Insights into the Paleostress Analysis of Heterogeneous Fault-Slip Data by Comparing Different Methodologies: The Case of the Voltri Massif in the Ligurian Alps (NW Italy)
Abstract
:1. Introduction
2. Geological Setting
3. Methods and Fault-Slip Data
3.1. FSA and Win-Tensor
3.2. The Tensor Ratio Method (TRM)
3.3. Fault Slip-Data
4. Paleostress Analysis Results
5. Structural Interpretation—Discussion
5.1. Insight into the Paleostress Analysis from Previous Approaches
5.2. Insight into the TRM Site and Bulk Enhanced Andersonian Stress Tensors
5.3. Remarks on Comparing the Methods
6. A New Paleostress History and Tectonic Implications
7. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
N | LABEL | FT_DIPD | FT_DIPA | RAKE | SOS | SS |
---|---|---|---|---|---|---|
1 | FED_1 | 338 | 43 | 136 | ND | SS2 |
2 | FED_2 | 4 | 84 | 142 | ND | SS2 |
3 | FED_3 | 5 | 75 | 160 | IS | SS2 |
4 | FED_4 | 8 | 75 | 156 | IS | SS2 |
5 | FED_5 | 10 | 79 | 164 | IS | SS2 |
6 | FED_6 | 25 | 89 | 142 | IS | SS2 |
7 | FED_7 | 32 | 58 | 162 | IS | SS2 |
8 | FED_8 | 42 | 63 | 156 | IS | SS2 |
9 | FED_9 | 31 | 86 | 165 | IS | SS2 |
10 | FED_10 | 40 | 75 | 160 | IS | SS2 |
11 | FED_11 | 207 | 85 | 41 | NS | SS2 |
12 | FED_12 | 24 | 64 | 165 | IS | SS2 |
13 | FED_13 | 24 | 71 | 155 | IS | SS2 |
14 | FED_14 | 35 | 66 | 154 | ND | SS2 |
15 | FED_15 | 24 | 82 | 154 | IS | SS2 |
16 | FED_16 | 26 | 77 | 161 | IS | SS2 |
17 | FED_17 | 30 | 77 | 21 | NS | SS3 |
18 | FED_18 | 35 | 79 | 158 | IS | SS3 |
19 | FED_19 | 231 | 75 | 168 | IS | SS3 |
20 | FED_20 | 237 | 62 | 97 | ND | SS3 |
21 | FED_21 | 244 | 61 | 30 | ID | SS3 |
22 | FED_22 | 244 | 47 | 14 | ID | SS3 |
23 | FED_23 | 246 | 40 | 12 | NS | SS3 |
24 | FED_24 | 68 | 5 | 168 | ND | SS3 |
25 | FED_25 | 90 | 30 | 90 | N | SS3 |
26 | FED_26 | 100 | 51 | 122 | ND | SS3 |
27 | FED_27 | 105 | 25 | 18 | NS | SS3 |
28 | FED_28 | 106 | 10 | 148 | ND | SS3 |
29 | FED_29 | 299 | 22 | 179 | IS | SS3 |
30 | FED_30 | 150 | 70 | 166 | ND | SS3 |
31 | FED_31 | 176 | 61 | 93 | ND | SS3 |
32 | FED_32 | 185 | 63 | 163 | ND | SS3 |
33 | FED_33 | 16 | 12 | 74 | NS | SS3 |
34 | FED_34 | 216 | 11 | 99 | ND | SS3 |
35 | FED_35 | 241 | 38 | 23 | ID | SS3 |
36 | FED_36 | 30 | 77 | 156 | IS | SS3 |
37 | FED_37 | 0 | 79 | 139 | ND | SS3 |
38 | FED_38 | 90 | 85 | 164 | ND | SS6 |
39 | FED_39 | 220 | 63 | 16 | NS | SS6 |
40 | FED_40 | 36 | 55 | 134 | ND | SS6 |
41 | FED_41 | 32 | 63 | 179 | ND | SS6 |
42 | FED_42 | 19 | 37 | 173 | IS | SS6 |
43 | FED_43 | 352 | 80 | 21 | ID | SS6 |
44 | FED_44 | 352 | 77 | 7 | ID | SS6 |
45 | FED_45 | 350 | 57 | 51 | ID | SS6 |
46 | FED_46 | 343 | 42 | 45 | ID | SS6 |
47 | FED_47 | 164 | 70 | 148 | IS | SS6 |
48 | FED_48 | 152 | 80 | 156 | IS | SS6 |
49 | FED_49 | 140 | 84 | 156 | IS | SS6 |
50 | FED_50 | 60 | 71 | 50 | NS | SS6 |
51 | FED_51 | 90 | 42 | 19 | NS | SS7 |
52 | FED_52 | 215 | 80 | 150 | ND | SS7 |
53 | FED_53 | 36 | 37 | 90 | I | SS7 |
54 | FED_54 | 228 | 69 | 150 | ND | SS7 |
55 | FED_55 | 240 | 35 | 162 | ND | SS7 |
56 | FED_56 | 250 | 59 | 168 | ND | SS7 |
57 | FED_57 | 75 | 25 | 81 | ID | SS7 |
58 | FED_58 | 88 | 43 | 38 | ID | SS7 |
59 | FED_59 | 288 | 65 | 77 | NS | SS7 |
60 | FED_60 | 289 | 80 | 179 | ND | SS7 |
61 | FED_61 | 296 | 32 | 175 | IS | SS7 |
62 | FED_62 | 120 | 51 | 1 | ID | SS7 |
63 | FED_63 | 122 | 84 | 155 | ND | SS7 |
64 | FED_64 | 130 | 45 | 7 | ID | SS7 |
65 | FED_65 | 130 | 48 | 174 | ND | SS7 |
66 | FED_66 | 314 | 80 | 19 | NS | SS7 |
67 | FED_67 | 335 | 58 | 116 | IS | SS7 |
68 | FED_68 | 345 | 55 | 98 | ND | SS7 |
69 | FED_69 | 160 | 85 | 33 | ID | SS7 |
70 | FED_70 | 160 | 81 | 42 | NS | SS7 |
71 | FED_71 | 157 | 42 | 170 | ND | SS7 |
72 | FED_72 | 165 | 77 | 23 | ID | SS7 |
73 | FED_73 | 166 | 76 | 129 | ND | SS7 |
74 | FED_74 | 171 | 69 | 38 | NS | SS7 |
75 | FED_75 | 8 | 71 | 62 | NS | SS7 |
76 | FED_76 | 190 | 62 | 35 | NS | SS7 |
77 | FED_77 | 192 | 85 | 14 | ID | SS7 |
78 | FED_78 | 194 | 76 | 159 | ND | SS7 |
79 | FED_79 | 195 | 77 | 159 | ND | SS7 |
80 | FED_80 | 0 | 71 | 36 | NS | SS7 |
81 | FED_81 | 215 | 41 | 77 | NS | SS7 |
82 | FED_82 | 310 | 73 | 167 | ND | SS7 |
83 | FED_83 | 260 | 50 | 54 | ID | SS11 |
84 | FED_84 | 270 | 54 | 59 | ID | SS11 |
85 | FED_85 | 276 | 74 | 15 | ID | SS11 |
86 | FED_86 | 290 | 80 | 87 | NS | SS11 |
87 | FED_87 | 295 | 46 | 165 | IS | SS11 |
88 | FED_88 | 302 | 59 | 2 | NS | SS11 |
89 | FED_89 | 143 | 85 | 29 | NS | SS11 |
90 | FED_90 | 178 | 72 | 54 | NS | SS11 |
91 | FED_91 | 27 | 79 | 169 | ND | SS11 |
92 | FED_92 | 61 | 51 | 64 | NS | SS11 |
References
- Etchecopar, A.; Vasseur, G.; Daignieres, M. An inverse problem in microtectonics for the determination of stress tensors from fault striation analysis. J. Struct. Geol. 1981, 3, 51–65. [Google Scholar] [CrossRef]
- Angelier, J. Fault slip analysis and palaeostress reconstruction. In Continental Deformation; Pergamon Press: Oxford, UK, 1994; pp. 53–100. [Google Scholar]
- Carey, E.; Brunier, B. Analyse théorique et numérique d’un modéle mécanique élémentaire appliqué é I’ étude d’une population de failles. C. R. Acad. Sci. Paris 1974, 279, 891–894. [Google Scholar]
- Angelier, J.; Goguel, J. Sur une méthode simple de détermination des axes principaux des contraintes pour une population de failles. C. R. Acad. Sci. Paris 1979, 288, 307–310. [Google Scholar]
- Angelier, J. Determination of the mean principal directions of stresses for a given fault population. Tectonophysics 1979, 56, T17–T26. [Google Scholar] [CrossRef]
- Armijo, R.; Carey, E.; Cisternas, A. The inverse problem in microtectonics and the separation of tectonic phases. Tectonophysics 1982, 82, 145–160. [Google Scholar] [CrossRef]
- Angelier, J. Tectonic analysis of fault slip data sets. J. Geophys. Res. Earth Surf. 1984, 89, 5835–5848. [Google Scholar] [CrossRef]
- Huang, Q. Computer-based method to separate heterogeneous sets of fault-slip data into sub-sets. J. Struct. Geol. 1988, 10, 297–299. [Google Scholar] [CrossRef]
- Angelier, J. From orientation to magnitudes in paleostress determinations using fault slip data. J. Struct. Geol. 1989, 11, 37–50. [Google Scholar] [CrossRef]
- Hardcastle, K.C. Possible paleostress tensor configurations derived from fault-slip data in eastern Vermont and western New Hampshire. Tectonics 1989, 8, 265–284. [Google Scholar] [CrossRef]
- Gephart, J.W. FMSI: A fortran program for inverting fault/slickenside and earthquake focal mechanism data to obtain the regional stress tensor. Comput. Geosci. 1990, 16, 953–989. [Google Scholar] [CrossRef]
- Will, T.M.; Powell, R. A robust approach to the calculation of paleostress fields from fault plane data. J. Struct. Geol. 1991, 13, 813–821. [Google Scholar] [CrossRef]
- Twiss, R.J.; Unruh, J.R. Analysis of fault slip inversions: Do they constrain stress or strain rate? J. Geophys. Res. Earth Surf. 1998, 103, 12205–12222. [Google Scholar] [CrossRef]
- Sperner, B.; Zweigel, P. A plea for more caution in fault–slip analysis. Tectonophysics 2010, 482, 29–41. [Google Scholar] [CrossRef]
- Bott, M.H.P. The Mechanics of Oblique Slip Faulting. Geol. Mag. 1959, 96, 109–117. [Google Scholar] [CrossRef]
- Anderson, E.M. The dynamics of faulting. Trans. Edinb. Geol. Soc. 1905, 8, 387–402. [Google Scholar] [CrossRef] [Green Version]
- Wallace, R.E. Geometry of shearing stress and relation to faulting. J. Geol. 1951, 59, 118–130. [Google Scholar] [CrossRef]
- Pollard, D.D.; Saltzer, S.D.; Rubin, A.M. Stress inversion methods: Are they based on faulty assumptions? J. Struct. Geol. 1993, 15, 1045–1054. [Google Scholar] [CrossRef]
- Dupin, J.-M.; Sassi, W.; Angelier, J. Homogeneous stress hypothesis and actual fault slip: A distinct element analysis. J. Struct. Geol. 1993, 15, 1033–1043. [Google Scholar] [CrossRef]
- Roberts, G.P. Variation in fault-slip directions along active and segmented normal fault systems. J. Struct. Geol. 1996, 18, 835–845. [Google Scholar] [CrossRef]
- Maerten, L. Variation in slip on intersecting normal faults: Implications for paleostress inversion. J. Geophys. Res. Earth Surf. 2000, 105, 25553–25565. [Google Scholar] [CrossRef] [Green Version]
- Célérier, B. Remarks on the relationship between the tectonic regime, the rake of the slip vectors, the dip of the nodal planes, and the plunges of the P, B, and T axes of earthquake focal mechanisms. Tectonophysics 2010, 482, 42–49. [Google Scholar] [CrossRef]
- Célérier, B.; Etchecopar, A.; Bergerat, F.; Vergely, P.; Arthaud, F.; Laurent, P. Inferring stress from faulting: From early concepts to inverse methods. Tectonophysics 2012, 581, 206–219. [Google Scholar] [CrossRef]
- Tranos, M.D. Slip preference on pre-existing faults: A guide tool for the separation of heterogeneous fault-slip data in extensional stress regimes. Tectonophysics 2012, 544–545, 60–74. [Google Scholar] [CrossRef]
- Tranos, M.D. The TR method: The use of slip preference to separate heterogeneous fault-slip data in compressional stress regimes. The surface rupture of the 1999 Chi-Chi Taiwan earthquake as a case study. Tectonophysics 2013, 608, 622–641. [Google Scholar] [CrossRef]
- Tranos, M.D. Slip preference analysis of faulting driven by strike-slip Andersonian stress regimes: An alternative explanation of the Rhodope metamorphic core complex (northern Greece). J. Geol. Soc. 2016, 174, 129–141. [Google Scholar] [CrossRef]
- Kokkalas, S.; Doutsos, T. Strain-dependent stress field and plate motions in the south-east Aegean region. J. Geodyn. 2001, 32, 311–332. [Google Scholar] [CrossRef]
- Lacombe, O. Do fault slip data inversions actually yield “paleostresses” that can be compared with contemporary stresses? A critical discussion. Comptes Rendus Geosci. 2012, 344, 159–173. [Google Scholar] [CrossRef]
- Kounov, A.; Burg, J.-P.; Bernoulli, D.; Seward, D.; Ivanov, Z.; Dimov, D.; Gerdjikov, I. Paleostress analysis of Cenozoic faulting in the Kraishte area, SW Bulgaria. J. Struct. Geol. 2011, 33, 859–874. [Google Scholar] [CrossRef]
- Tranos, M.D. Strymon and Strymonikos Gulf basins (Northern Greece): Implications on their formation and evolution from faulting. J. Geodyn. 2011, 51, 285–305. [Google Scholar] [CrossRef]
- Delvaux, D.; Kervyn, F.; Macheyeki, A.S.; Temu, E.B. Geodynamic significance of the TRM segment in the East African Rift (W-Tanzania): Active tectonics and paleostress in the Ufipa plateau and Rukwa basin. J. Struct. Geol. 2012, 37, 161–180. [Google Scholar] [CrossRef]
- Federico, L.; Crispini, L.; Vigo, A.; Capponi, G. Unravelling polyphase brittle tectonics through multi-software fault-slip analysis: The case of the Voltri Unit, Western Alps (Italy). J. Struct. Geol. 2014, 68, 175–193. [Google Scholar] [CrossRef]
- Assie, K.R.; Wang, Y.; Tranos, M.D.; Ma, H.; Kouamelan, K.S.; Brantson, E.T.; Zhou, L.; Ketchaya, Y.B. Late Cenozoic faulting deformation of the Fanshi Basin (northern Shanxi rift, China), inferred from palaeostress analysis of mesoscale fault-slip data. Geol. Mag. 2022, 1–17. [Google Scholar] [CrossRef]
- Bellier, O.; Zoback, M.L. Recent state of stress change in the Walker Lane zone, western Basin and Range province, United States. Tectonics 1995, 14, 564–593. [Google Scholar] [CrossRef] [Green Version]
- Tranos, M.D. Faulting of Lemnos Island; a mirror of faulting of the North Aegean Trough (Northern Greece). Tectonophysics 2009, 467, 72–88. [Google Scholar] [CrossRef]
- Liesa, C.L.; Lisle, R.J. Reliability of methods to separate stress tensors from heterogeneous fault-slip data. J. Struct. Geol. 2004, 26, 559–572. [Google Scholar] [CrossRef]
- Hardcastle, K.C.; Hills, L.S. BRUTE3 and SELECT: QUICKBASIC 4 programs for determination of stress tensor configurations and separation of heterogeneous populations of fault-slip data. Comput. Geosci. 1991, 17, 23–43. [Google Scholar] [CrossRef]
- Nemcok, M.; Richard, J.L. A stress inversion procedure for polyphase fault/slip data sets. J. Struct. Geol. 1995, 17, 1445–1453. [Google Scholar] [CrossRef]
- Fry, N. Striated faults: Visual appreciation of their constraint on possible paleostress tensors. J. Struct. Geol. 1999, 21, 7–21. [Google Scholar] [CrossRef]
- Shan, Y.; Suen, H.; Lin, G. Separation of polyphase fault/slip data: An objective-function algorithm based on hard division. J. Struct. Geol. 2003, 25, 829–840. [Google Scholar] [CrossRef]
- Orife, T.; Lisle, R.J. Assessing the statistical significance of palaeostress estimates: Simulations using random fault-slips. J. Struct. Geol. 2006, 28, 952–956. [Google Scholar] [CrossRef]
- Célérier, B. Fault Slip and Stress Analysis (FSA). Available online: http://www.celerier.gm.univ-montp2.fr/software/dcmt/fsa/fsa.html (accessed on 6 October 2022).
- Delvaux, D. Win-Tensor Program, Version 3.0 and Above; Royal Museum for Central Africa: Tervuren, Belgium, 2022. Available online: https://www.damiendelvaux.be/Tensor/WinTensor/win-tensor.html(accessed on 6 October 2022).
- Tranos, M.D. TR method (TRM): A separation and stress inversion method for heterogeneous fault-slip data driven by Andersonian extensional and compressional stress regimes. J. Struct. Geol. 2015, 79, 57–74. [Google Scholar] [CrossRef]
- Rosenbaum, G.; Lister, G.S.; Duboz, C. Reconstruction of the tectonic evolution of the western Mediterranean since the Oligocene. J. Virtual Explor. 2002, 8, 107–130. [Google Scholar] [CrossRef]
- Spakman, W.; Wortel, R. A Tomographic View on Western Mediterranean Geodynamics. In The TRANSMED Atlas. The Mediterranean Region from Crust to Mantle: Geological and Geophysical Framework of the Mediterranean and the Surrounding Areas; Cavazza, W., Roure, F., Spakman, W., Stampfli, G.M., Ziegler, P.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 31–52. [Google Scholar]
- Butler, R.W.H. Thrust tectonics, deep structure and crustal subduction in the Alps and Himalayas. J. Geol. Soc. 1986, 143, 857–873. [Google Scholar] [CrossRef]
- Platt, J.P.; Behrmann, J.H.; Cunningham, P.C.; Dewey, J.F.; Helman, M.; Parish, M.; Shepley, M.G.; Wallis, S.; Western, P.J. Kinematics of the Alpine arc and the motion history of Adria. Nature 1989, 337, 158–161. [Google Scholar] [CrossRef]
- Ford, M.; Duchêne, S.; Gasquet, D.; Vanderhaeghe, O. Two-phase orogenic convergence in the external and internal SW Alps. J. Geol. Soc. 2006, 163, 815–826. [Google Scholar] [CrossRef]
- Patacca, E.; Sartori, R.; Scandone, P. Tyrrhenian Basin and Apennines. Kinematic Evolution and Related Dynamic Constraints. In Recent Evolution and Seismicity of the Mediterranean Region; Boschi, E., Mantovani, E., Morelli, A., Eds.; Springer: Dordrecht, The Netherlands, 1993; pp. 161–171. [Google Scholar]
- Jolivet, L.; Faccenna, C. Mediterranean extension and the Africa-Eurasia collision. Tectonics 2000, 19, 1095–1106. [Google Scholar] [CrossRef]
- Strating, E.H.H. The evolution of the Piemonte–Ligurian Ocean. A structural study of ophiolite complexes in Liguria (NW Italy). Geol. Ultraiectina 1991, 74, 145. [Google Scholar]
- Capponi, G.; Crispini, L.; Federico, L.; Malatesta, C. Geology of the Eastern Ligurian Alps: A review of the tectonic units. Ital. J. Geosci. 2016, 135, 157–169. [Google Scholar] [CrossRef]
- Rovereto, G. Liguria Geologica. Mem. Soc. Geol. It. 1939, 2, 147–155. [Google Scholar]
- Görler, K.; Ibbeken, H. Die Bedeutung der Zone Sestri-voltaggio Als Grenze Zwischen Alpen und Apennin. Geol. Rundsch. 1964, 53, 73–84. [Google Scholar] [CrossRef]
- Crispini, L.; Capponi, G. Tectonic evolution of the Voltri Group and Sestri Voltaggio Zone (southern limit of the NW Alps): A review. Ofioliti 2001, 26, 161–164. [Google Scholar]
- Maino, M.; Decarlis, A.; Felletti, F.; Seno, S. Tectono-sedimentary evolution of the Tertiary Piedmont Basin (NW Italy) within the Oligo-Miocene central Mediterranean geodynamics. Tectonics 2013, 32, 593–619. [Google Scholar] [CrossRef]
- Capponi, G.; Crispini, L.; Federico, L.; Piazza, M.; Fabbri, B. Late Alpine tectonics in the Ligurian Alps: Constraints from the Tertiary Piedmont Basin conglomerates. Geol. J. 2009, 44, 211–224. [Google Scholar] [CrossRef]
- Federico, L.; Spagnolo, C.; Crispini, L.; Capponi, G. Fault-slip analysis in the metaophiolites of the Voltri Massif: Constraints for the tectonic evolution at the Alps/Apennine boundary. Geol. J. 2008, 44, 225–240. [Google Scholar] [CrossRef]
- Vignaroli, G.; Faccenna, C.; Rossetti, F. Retrogressive fabric development during exhumation of the Voltri Massif (Ligurian Alps, Italy): Arguments for an extensional origin and implications for the Alps–Apennines linkage. Int. J. Earth Sci. 2008, 98, 1077–1093. [Google Scholar] [CrossRef]
- Bally, A.W.; Burbi, L.; Cooper, C.; Ghelardoni, R. Balanced sections and seismic reflection profiles across the Central Apennines. Mem. Soc. Geol. It. 1986, 35, 257–310. [Google Scholar]
- Bernoulli, D. Mesozoic-Tertiary carbonate platforms, slopes and basins of the external Apennines and Sicily. In Anatomy of an Orogen: The Apennines and Adjacent Mediterranean Basins; Vai, G.B., Martini, I.P., Eds.; Springer: Dordrecht, The Netherlands, 2001; pp. 307–325. [Google Scholar]
- Cavazza, W.; Wezel, F.C. The Mediterranean region- a geological primer. Episodes 2003, 26, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Molli, G.; Crispini, L.; Malusà, M.; Mosca, P.; Piana, F.; Federico, L. Geology of the Northern Apennine-Western Alps junction area: A regional review. J. Virtual Explor. 2010, 36, 1–49. [Google Scholar] [CrossRef]
- Mutti, E.; Papani, L.; Di Biase, D.; Davoli, G.; Mora, S.; Segadelli, S.; Tinterri, R. Il Bacino Terziario Epimesoalpino e le sue implicazioni sui rapporti tra Alpi ed Appennino. Mem. Di Sci. Geol. 1995, 47, 217–244. [Google Scholar]
- Felletti, F. Complex bedding geometries and facies associations of the turbiditic fill of a confined basin in a transpressive setting (Castagnola Fm., Tertiary Piedmont Basin, NW Italy). Sedimentology 2002, 49, 645–667. [Google Scholar] [CrossRef]
- Carrapa, B.; Bertotti, G.; Krijgsman, W. Subsidence, stress regime and rotation(s) of a tectonically active sedimentary basin within the western Alpine Orogen: The Tertiary Piedmont Basin (Alpine domain, NW Italy). Geol. Soc. London Spec. Publ. 2003, 208, 205–227. [Google Scholar] [CrossRef] [Green Version]
- Piana, F.; Tallone, S.; Cavagna, S.; Conti, A. Thrusting and faulting in metamorphic and sedimentary units of Ligurian Alps: An example of integrated field work and geochemical analyses. Int. J. Earth Sci. 2006, 95, 413–430. [Google Scholar] [CrossRef]
- Maffione, M.; Speranza, F.; Faccenna, C.; Cascella, A.; Vignaroli, G.; Sagnotti, L. A synchronous Alpine and Corsica-Sardinia rotation. J. Geophys. Res. Solid Earth 2008, 113, 1–25. [Google Scholar] [CrossRef]
- Chiesa, S.; Cortesogno, L.; Forcella, F.; Galli, M.; Messiga, B.; Pasquare, G.; Pedemonte, G.; Piccardo, G.; Rossi, P. Assetto strutturale ed interpretazione geodinamica del Gruppo di Voltri. Boll. Della Soc. Geol. Ital. 1975, 94, 555–581. [Google Scholar]
- Capponi, G.; Crispini, L.; Silvestri, R.; Vigo, E. The role of Early Miocene thrust tectonics in the structural arrangement of the Voltri Group (Ligurian Alps, Italy): Evidence from the Bandita area. Ofioliti 1999, 24, 13–19. [Google Scholar]
- Strating, E.H.H.; van Wamel, W.A.; Vissers, R.L.M. Some constraints on the kinematics of the Tertiary Piemonte Basin (northwest Italy). Tectonophysics 1991, 198, 47–51. [Google Scholar] [CrossRef]
- Spagnolo, C.; Crispini, L.; Capponi, G. From Alpine to Apennine orogeny: Structural records in the Voltri Massif (Ligurian Alps, Italy). Geodin. Acta 2007, 20, 21–35. [Google Scholar] [CrossRef]
- Crispini, L.; Federico, L.; Capponi, G.; Spagnolo, C. Late orogenic transpressional tectonics in the «Ligurian Knot». Ital. J. Geosci. 2009, 128, 433–441. [Google Scholar] [CrossRef]
- Marini, M. Le deformazioni fragili del Pliocene Ligure. Implicazioni nella geodinamica alpina. Mem. Soc. Geol. Ital 1987, 29, 157–169. [Google Scholar]
- Jolivet, L.; Faccenna, C.; Goffé, B.; Burov, E.; Agard, P. Subduction tectonics and exhumation of high-pressure metamorphic rocks in the Mediterranean orogens. Am. J. Sci. 2003, 303, 353–409. [Google Scholar] [CrossRef]
- Delvaux, D.; Sperner, B. Stress tensor inversion from fault kinematic indicators and focal mechanism data: The TENSOR program. Geol. Soc. Lond. Spec. Publ. 2003, 212, 75–100. [Google Scholar] [CrossRef] [Green Version]
- Morris, A.; Ferrill, D.A.; Henderson, D.B. Slip-tendency analysis and fault reactivation. Geology 1996, 24, 275–278. [Google Scholar] [CrossRef]
- Tranos, M.D.; Kachev, V.N.; Mountrakis, D.M. Transtensional origin of the NE–SW Simitli basin along the Strouma (Strymon) Lineament, SW Bulgaria. J. Geol. Soc. 2008, 165, 499–510. [Google Scholar] [CrossRef]
- Pollard, D.; Fletcher, R.C. Fundamentals of Structural Geology, 1st ed.; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Michael, A.J. Determination of stress from slip data: Faults and folds. J. Geophys. Res. Solid Earth 1984, 89, 11517–11526. [Google Scholar] [CrossRef]
- Michael, A.J. Use of focal mechanisms to determine stress: A control study. J. Geophys. Res. Solid Earth 1987, 92, 357–368. [Google Scholar] [CrossRef]
- Tranos, M.D. The use of Stress Tensor Discriminator Faults in separating heterogeneous fault-slip data with best-fit stress inversion methods. J. Struct. Geol. 2017, 102, 168–178. [Google Scholar] [CrossRef]
- Tranos, M.D. The use of Stress Tensor Discriminator Faults in separating heterogeneous fault-slip data with best-fit stress inversion methods. II. Compressional stress regimes. J. Struct. Geol. 2018, 107, 153–162. [Google Scholar] [CrossRef]
- Tranos, M.D. Is the Monte Carlo search method efficient for a paleostress analysis of natural heterogeneous fault-slip data? An example from the Kraishte area, SW Bulgaria. J. Struct. Geol. 2018, 116, 178–188. [Google Scholar] [CrossRef]
- Lisle, R.J.; Orife, T.O.; Arlegui, L.; Liesa, C.; Srivastava, D.C. Favoured states of palaeostress in the Earth’s crust: Evidence from fault-slip data. J. Struct. Geol. 2006, 28, 1051–1066. [Google Scholar] [CrossRef]
- Paradisopoulou, P.M.; Karakostas, V.G.; Papadimitriou, E.; Tranos, M.D.; Papazachos, C.B.; Karakaisis, G.F. Microearthquake study of the broader Thessaloniki area (Northern Greece). Ann. Geophys. 2006, 49, 1081–1093. [Google Scholar] [CrossRef]
- Anderson, E.M. The Dynamics of Faulting; Olivier and Boyd: Edinburgh, UK, 1942. [Google Scholar]
- Chatzaras, V.; Xypolias, P.; Kokkalas, S.; Koukouvelas, I. Tectonic evolution of a crustal-scale oblique ramp, Hellenides thrust belt, Greece. J. Struct. Geol. 2013, 57, 16–37. [Google Scholar] [CrossRef]
- Lacombe, O.; Jolivet, L. Structural and kinematic relationships between Corsica and the Pyrenees-Provence domain at the time of the Pyrenean orogeny. Tectonics 2005, 24, TC1003. [Google Scholar] [CrossRef] [Green Version]
- Vanossi, M.; Sogno, L.C.; Galbiati, B.; Messiga, B.; Piccardo, G.; Vannucci, R. Geologia delle Alpi Liguri: Dati, problemi, ipotesi. Mem. Della Soc. Geol. Ital. 1984, 28, 5–75. [Google Scholar]
- Gattacceca, J.; Deino, A.; Rizzo, R.; Jones, D.S.; Henry, B.; Beaudoin, B.; Vadeboin, F. Miocene rotation of Sardinia: New paleomagnetic and geochronological constraints and geodynamic implications. Earth Planet. Sci. Lett. 2007, 258, 359–377. [Google Scholar] [CrossRef]
- Vignaroli, G.; Faccenna, C.; Jolivet, L.; Piromallo, C.; Rossetti, F. Subduction polarity reversal at the junction between the Western Alps and the Northern Apennines, Italy. Tectonophysics 2008, 450, 34–50. [Google Scholar] [CrossRef]
- Starr, P.G.; Broadwell, K.S.; Dragovic, B.; Scambelluri, M.; Haws, A.A.; Caddick, M.J.; Smye, A.J.; Baxter, E.F. The subduction and exhumation history of the Voltri Ophiolite, Italy: Evaluating exhumation mechanisms for high-pressure metamorphic massifs. Lithos 2020, 376–377, 105767. [Google Scholar] [CrossRef]
- Brunet, C.; Monié, P.; Jolivet, L.; Cadet, J.P. Migration of compression and extension in the Tyrrhenian Sea, insights from 40Ar/39Ar ages on micas along a transect from Corsica to Tuscany. Tectonophysics 2000, 321, 127–155. [Google Scholar] [CrossRef]
- Bernini, M.; Zecca, M. Le deformazioni nelle Formazioni di Molare e di Rocchetta (Oligocene-Miocene inferiore) della regione di Mioglia (SV) (Margine Sud del Bacino Terziario Piemontese. Atti Tic. Sc. Terra 1990, 33, 1–10. [Google Scholar]
- Gelati, R.; Gnaccolini, M. Synsedimentary tectonics and sedimentation in the tertiary Piedmont Basin, northwestern Italy. Riv. Ital. Paleontol. Stratigr. 1998, 104, 193–214. [Google Scholar]
- Mosca, P.; Polino, R.; Rogledi, S.; Rossi, M. New data for the kinematic interpretation of the Alps–Apennines junction (Northwestern Italy). Int. J. Earth Sci. 2010, 99, 833–849. [Google Scholar] [CrossRef]
- Peacock, D.C.P.; Sanderson, D.J. Strike-slip relay ramps. J. Struct. Geol. 1995, 17, 1351–1360. [Google Scholar] [CrossRef]
- Eva, E.; Malusà, M.G.; Solarino, S. Seismotectonics at the Transition Between Opposite-Dipping Slabs (Western Alpine Region). Tectonics 2020, 39, e2020TC006086. [Google Scholar] [CrossRef]
ST | n | FTC | FTE | σ1 | σ2 | σ3 | R | MMA | FT (MA ≤ 30°) | FT/n (%) | N | N (MA ≥ 30°) | SS |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T_MFSS2 | 16 | 12 | 4 | 072°–30° | 275°–58° | 168°–11° | 0.48 | 28.3° | 14 | 88 | 1–16 | 2, 14 | SS2 |
T_MFSS2F | 14 | 12 | 2 | 065°–22° | 293°–60° | 164°–20° | 0.68 | 7.0° | 14 | 100 | SS2 | ||
T_MFSS3 | 21 | 7 | 14 | 268°–78° | 082°–12° | 173°–01° | 0.57 | 63.8° | 6 | 29 | 17–37 | 18,19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 32, 35, 36, 37 | SS3 |
T_MFSS3F | 6 | 0 | 6 | 274°–84° | 081°–05° | 171°–01° | 0.45 | 9.8° | 6 | 100 | 17, 25, 26, 31, 33, 34 | SS3 | |
T_MFSS6 | 13 | 8 | 5 | 156°–12° | 036°–67° | 250°–20° | 0.39 | 63.3° | 6 | 46 | 38–50 | 38, 39, 40, 42, 47, 48, 50 | SS6 |
T_MFSS6F | 6 | 5 | 1 | 154°–04° | 052°–72° | 245°–17° | 0.47 | 7.1° | 6 | 100 | SS6 | ||
T_MFSS7 | 32 | 10 | 22 | 258°–57° | 151°–11° | 055°–31° | 0.11 | 76.8° | 5 | 16 | 51–82 | 51, 52, 53, 54, 55, 56, 58, 59, 60, 61. 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 74, 76, 77, 78, 79, 81, 82 | SS7 |
T_MFSS7F | 5 | 1 | 4 | 258°–52° | 351°–02° | 083°–38° | 0.39 | 10.0° | 5 | 100 | SS7 | ||
T_MFSS11 | 10 | 4 | 6 | 009°–08° | 266°–57° | 104°–31° | 0.53 | 62.7° | 2 | 20 | 83–92 | 83, 84, 85, 86, 87, 90, 91, 92 | SS11 |
T_MFSS11F | 4 | 0 | 4 | 150°–44° | 294°–40° | 041°–19° | 0.20 | 3.8° | 4 | 100 | SS11 |
ST | N | FTE | FTC | TRCF | σ1 | σ2 | σ3 | R | ST REG | MMA (MA ≤ 30°) | N (Appendix A) | SS |
---|---|---|---|---|---|---|---|---|---|---|---|---|
TSS2 | 16 | 4 | 12 | 11 | 072°–00° | 072°–90° | 162°–00° | 0.01 | TRP-SS | 11.1° | 3, 4, 5, 7, 8, 9, 10, 12, 13, 15, 16 | SS2 |
T1SS3 | 21 | 14 | 7 | 4 | 014°–00° | 014°–90° | 104°–00° | 0.05 | TRP | 9.0° | 21, 22, 29, 35 | SS3 |
T2SS3 | 21 | 14 | 7 | 6 | 047°–90° | 137°–00° | 047°–00° | 0.91 | TRN | 15.0° | 20, 27, 30, 32, 34, 37 | SS3 |
T3SS3 | 21 | 14 | 7 | 5 | 346°–90° | 076°–00° | 346°–00° | 0.95 | TRN | 10.6° | 17, 23, 28, 31, 33 | SS3 |
TSS6 | 13 | 5 | 8 | 6 | 159°–00° | 159°–90° | 069°–00° | 0.67 | SS-TRN | 12.8° | (40), (41), 43, 44, 45, 46, 48, 49 | SS6 |
T1SS7 | 32 | 22 | 10 | 5 | 046°–00° | 136°–00° | 046°–90° | 0 | TRP | 9.4° | 53, 57, 58, 62, 64 | SS7 |
T2SS7 | 32 | 22 | 10 | 7 | 166°–90° | 076°–00° | 166°–00° | 0.91 | TRN | 14.0° | 60, 63, 68, 75, 76, 80, 82 | SS7 |
T3SS7 | 32 | 22 | 10 | 8 | 103°–90° | 013°–00° | 103°–00° | 0.96 | TRN | 15.5° | 52, 54, 59, 74, 76, 78, 79, 80 | SS7 |
ST | N | FTE | FTC | TRCF | σ1 | σ2 | σ3 | R | ST REG | MMA (MA ≤ 30°) | N (Appendix A) | SS |
---|---|---|---|---|---|---|---|---|---|---|---|---|
T1TRM | 92 | 51 | 41 | 8 | 143°–00° | 143°–90° | 053°–00° | 0.18 | TRP-SS | 13.0° | 43, 44, 45, 46, 69, 72, 77, 87 | SS6 (4), SS7 (3), SS11 (1) |
T2TRM | 92 | 51 | 41 | 14 | 103°–90° | 013°–00° | 103°–00° | 0.60 | PE | 13.4° | 14, 25, 26, 40, 52, 54, 59, 70, 74, 80, 86, 89, 90, 91 | SS2 (1), SS3 (2), SS6 (1), SS7 (6), SS11 (4) |
T3TRM | 92 | 51 | 41 | 14 | 175°–90° | 085°–00° | 175°–00° | 1.00 | TRN | 9.6° | 1, 17, 23, 28, 31, 33, 39, 60, 63, 65, 68, 73, 75, 82 | SS2 (1), SS3 (5), SS6 (1), SS7 (7) |
T4TRM | 92 | 51 | 41 | 21 | 063°–00° | 063°–90° | 153°–00° | 0.20 | TRP-SS | 11.4° | 3, 4, 5, 7, 8, 9, 10, 12, 13, 15, 16, 18, 36, 42, 57, 58, 62, 64, 83, 84, 85 | SS2 (11), SS3 (2), SS6 (1), SS7 (4), SS11 (3) |
T5TRM | 92 | 51 | 41 | 12 | 019°–00° | 109°–00° | 019°–90° | 0.00 | TRP | 13.1° | 21, 22, 29, 35, 47, 48, 49, 53, 58, 61, 85, 87 | SS3 (4), SS6 (3), SS7 (3), SS11 (2) |
ST | N | σ1 | σ2 | σ3 | R | ST REG | MMA (MA ≤ 30°) | FT (MA ≤ 30°) | N (Appendix A) | SS |
---|---|---|---|---|---|---|---|---|---|---|
T1all | 92 | 143°–00° | 143°–90° | 053°–00° | 0.18 | TRP-SS | 16° | 18 | 14, 23, 41, 43, 44, 45, 46, 50, 52, 54, 69, 72, 77, 78,79, 87, 91, 92 | SS2 (1), SS3(1), SS6 (6), SS7 (7), SS11 (3) |
T2all | 92 | 103°–90° | 013°–00° | 103°–00° | 0.60 | PE | 13.5° | 19 | 14, 25, 26, 33, 34, 38, 40, 52, 54, 59, 66, 70, 74, 75, 80, 86, 89, 90, 91 | SS2 (1), SS3 (4), SS6 (2), SS7 (8), SS11 (4) |
T3all | 92 | 175°–90° | 085°–00° | 175°–00° | 1.00 | TRN | 14° | 22 | 1, 9, 17, 19, 23, 28, 30, 31, 33, 38, 39, 60, 62, 63, 65, 68, 73, 75, 76, 82, 85, 90 | SS2 (2), SS3 (7), SS6 (2), SS7 (9), SS11 (2) |
T4all | 92 | 063°–00° | 063°–90° | 153°–00° | 0.20 | TRP-SS | 12.4° | 27 | 3, 4, 5, 7, 8, 9, 10, 12, 13, 15, 16, 18, 36, 38, 42, 57, 58, 60, 62, 63, 64, 65, 70, 82, 83, 84, 85 | SS2 (11), SS3 (2), SS6 (2), SS7 (9), SS11 (3) |
T5all | 92 | 019°–00° | 109°–00° | 019°–90° | 0.00 | TRP | 15.5° | 17 | 3, 4, 21, 22, 29, 35, 38, 47, 48, 49, 53, 58, 61, 66, 85, 87, 88 | SS2 (2), SS3 (4), SS6 (4), SS7 (4), SS11 (3) |
ST | n | σ1 | σ2 | σ3 | R | ST REG | MMA (MA ≤ 30°) | FT (MA ≤ 30°) | N (Appendix A) | SS |
---|---|---|---|---|---|---|---|---|---|---|
T1MF | 18 | 144°–03° | 014°–86° | 234°–03° | 0.46 | SS | 14.6° | 16 | 14, 41, 43, 44, 45, 46, 50, 52, 69, 72, 77, 78,79, 87, 91, 92 | SS2 (1), SS6 (6), SS7 (6), SS11 (3) |
T2MF | 19 | 321°–88° | 196°–01° | 106°–02° | 0.60 | PE | 12.6° | 19 | 14, 25, 26, 33, 34, 38, 40, 52, 54, 59, 66, 70, 74, 75, 80, 86, 89, 90, 91 | SS2 (1), SS3 (4), SS6 (2), SS7 (8), SS11 (4) |
T3MF | 22 | 263°–04° | 105°–86° | 353°–02° | 0.84 | SS-TRN | 14.2° | 21 | 1, 9, 17, 19, 23, 28, 30, 31, 33, 38, 39, 60, 62, 63, 65, 68, 73, 75, 76, 82, 85, 90 | SS2 (2), SS3 (7), SS6 (2), SS7 (9), SS11 (2) |
T4MF | 27 | 244°–03° | 341°–69° | 153°–20° | 0.29 | TRP-SS | 10.4° | 27 | 3, 4, 5, 7, 8, 9, 10, 12, 13, 15, 16, 18, 36, 38, 42, 57, 58, 60, 62, 63, 64, 65, 70, 82, 83, 84, 85 | SS2 (11), SS3 (2), SS6 (2), SS7 (9), SS11 (3) |
T5MF | 17 | 202°–13° | 304°–41° | 098°–45° | 0.16 | 15.1° | 17 | 3, 4, 21, 22, 29, 35, 38, 47, 48, 49, 53, 58, 61, 66, 85, 87, 88 | SS2 (2), SS3 (4), SS6 (4), SS7 (4), SS11 (3) |
STDF(%) | T2all | T3all | T4all | T5all |
---|---|---|---|---|
T1all | (87.9)(77.8)(78.9) | (97.4)(94.4)(95.5) | (100)(100)(100) | (97.1)(94.1)(94.4) |
T2all | (89.2)(81.8)(78.9) | (95.5)(92.6)(89.5) | (94.1)(88.2)(89.5) | |
T3all | (80.5)(70.4)(63.6) | (94.6)(88.2)(90.9) | ||
T4all | (87.2)(81.5)(70.6) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tranos, M.D.; Neofotistos, P.G.; Kokkalas, S.A.; Tourigny, G.L. Insights into the Paleostress Analysis of Heterogeneous Fault-Slip Data by Comparing Different Methodologies: The Case of the Voltri Massif in the Ligurian Alps (NW Italy). Appl. Sci. 2022, 12, 10098. https://doi.org/10.3390/app121910098
Tranos MD, Neofotistos PG, Kokkalas SA, Tourigny GL. Insights into the Paleostress Analysis of Heterogeneous Fault-Slip Data by Comparing Different Methodologies: The Case of the Voltri Massif in the Ligurian Alps (NW Italy). Applied Sciences. 2022; 12(19):10098. https://doi.org/10.3390/app121910098
Chicago/Turabian StyleTranos, Markos D., Petros G. Neofotistos, Sotirios A. Kokkalas, and Ghislain L. Tourigny. 2022. "Insights into the Paleostress Analysis of Heterogeneous Fault-Slip Data by Comparing Different Methodologies: The Case of the Voltri Massif in the Ligurian Alps (NW Italy)" Applied Sciences 12, no. 19: 10098. https://doi.org/10.3390/app121910098
APA StyleTranos, M. D., Neofotistos, P. G., Kokkalas, S. A., & Tourigny, G. L. (2022). Insights into the Paleostress Analysis of Heterogeneous Fault-Slip Data by Comparing Different Methodologies: The Case of the Voltri Massif in the Ligurian Alps (NW Italy). Applied Sciences, 12(19), 10098. https://doi.org/10.3390/app121910098