Reduction of Bacterial Pathogens in a Single-Stage Steel Biodigester Co-Digesting Saw Dust and Pig Manure at Psychrophilic Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sources of Samples
2.2. Anaerobic Co-Digestion Process
2.3. Determination of Total Viable Count
2.4. Modelling of the Inactivation of Bacterial Pathogens
2.5. Data Analysis
3. Results
3.1. Total Viable Count (TVC)
3.2. Building of Mathematical Model
4. Discussion
5. Conclusions
6. Limitations of the Study
- It should be stressed that even if the level of indicator pathogens is below the detection limit, this cannot be directly translated to the absence of potential pathogenic risk, due to the occurrence of other pathogens [52].
- The study demonstrates its findings on the inactivation of viable and culturable bacterial pathogens, whereas other bacteria, e.g., spore-forming pathogens (Bacillus, Clostridium, etc.), viable but nonculturable pathogens, as well as pathogenic fungi, which also have significant environmental and public health consequences, were not evaluated. It is challenging and time-consuming to detect all the pathogens in the manure. Nevertheless, zoonotic pathogens should be given more attention as they can be transferred between animals and humans, causing threats to animals and human health [23]. Therefore, this study focussed on a host of zoonotic pathogens commonly used as indicator bacteria.
- Following the aforementioned information, molecular-based techniques should be employed alongside cultural methods with viable bacterial populations via anaerobic digestion so that a wide range of microorganisms are detected as well to give the actual level/concentration (including viable but nonculturable bacteria) of the microorganism occurring in the biodigester.
- The levels of volatile fatty acids and ammonia regarded as inactivation factors were not investigated.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Kleinman, P.J.; Spiegal, S.; Liu, J.; Holly, M.; Church, C.; Ramirez-Avila, J. Managing Animal Manure to Minimize Phosphorus Losses from Land to Water. In Animal Manure: Production, Characteristics, Environmental Concerns and Management; ASA Special Publication 67; Waldrip, H.M., Pagliari, P.H., He, Z., Eds.; ASA and SSSA, 5585 Guilford Rd.: Madison, WI, USA, 2019; pp. 201–228. [Google Scholar]
- Fangueiro, D.; Alvarenga, P.; Fragoso, R. Horticulture and Orchards as New Markets for Manure Valorisation with Less Environmental Impacts. Sustainability 2021, 13, 1436. [Google Scholar] [CrossRef]
- Eleduma, A.F.; Aderibigbe, A.T.B.; Obabire, S.O. Effect of cattle manure on the performances of maize (Zea mays L) grown in forest-savannah transition zone Southwest Nigeria. Int. J. Agric. Sci. Food Technol. 2020, 6, 110–114. [Google Scholar] [CrossRef]
- Wang, Y.; Ghimire, S.; Wang, J.; Dong, R.; Li, Q. Alternative Management Systems of Beef Cattle Manure for Reducing Nitrogen Loadings: A Case-Study Approach. Animals 2021, 11, 574. [Google Scholar] [CrossRef] [PubMed]
- Asfaw, M.D. Effects of animal manures on growth and yield of maize (Zea mays L.). J. Plant. Sci. Phytopathol. 2022, 6, 33–39. [Google Scholar] [CrossRef]
- Orner, K.D.; Cornejo, P.K.; Camacho, D.R.; Alvarez, M.; Camacho-Céspedes, F. Improving Life Cycle Economic and Environmental Sustainability of Animal Manure Management in Marginalized Farming Communities Through Resource Recovery. Envrion. Eng. Sci. 2021, 38, 310–319. [Google Scholar] [CrossRef]
- Ferreira, P.A.A.; Ceretta, C.A.; Lourenzi, C.R.; De Conti, L.; Marchezan, C.; Girotto, E.; Tiecher, T.L.; Palermo, N.M.; Parent, L.-É.; Brunetto, G. Long-Term Effects of Animal Manures on Nutrient Recovery and Soil Quality in Acid Typic Hapludalf under No-Till Conditions. Agronomy 2022, 12, 243. [Google Scholar] [CrossRef]
- Indraratne, S.P.; Spengler, M.; Hao, X. Cattle manure loadings and legacy effects on copper and zinc availability under rainfed and irrigated conditions. Can. J. Soil Sci. 2021, 101, 305–316. [Google Scholar] [CrossRef]
- Sommer, S.G.; Knudsen, L. Impact of Danish Livestock and Manure Management Regulations on Nitrogen Pollution, Crop Production, and Economy. Front. Sustain. 2021, 2, 658231. [Google Scholar] [CrossRef]
- Tilak, L.N.; Santhosh Kumar, M.B.; Manvendra, S.; Niranja. Use of Saw Dust as Fine Aggregate in Concrete Mixture. Int. Res. J. Eng.Technol. 2018, 5, 1249–1253. [Google Scholar]
- Mwango, A.; Kambole, C. Engineering Characteristics and Potential Increased Utilisation of Sawdust Composites in Construction—A Review. J. Build. Constr. Plan. Res. 2019, 7, 59–88. [Google Scholar] [CrossRef] [Green Version]
- Sambe, L.N.; Origbo, B.; Gbande, S.; Ande, P.U. Assessment of wood waste generation and utilization in makurdi metropolis: Implication for sustainable management of forest resources. J. Res. For. Wildl. Environ. 2021, 3, 188–196. [Google Scholar]
- Adegoke, K.A.; Adesina, O.O.; Okon-Akan, O.A.; Adegoke, O.R.; Olabintan, A.B.; Ajala, O.A.; Halimat Olagoke, H.; Maxakato, N.W.; Bello, O.S. Sawdust-biomass based materials for sequestration of organic and inorganic pollutants and potential for engineering applications. Curr. Res. Green Sustain. Chem. 2022, 5, 100274. [Google Scholar] [CrossRef]
- Orelma, H.; Tanaka, A.; Vuoriluoto, M.; Khakalo, A.; Korpela, A. Manufacture of all-wood sawdust-based particle board using ionic liquid-facilitated fusion process. Wood Sci.Technol. 2021, 55, 331–349. [Google Scholar] [CrossRef]
- Milford, A.B.; Le Mouël, C.; Bodirsky, B.L.; Rolinski, S. Drivers of meat consumption. Appetite 2019, 141, 104313. [Google Scholar] [CrossRef]
- World Bank. For Up To 800 Million Rural Poor, a Strong World Bank Commitment to Agriculture. 2014. Available online: https://www.worldbank.org/en/news/feature/2014/11/12/for-upto-800-million-rural-poor-a-strong-world-bank-commitmentto-agriculture (accessed on 20 August 2020).
- Mihelcic, J.R.; Fry, L.M.; Myre, E.A.; Phillips, L.D.; Barkdoll, B.D. Field Guide to Environmental Engineering for Development Workers: Water, Sanitation, and Indoor Air; ASCE: Reston, VA, USA, 2009. [Google Scholar]
- Jiang, Y.; Xie, S.H.; Dennehy, C.; Lawlor, P.G.; Hu, Z.H.; Wu, G.X.; Zhan, X.M.; Gardiner, G.E. Inactivation of pathogens in anaerobic digestion systems for converting biowastes to bioenergy: A review. Renew. Sustain. Energy Rev. 2020, 120, 109654. [Google Scholar] [CrossRef]
- Cornejo, P.K.; Zhang, Q.; Mihelcic, J.R. Quantifying benefits of resource recovery from sanitation provision in a developing world setting. J. Environ. Manag. 2013, 131, 7. [Google Scholar] [CrossRef] [PubMed]
- Lopatto, E.; Choi, J.; Colina, A.; Ma, L.; Howe, A.; Hinsa-Leasure, S. Characterizing the soil microbiome and quantifying antibiotic resistance gene dynamics in agricultural soil following swine CAFO manure application. PLoS ONE 2019, 14, e0220770. [Google Scholar] [CrossRef] [Green Version]
- Rajput, A.A.; Zeshan Sheikh, Z. Effect of inoculum type and organic loading on biogas production of sunflower meal and wheat straw. Sustain. Environ. Res. 2019, 29, 4. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; He, S.; Kang, X.; Sun, Y.; Yuan, Z.; Xing, T.; Guo, Y.; Li, L. Effect of Organic Loading Rate and Temperature on the Anaerobic Digestion of Municipal Solid Waste: Process Performance and Energy Recovery. Front. Energy Res. 2020, 8, 89. [Google Scholar] [CrossRef]
- Lin, M.; Wang, A.; Ren, L.; Qiao, W.; Wandera, S.M.; Dong, R. Challenges of pathogen inactivation in animal manure through anaerobic digestion: A short review. Bioengineered 2022, 13, 1149–1161. [Google Scholar] [CrossRef]
- Liu, X.; Lendormi, T.; Lanoisellé, J.-L. Conventional and Innovative Hygienization of Feedstock for Biogas Production: Resistance of Indicator Bacteria to Thermal Pasteurization, Pulsed Electric Field Treatment, and Anaerobic Digestion. Energies 2021, 14, 1938. [Google Scholar] [CrossRef]
- Akindolire, M.A.; Rama, H.; Roopnarain, A. Psychrophilic anaerobic digestion: A critical evaluation of microorganisms and enzymes to drive the process. Renew. Sustain. Energy Rev. 2022, 161, 112394. [Google Scholar] [CrossRef]
- Uddin, M.M.; Wright, M.M. Published by De Gruyter, founded by Georg Reimer and located in Berlin, Germany. This work is licensed under the Creative Commons Attribution 4.0 International License. Available online: https://www.degruyter.com/document/doi/10.1515/psr-2021-0068/html (accessed on 4 October 2022).
- Black, Z.; Balta, I.; Black, L.; Naughton, P.J.; Dooley, J.S.G.; Corcionivoschi, N. The Fate of Foodborne Pathogens in Manure Treated Soil. Front. Microbiol. 2021, 12, 781357. [Google Scholar] [CrossRef] [PubMed]
- Loyon, L. Overview of Animal Manure Management for Beef, Pig, and Poultry Farms in France. Front. Sustain. Food Syst. 2018, 2, 36. [Google Scholar] [CrossRef] [Green Version]
- Asante-Sackey, D.; Tetteh, E.K.; Nkosi, N.; Boakye, G.O.; Ansah Amano, K.O.; Boamah, B.B.; Armah, E.K. Effects of inoculum to feedstock ratio on anaerobic digestion for biogas production. Int. J. Hydro. 2018, 2, 567–571. [Google Scholar]
- Rosas-Mendoza, E.S.; Alvarado-Vallejo, A.; Vallejo-Cantú, N.A.; Snell-Castro, R.; MartínezHernández, S.; Alvarado-Lassman, A. Batch and Semi-Continuous Anaerobic Digestion of Industrial Solid Citrus Waste for the Production of Bioenergy. Processes 2021, 9, 648. [Google Scholar] [CrossRef]
- Boundless. Counting Bacteria. In Microbiology; LibreTexts; UC Davis Library, The California State University: California, CA, USA, 2021; pp. 1433–1436. [Google Scholar]
- Diez-Gonzalez, F. Total Viable Counts/Specific techniques. In Enclyclopedia of Food Microbiology, 2nd ed.; Carl A. Batt & Pradip Patel, Elsevier Science Publishing Co Inc.: San Diego, CA, USA, 2014; pp. 630–635. [Google Scholar]
- Omolajaiye, S.A.; Afolabi, K.O.; Iweriebor, B.C. Pathotyping and Antibiotic Resistance Profiling of Escherichia coli Isolates from Children with Acute Diarrhea in Amatole District Municipality of Eastern Cape, South Africa. BioMed Res. Int. 2020, 2020, 4250165. [Google Scholar] [CrossRef]
- Onohuean, H.; Igere, B.E. Occurrence, Antibiotic Susceptibility and Genes Encoding Antibacterial Resistance of Salmonella spp. and Escherichia coli From Milk and Meat Sold in Markets of Bushenyi District, Uganda. Microbiol. Insights 2022, 15, 11786361221088992. [Google Scholar] [CrossRef]
- Dunka, H.I.; Bello, M.; Lawan, M.K. Prevalence and Antibiogram of Listeria Monocytogenes Contamination of Liver, Spleen, Ruminal Content and Effluent in Jos, Nigeria. J. Vet. Med. Animal Sci. 2021, 4, 1072. [Google Scholar]
- Morka, K.; Bystroń, J.; Bania, J.; Korzeniowska-Kowal, A.; Korzekwa, K.; Guz-Regner, K.; Bugla-Płoskońska, G. Identification of Yersinia enterocolitica isolates from humans, pigs and wild boars by MALDI TOF MS. BMC Microbiol. 2018, 18, 86. [Google Scholar] [CrossRef]
- Sithole, V.; Amoako, D.G.; Abia, A.L.K.; Perrett, K.; Bester, L.A.; Essack, S.Y. Occurrence, Antimicrobial Resistance, and Molecular Characterization of Campylobacter spp. in Intensive Pig Production in South Africa. Pathogens 2021, 10, 439. [Google Scholar] [CrossRef] [PubMed]
- Tangwe, S.L.; Meyer, E.L.; Simon, M. Mathematical modelling and simulation application to visualize the performance of retrofit heat pump water heater under first hour heating rating. Renew. Energy 2014, 72, 203–211. [Google Scholar] [CrossRef]
- Roberts, B.N.; Bailey, R.H.; McLaughlin, M.R.; Brooks, J.P. Decay rates of zoonotic pathogens and viral surrogates in soils amended with biosolids and manures and comparison of qPCR and culture derived rates. Sci. Total Environ. 2016, 573, 671–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutton, C. Accuracy of Plate Counts. Available online: http://www.microbiol.org/wp-content/uploads/2010/07/Sutton.jvt_.2011.17_3.pdf (accessed on 9 July 2014).
- Stocker, M.; Yakirevich, A.; Guber, A.; Martinez, G.; Blaustein, R.; Whelan, G.; Goodrich, D.; Shelton, D.; Pachepsky, Y. Functional evaluation of three manure-borneindicator bacteria release models with multiyear field experiment data. Water Air Soil Pollut. 2018, 228, 181. [Google Scholar] [CrossRef]
- Alegbeleye, O.O.; Sant’Ana, A.S. Manure-borne pathogens as an important source of water contamination: An update on the dynamics of pathogen survival/transport as well as practical risk mitigation strategies. Int. J. Hyg. Environ. Health 2020, 227, 113524. [Google Scholar] [CrossRef]
- Alegbeleye, O.O.; Singleton, I.; Sant’Ana, A.S. Sources and contamination routes of microbial pathogens to fresh produce during field cultivation: A review. Food Microbiol. 2018, 73, 177e208. [Google Scholar] [CrossRef]
- Vinneras, B. Sanitation and Hygiene in Manure Management. In Animal Manure Recycling: Treatment and Management, 1st ed.; Sommer, S.G., Christensen, M.L., Schmidt, T., Jensen, L.S., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013; pp. 91–103. [Google Scholar]
- Sibanda, T.; Buys, E.M. Listeria monocytogenes Pathogenesis: The Role of Stress Adaptation. Microorganisms 2022, 10, 1522. [Google Scholar] [CrossRef]
- Orzi, V.; Scaglia, B.; Lonati, S.; Riva, C.; Boccasile, G.; Alborali, G.L.; Adani, F. The role of biological processes in reducing both odour impact and pathogen content during mesophilic anaerobic digestion. Sci. Total Environ. 2015, 526, 116–126. [Google Scholar] [CrossRef]
- Kreling, V.; Falcone, F.H.; Kehrenberg, C.; Hensel, A. Campylobacter sp.: Pathogenicity factors and prevention methods—new molecular targets for innovative antivirulence drugs? Appl. Microbiol. Biotechnol. 2020, 104, 10409–10436. [Google Scholar] [CrossRef]
- Biswas, S.; Niu, M.; Pandey, P.; Appuhamy, J.A.D.R.N.; Leytem, A.B.; Kebreab, E.; Dungan, R.S. Effect of Dairy Manure Storage Conditions on the Survival of E. coliO157:H7 and Listeria. J. Environ. Qual. 2017, 47, 185–189. [Google Scholar] [CrossRef] [Green Version]
- Jin, Q.; Kirk, M.F. pH as a Primary Control in Environmental Microbiology: 1. Thermodynamic Perspective. Front. Environ. Sci. 2018, 6, 21. [Google Scholar] [CrossRef]
- Scofield, V.; Jacques, S.M.S.; Guimarães, J.R.D.; Farjalla, V.F. Potential changes in bacterial metabolism associated with increased water temperature and nutrient inputs in tropical humic lagoons. Front. Microbiol. 2015, 6, 310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bevilacqua, A.; Campaniello, D.; Speranza, B.; Sinigaglia, M.; Corbo, M.R. Survival of Listeria monocytogenes and Staphylococcus aureus in Synthetic Brines. Studying the Effects of Salt, Temperature and Sugar through the Approach of the Design of Experiments. Front. Microbiol. 2018, 9, 240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Q.; Liu, Y. Is anaerobic digestion a reliable barrier for deactivation of pathogens in biosludge? Sci. Total Environ. 2019, 668, 893–902. [Google Scholar] [CrossRef] [PubMed]
Bacteria Species | Log of Counts | A0 | A1(t) | A2(PH) | A3 (T) | R2 | p-Values |
---|---|---|---|---|---|---|---|
Escherichia coli | Y | 3.822 | −0.057 | 0.264 | 0.040 | 0.928 | 0.956 |
Salmonella sp. | Y | 5.822 | −0.044 | −0.280 | 0.043 | 0.919 | 0.967 |
Y. enterocolitica | Y | −16.022 | −0.016 | 3.261 | 0.011 | 0.978 | 0.970 |
Campylobacter sp. | Y | −3.833 | −0.030 | 1.300 | 0.072 | 0.949 | 0.954 |
L. monocytogenes | Y | −3.920 | 0.002 | 1.251 | −0.017 | 0.984 | 0.979 |
Bacteria Species | Predictors | ||
---|---|---|---|
Weight Contribution by Number of Days | Weight Contribution by PH | Weight Contribution by Average Daily Temperature | |
Escherichia coli | 0.174 | 0.077 | −0.040 |
Salmonella sp. | 0.152 | 0.056 | −0.034 |
Campylobacter sp. | 0.109 | 0.101 | −0.028 |
Y. enterocolitica | 0.193 | 0.123 | 0.024 |
L. monoctogenes | 0.311 | 0.061 | 0.003 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manyi-Loh, C.; Lues, R. Reduction of Bacterial Pathogens in a Single-Stage Steel Biodigester Co-Digesting Saw Dust and Pig Manure at Psychrophilic Temperature. Appl. Sci. 2022, 12, 10071. https://doi.org/10.3390/app121910071
Manyi-Loh C, Lues R. Reduction of Bacterial Pathogens in a Single-Stage Steel Biodigester Co-Digesting Saw Dust and Pig Manure at Psychrophilic Temperature. Applied Sciences. 2022; 12(19):10071. https://doi.org/10.3390/app121910071
Chicago/Turabian StyleManyi-Loh, Christy, and Ryk Lues. 2022. "Reduction of Bacterial Pathogens in a Single-Stage Steel Biodigester Co-Digesting Saw Dust and Pig Manure at Psychrophilic Temperature" Applied Sciences 12, no. 19: 10071. https://doi.org/10.3390/app121910071
APA StyleManyi-Loh, C., & Lues, R. (2022). Reduction of Bacterial Pathogens in a Single-Stage Steel Biodigester Co-Digesting Saw Dust and Pig Manure at Psychrophilic Temperature. Applied Sciences, 12(19), 10071. https://doi.org/10.3390/app121910071