PSZ: 10.45 ± 0.76 (p = 0.28) VT: 5.94 ± 0.72 (p = 0.28) SH: 4.07 ± 0.35 (p = 0.49) IV: 5.67 ± 1.27 (p = 0.03 *) GL: 10.91 ± 0.66 (p = 0.27) | N/A | Toothbrushing |
|
(Lee et al., 2019) [50] | PDW: 0.3158 ± 0.1184 (p > 0.05) PC: 0.7164 ± 0.1670 (p < 0.001 *) PF: 0.7498 ± 0.2881 (p > 0.05) PW: 0.8106 ± 0.1946 (p > 0.05) GDW: 0.1953 ± 0.0690 (p > 0.05) GC: 0.301 ± 0.1687 (p < 0.001 *) GF: 0.3051 ± 0.1735 (p < 0.001 *) GW: 0.4846 ± 0.1600 (p < 0.001 *) | PDW: 4.7731 ± 0.3186 (p > 0.05) PC: 4.7807 ± 0.2615 (p > 0.05) PF: 4.7464 ± 0.3464 (p > 0.05) PW: 4.7179 ± 0.4237 (p > 0.05) GDW: 4.7753 ± 0.2633 (p > 0.05) GC: 4.7831 ± 0.2908 (p > 0.05) GF: 4.6297 ± 0.2552 (p > 0.05) GW: 4.6115 ± 0.2533 (p > 0.05) | PDW: 102.4 ± 19.98 (p > 0.05) PC: 101.33 ± 14.68 (p > 0.05) PF: 93.97 ± 19.32 (p > 0.05) PW: 86.6 ± 20.14 (p > 0.05) GDW: 85.2 ± 1.55 (p > 0.05) GC: 85.22 ± 1.13 (p > 0.05) GF: 83.2 ± 2.99 (p > 0.05) GW: 73.24 ± 5.98 (p > 0.05) | Toothbrushing |
|
(Mühlemann et al., 2021) [51] | Stained samples: CER: 3.35 ± 0.53 (p < 0.001 *) ENA: 0.31 ± 0.15 (p < 0.004 *) LVU: 1.27 ± 0.26 (p < 0.004 *) VM2: 0.62 ± 0.51 (p < 0.001 *) Polished samples: CER: 0.88 ± 0.20 (p < 0.004 *) ENA: 0.23 ± 0.04 (p < 0.004 *) LVU: 0.35 ± 0.20 (p < 0.004 *) VM2: 0.32 ± 0.39 (p < 0.001 *) | N/A | Stained samples: CER: 32.7 ± 4.4 (p < 0.001 *) ENA: 35.0 ± 4.3 (p < 0.001 *) LVU: 21.4 ± 2.7 (p < 0.001 *) VM2: 28.6 ± 3.4 (p < 0.001 *) Polished samples: CER: 52.8 ± 0.5 (p < 0.001 *) ENA: 47.0 ± 2.3 (p = 0.024 *) LVU: 50.3 ± 3.1 (p < 0.001 *) VM2: 51.6 ± 0.4 (p < 0.001 *) | Aging |
|
Items | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Study | Structured Abstract | Background (Introduction) | Objectives (Introduction) | Intervention (Methods) | Outcomes (Methods) | Sample Size (Methods) | Sequence Generation (Methods) | Allocation Concealment (Methods) | Implementation (Methods) | Blinding (Methods) | Statistical Anayis (Methods) | Outcomes (Results) | Limitations (Discussion) | Funding | Protocol | Score | Overall Quality |
(Kurt et al., 2019) [40] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | X | X | X | X | ✓ | ✓ | ✓ | X | X | 9 | Moderate |
(Lümkemann et al., 2021) [41] | ✓ | ✓ | ✓ | ✓ | ✓ | X | X | X | X | X | ✓ | ✓ | X | ✓ | X | 8 | Moderate |
(Corcodel et al., 2021) [42] | ✓ | ✓ | ✓ | ✓ | ✓ | X | X | X | X | X | ✓ | ✓ | ✓ | ✓ | X | 9 | Moderate |
(Farzin et al., 2021) [43] | ✓ | ✓ | ✓ | ✓ | ✓ | X | X | X | X | X | ✓ | ✓ | ✓ | ✓ | ✓ | 10 | Moderate |
(Sehovic et al., 2022) [44] | ✓ | ✓ | ✓ | ✓ | ✓ | X | ✓ | X | X | X | ✓ | ✓ | ✓ | ✓ | X | 10 | Moderate |
(Tavangar et al., 2021) [45] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | X | X | X | ✓ | ✓ | ✓ | ✓ | ✓ | 12 | High |
(Raneem et al., 2021) [46] | ✓ | ✓ | ✓ | ✓ | ✓ | X | ✓ | X | X | X | ✓ | ✓ | ✓ | ✓ | X | 10 | Moderate |
(Habib et al., 2021) [47] | ✓ | ✓ | ✓ | ✓ | ✓ | X | X | X | X | X | ✓ | ✓ | ✓ | ✓ | ✓ | 10 | Moderate |
(Herpel et al., 2021) [48] | ✓ | ✓ | ✓ | ✓ | ✓ | X | X | X | X | X | ✓ | ✓ | ✓ | ✓ | X | 9 | Moderate |
(Lee et al., 2022) [49] | ✓ | ✓ | ✓ | ✓ | ✓ | X | X | X | X | X | ✓ | ✓ | ✓ | X | X | 8 | Moderate |
(Lee et al., 2019) [50] | X | ✓ | ✓ | ✓ | ✓ | X | ✓ | X | X | X | ✓ | ✓ | ✓ | ✓ | X | 9 | Moderate |
(Mühlemann et al., 2021) [51] | ✓ | ✓ | ✓ | ✓ | ✓ | X | ✓ | X | X | X | ✓ | ✓ | ✓ | ✓ | X | 9 | Moderate |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alnassar, T.M. Influence of Different Treatments and Conditions on Optical Properties of Monolithic Zirconia: A Systematic Review. Appl. Sci. 2022, 12, 9226. https://doi.org/10.3390/app12189226
Alnassar TM. Influence of Different Treatments and Conditions on Optical Properties of Monolithic Zirconia: A Systematic Review. Applied Sciences. 2022; 12(18):9226. https://doi.org/10.3390/app12189226
Chicago/Turabian StyleAlnassar, Talal M. 2022. "Influence of Different Treatments and Conditions on Optical Properties of Monolithic Zirconia: A Systematic Review" Applied Sciences 12, no. 18: 9226. https://doi.org/10.3390/app12189226
APA StyleAlnassar, T. M. (2022). Influence of Different Treatments and Conditions on Optical Properties of Monolithic Zirconia: A Systematic Review. Applied Sciences, 12(18), 9226. https://doi.org/10.3390/app12189226