Passive Array-Invariant-Based Localization for a Small Horizontal Array Using Two-Dimensional Deconvolution
Abstract
:1. Introduction
2. Extracting Green’s Function
3. 2D Deconvolution for Obtaining Better Beam-Time Migration
3.1. Conventional Plane-Wave Beamforming
3.2. 2D Deconvolution
4. Simulation
5. Experiment
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hotkani, M.M.; Bousquet, J.-F.; Seyedin, S.A.; Martin, B.; Malekshahi, E. Underwater Target Localization Using Opportunistic Ship Noise Recorded on a Compact Hydrophone Array. Acoustics 2021, 3, 611–629. [Google Scholar] [CrossRef]
- Lee, S.; Makris, N.C. The array invariant. J. Acoust. Soc. Am. 2006, 119, 336–351. [Google Scholar] [CrossRef] [PubMed]
- Sabra, K.G.; Song, H.-C.; Dowling, D.R. Ray-based blind deconvolution in ocean sound channels. J. Acoust. Soc. Am. 2010, 127, EL42–EL47. [Google Scholar] [CrossRef] [PubMed]
- Byun, S.; Verlinden, C.; Sabra, K. Blind deconvolution of shipping sources in an acoustic waveguide. J. Acoust. Soc. Am. 2017, 141, 797–807. [Google Scholar] [CrossRef] [PubMed]
- Byun, S.-H.; Byun, G.; Sabra, K.G. Ray-based blind deconvolution of shipping sources using multiple beams separated by alternating projection. J. Acoust. Soc. Am. 2018, 144, 3525–3532. [Google Scholar] [CrossRef] [PubMed]
- Cho, C.; Song, H.C.; Hodgkiss, W.S. Robust source-range estimation using the array/waveguide invariant and a vertical array. J. Acoust. Soc. Am. 2016, 139, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Song, H.C.; Cho, C. Array invariant-based source localization in shallow water using a sparse vertical array. J. Acoust. Soc. Am. 2017, 141, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Byun, G.; Kim, J.S.; Cho, C.; Song, H.C.; Byun, S.-H. Array invariant-based ranging of a source of opportunity. J. Acoust. Soc. Am. 2017, 142, EL286–EL291. [Google Scholar] [CrossRef] [PubMed]
- Byun, G.; Song, H.C.; Byun, S.-H. Localization of multiple ships using a vertical array in shallow water. J. Acoust. Soc. Am. 2019, 145, EL528–EL533. [Google Scholar] [CrossRef] [PubMed]
- Gong, Z.; Ratilal, P.; Makris, N.C. Simultaneous localization of mul-tiple broadband non-impulsive acoustic sources in an ocean waveguide using the array invariant. J. Acoust. Soc. Am. 2015, 138, 2649–2667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byun, G.; Song, H.C.; Kim, J.S.; Park, J.S. Real-time tracking of a surface ship using a bottom-mounted horizontal array. J. Acoust. Soc. Am. 2018, 144, 2375–2382. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.C. Deconvolved Conventional Beamforming for a Horizontal Line Array. IEEE J. Ocean. Eng. 2017, 43, 160–172. [Google Scholar] [CrossRef]
- Chi, C.; Li, Z.; Li, Q. Fast Broadband Beamforming Using Nonuniform Fast Fourier Transform for Underwater Real-Time 3-D Acoustical Imaging. IEEE J. Ocean. Eng. 2015, 41, 249–261. [Google Scholar] [CrossRef]
- Chi, C.; Li, Z.; Li, Q. Ultrawideband Underwater Real-Time 3-D Acoustical Imaging with Ultrasparse Arrays. IEEE J. Ocean. Eng. 2016, 42, 1–12. [Google Scholar] [CrossRef]
- Chi, C. Underwater Real-Time 3D Acoustical Imaging: Theory, Algorithm and System Design; Springer: Berlin/Heidelberg, Germany, 2019; Chapter 4. [Google Scholar]
- Blahut, R.E. Theory of Remote Image Formation; Cambridge University Press: Cambridge, MA, USA, 2004; Chapters 9 and 11. [Google Scholar]
- Jensen, F.B.; Kuperman, W.A.; Porter, M.B.; Schmidt, H. Computational Ocean Acoustics; Springer: New York, NY, USA, 2011; Chapters 3 and 5. [Google Scholar]
True Range | Proposed (Estimated Range, Relative Error) | Reference (Estimated Range, Relative Error) |
---|---|---|
1000 m | 1038.7 m, 3.9% | 850.2 m, 15.0% |
1500 m | 1615.1 m, 7.7% | 1216.3 m, 18.9% |
2000 m | 2146.8 m, 7.3% | 2454.3 m, 22.7% |
3000 m | 3232.3 m, 7.7% | 2251.0 m, 24.9% |
True Range | Proposed (Estimated Range, Relative Error) | Reference (Estimated Range, Relative Error) |
---|---|---|
#1 (988.9 m) | 1130.2 m, 14.4% | 1244.3 m, 25.9% |
#2 (718.6 m) | 604.2 m, 15.9% | 535.3 m, 25.3% |
#3 (580.1 m) | 515.2 m, 11.2% | 425.5 m, 26.6% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Chi, C.; Li, Y.; Ju, D.; Huang, H. Passive Array-Invariant-Based Localization for a Small Horizontal Array Using Two-Dimensional Deconvolution. Appl. Sci. 2022, 12, 9356. https://doi.org/10.3390/app12189356
Wang Y, Chi C, Li Y, Ju D, Huang H. Passive Array-Invariant-Based Localization for a Small Horizontal Array Using Two-Dimensional Deconvolution. Applied Sciences. 2022; 12(18):9356. https://doi.org/10.3390/app12189356
Chicago/Turabian StyleWang, Yujie, Cheng Chi, Yu Li, Donghao Ju, and Haining Huang. 2022. "Passive Array-Invariant-Based Localization for a Small Horizontal Array Using Two-Dimensional Deconvolution" Applied Sciences 12, no. 18: 9356. https://doi.org/10.3390/app12189356
APA StyleWang, Y., Chi, C., Li, Y., Ju, D., & Huang, H. (2022). Passive Array-Invariant-Based Localization for a Small Horizontal Array Using Two-Dimensional Deconvolution. Applied Sciences, 12(18), 9356. https://doi.org/10.3390/app12189356