Research on the Influence of User and Graphic–Text Combined Icon Construal Level Fitting on Visual Cognition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Experimental Material Design
2.3. Experimental Equipment and Participants
2.3.1. Apparatus
2.3.2. Participants
2.4. Experimental Design and Procedures
2.5. Statistical Analysis
3. Results
3.1. Response Time
3.2. Match Rate
3.3. Mediation by Cognitive Fluency
4. Discussion
4.1. Effects of Combined Icon Types on Visual Cognitive Performance of Construal Level Traits Users
4.2. The Interactive Effect of Combined Icon Types and Construal Level Traits on Users’ Visual Cognitive Performance
4.3. Limitation and Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Shneiderman, B.; Plaisant, C. Designing the User Interface: Strategies for Effective Human-Computer Interaction, 4th ed.; Pearson/Addison Wesley: Boston, MA, USA, 2004; ISBN 978-0-321-19786-3. [Google Scholar]
- Muter, P.; Mayson, C. The Role of Graphics in Item Selection from Menus. Behav. Inf. Technol. 1986, 5, 89–95. [Google Scholar] [CrossRef]
- Huang, S.-M.; Shieh, K.-K.; Chi, C.-F. Factors Affecting the Design of Computer Icons. Int. J. Ind. Ergon. 2002, 29, 211–218. [Google Scholar] [CrossRef]
- Gatsou, C.; Politis, A.; Zevgolis, D. The Importance of Mobile Interface Icons on User Interaction. Int. J. Comput. Sci. Appl. 2012, 9, 92–107. Available online: https://www.semanticscholar.org/paper/The-Importance-of-Mobile-Interface-Icons-on-User-Gatsou-Politis/414464f647492d6efca2144f611f4e4362105b48 (accessed on 29 July 2022).
- Norman, D. Affordance, conventions, and design. Interactions 1999, 6, 38–42. [Google Scholar] [CrossRef]
- Nielsen, J.; Molich, R. Heuristic evaluation of user interfaces. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Washington, DC, USA, 1–5 April 1990; pp. 249–256. [Google Scholar]
- Nielsen, J. Enhancing the explanatory power of usability heuristics. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Boston, MA, USA, 24–28 April 1994; pp. 152–158. [Google Scholar]
- Debevc, M.; Meyer, B.; Donlagic, D.; Svecko, R. Design and Evaluation of an Adaptive Icon Toolbar. User Model User-Adap. Inter. 1996, 6, 1–21. [Google Scholar] [CrossRef]
- Miraz, M.H.; Ali, M.; Excell, P.S. Adaptive User Interfaces and Universal Usability through Plasticity of User Interface Design. Comput. Sci. Rev. 2021, 40, 487–519. [Google Scholar] [CrossRef]
- Kolekar, S.V.; Pai, R.M.; Pai, M.M.M. Rule Based Adaptive User Interface for Adaptive E-Learning System. Educ. Inf. Technol. 2019, 24, 613–641. [Google Scholar] [CrossRef]
- Ming, C.; Wu, Z.; Gu, H.; Chen, C.; Zhang, Y. The Effects of Luminance Contrast and Color Combination on Icon Cognitive Performance. Color Res. Appl. 2022, 47, 498–506. [Google Scholar] [CrossRef]
- Lin, H.; Hsieh, Y.-C.; Wu, F.-G. A Study on the Relationships between Different Presentation Modes of Graphical Icons and Users’ Attention. Comput. Hum. Behav. 2016, 63, 218–228. [Google Scholar] [CrossRef]
- Shen, Z.; Zhang, L.; Li, R.; Hou, J.; Liu, C.; Hu, W. The Effects of Color Combinations, Luminance Contrast, and Area Ratio on Icon Visual Search Performance. Displays 2021, 67, 101999. [Google Scholar] [CrossRef]
- Huang, K.-C.; Chen, C.-F.; Chiang, S.-Y. Icon Flickering, Flicker Rate, and Color Combinations of an Icon’s Symbol/Background in Visual Search Performance. Percept. Mot. Ski. 2008, 106, 117–127. [Google Scholar] [CrossRef]
- Shen, Z.; Zhang, L.; Li, R.; Liang, R. The Effects of Icon Internal Characteristics on Complex Cognition. Int. J. Ind. Ergon. 2020, 79, 102990. [Google Scholar] [CrossRef]
- Ng, A.W.Y.; Chan, A.H.S. Visual and Cognitive Features on Icon Effectiveness. In Proceedings of the International Multiconference of Engineers and Computer Scientists, Hong Kong, China, 19–21 March 2008; Newswood Limited Hong Kong: Hong Kong, China, 2008; Volume 4. [Google Scholar]
- McDougall, S.J.P.; de Bruijn, O.; Curry, M.B. Exploring the Effects of Icon Characteristics on User Performance: The Role of Icon Concreteness, Complexity, and Distinctiveness. J. Exp. Psychol. Appl. 2000, 6, 291–306. [Google Scholar] [CrossRef]
- Stotts, D.B. The Usefulness of Icons on the Computer Interface: Effect of Graphical Abstraction and Functional Representation on Experienced and Novice Users. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 1998, 42, 453–457. [Google Scholar] [CrossRef]
- Chajadi, F.; Uddin, S.; Gutwin, C. Effects of Visual Distinctiveness on Learning and Retrieval in Icon Toolbars. Ph.D. Thesis, University of Saskatchewan, Saskatoon, SK, Canada, 2022. [Google Scholar]
- Rahrovani, S.; Mirzabeigi, M.; Abbaspour, J. The Concreteness of Searching Module Icons and Their Effectiveness in Digital Library Applications. Electron. Libr. 2018, 36, 800–810. [Google Scholar] [CrossRef]
- Schröder, S.; Ziefle, M. Effects of Icon Concreteness and Complexity on Semantic Transparency: Younger vs. Older Users. In Computers Helping People with Special Needs; Miesenberger, K., Klaus, J., Zagler, W., Karshmer, A., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5105, pp. 90–97. ISBN 978-3-540-70539-0. [Google Scholar]
- Stammers, R.; Hoffman, J. Transfer between Icon Sets and Ratings of Icon Concreteness and Appropriateness. Proc. Hum. Factors Soc. Annu. Meet. 1991, 35, 354–358. [Google Scholar] [CrossRef]
- Wen, K.; Gu, X.; Cheng, Q. Learning Dual Semantic Relations with Graph Attention for Image-Text Matching. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 2866–2879. [Google Scholar] [CrossRef]
- Liu, R.; Zhao, Y.; Wei, S.; Zheng, L.; Yang, Y. Modality-Invariant Image-Text Embedding for Image-Sentence Matching. ACM Trans. Multimed. Comput. Commun. Appl. 2019, 15, 1–19. [Google Scholar] [CrossRef]
- Chi, C.-F.; Dewi, R.S. Matching Performance of Vehicle Icons in Graphical and Textual Formats. Appl. Ergon. 2014, 45, 904–916. [Google Scholar] [CrossRef]
- Dosso, C.; Chevalier, A. How Do Older Adults Process Icons during a Navigation Task? Effects of Aging, Semantic Distance, and Text Label. Educ. Gerontol. 2021, 47, 132–147. [Google Scholar] [CrossRef]
- Osman, A.H.; Barukub, O.M. Graph-Based Text Representation and Matching: A Review of the State of the Art and Future Challenges. IEEE Access 2020, 8, 87562–87583. [Google Scholar] [CrossRef]
- Jin, W.; Zhao, Z.; Zhang, P.; Zhu, J.; He, X.; Zhuang, Y. Hierarchical Cross-Modal Graph Consistency Learning for Video-Text Retrieval. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual Event Canada, 11 July 2021; ACM: New York, NY, USA, 2021; pp. 1114–1124. [Google Scholar]
- Spilcke-Liss, J.; Zhu, J.; Gluth, S.; Spezio, M.; Gläscher, J. Semantic Incongruency Interferes with Endogenous Attention in Cross-Modal Integration of Semantically Congruent Objects. Front. Integr. Neurosci. 2019, 13, 53. [Google Scholar] [CrossRef]
- Sojka, J.Z.; Giese, J.L. The In¯uence of Personality Traits on the Processing of Visual and Verbal Information. Psychol. Mark. 2006, 23, 995–1014. [Google Scholar] [CrossRef]
- Sarsam, S.M.; Al-Samarraie, H. Towards Incorporating Personality into the Design of an Interface: A Method for Facilitating Users’ Interaction with the Display. User Model User Adap. Inter. 2018, 28, 75–96. [Google Scholar] [CrossRef]
- Kocaoğlu, R.; Olguntürk, N. Color and Visual Complexity in Abstract Images. Color Res. Appl. 2018, 43, 952–957. [Google Scholar] [CrossRef] [Green Version]
- Satcharoen, K. An Investigation of Computer Icon Design. In Proceedings of the 21st Conference of Open Innovations FRUCT, Helsinki, Finland, 6–10 November 2017; pp. 489–491. [Google Scholar]
- Trope, Y.; Liberman, N. Temporal Construal. Psychol. Rev. 2003, 110, 403–421. [Google Scholar] [CrossRef]
- Durkin, C.; Hartnett, E.; Shohamy, D.; Kandel, E.R. An objective evaluation of the beholder’s response to abstracts and figurative art based on construal level theory. Psychol. Cogn. Sci. 2020, 33, 19809–19815. [Google Scholar] [CrossRef]
- Dogan, M.; Erdogan, B.Z. Effects of Congruence between Individuals’ and Hotel Commercials’ Construal Levels on Purchase Intentions. J. Hosp. Mark. Manag. 2020, 29, 987–1007. [Google Scholar] [CrossRef]
- Steinhart, Y.; Mazursky, D.; Kamins, M.A. The “Temporal-Processing-Fit Effect”: The Interplay between Regulatory State, Temporal Distance, and Construal Levels. SSRN J. 2013, 3, 315–335. [Google Scholar] [CrossRef]
- Yao, F.-S.; Shao, J.-B.; Zhang, H. Is Creative Description Always Effective in Purchase Intention? The Construal Level Theory as a Moderating Effect. Front. Psychol. 2021, 12, 1–12. [Google Scholar] [CrossRef]
- Oppenheimer, D.M. The Secret Life of Fluency. Trends Cogn. Sci. 2008, 12, 237–241. [Google Scholar] [CrossRef]
- Wurtz, P.; Reber, R.; Zimmermann, T.D. The Feeling of Fluent Perception: A Single Experience from Multiple Asynchronous Sources. Conscious. Cogn. 2008, 17, 171–184. [Google Scholar] [CrossRef]
- Reber, R.; Wurtz, P.; Zimmermann, T.D. Exploring “Fringe” Consciousness: The Subjective Experience of Perceptual Fluency and Its Objective Bases. Conscious. Cogn. 2004, 13, 47–60. [Google Scholar] [CrossRef]
- Duan, R.; Takahashi, B.; Zwickle, A. How Effective Are Concrete and Abstract Climate Change Images? The Moderating Role of Construal Level in Climate Change Visual Communication. Sci. Commun. 2021, 43, 358–387. [Google Scholar] [CrossRef]
- Sungur, H.; Hartmann, T.; van Koningsbruggen, G.M. Abstract Mindsets Increase Believability of Spatially Distant Online Messages. Front. Psychol. 2016, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Cancino-Montecinos, S.; Björklund, F.; Lindholm, T. Dissonance and Abstraction: Cognitive Conflict Leads to Higher Level of Construal: Dissonance and Abstraction. Eur. J. Soc. Psychol. 2018, 48, 100–107. [Google Scholar] [CrossRef]
- Li, X.; Chen, G.; Yang, C. How Cognitive Conflict Affects Judgments of Learning: Evaluating the Contributions of Processing Fluency and Metamemory Beliefs. Mem. Cogn. 2021, 49, 912–922. [Google Scholar] [CrossRef]
- Massara, F.; Scarpi, D.; Porcheddu, D. Can Your Advertisement Go Abstract Without Affecting Willingness to Pay?: Product-Centered versus Lifestyle Content In Luxury Brand Print Advertisements. JAR 2020, 60, 28–37. [Google Scholar] [CrossRef]
- Kuipers, J.R.; Jones, M.W.; Thierry, G. Abstract Images and Words Can Convey the Same Meaning. Sci. Rep. 2018, 8, 7190. [Google Scholar] [CrossRef] [Green Version]
- Warell, A. Design Syntactics: A Functional Approach to Visual Product form Theory, Model, and Methods. Ph.D. Thesis, Chalmers University of Technology, Göteborg, Sweden, 2021. [Google Scholar]
- Mcdougall, S.J.P.; Curry, M.B.; de Bruijn, O. Measuring Symbol and Icon Characteristics: Norms for Concreteness, Complexity, Meaningfulness, Familiarity, and Semantic Distance for 239 Symbols. Behav. Res. Methods Instrum. Comput. 1999, 31, 487–519. [Google Scholar] [CrossRef] [Green Version]
- Shen, Z.; Zhang, L.; Xiao, X.; Li, R.; Liang, R. Icon Familiarity Affects the Performance of Complex Cognitive Tasks. i-Perception 2020, 11, 204166952091016. [Google Scholar] [CrossRef]
- Silvennoinen, J.; Kujala, T.; Jokinen, J.P. Semantic distance as a critical factor in icon design for in-car infotainment systems. Appl. Ergon. 2017, 65, 369–381. [Google Scholar] [CrossRef] [Green Version]
- Lee, A.Y.; Aaker, J.L. Bringing the frame into focus: The influence of regulatory fit on processing fluency and persuasion. J. Pers. Soc. Psychol. 2004, 2, 205–218. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.; Liu, W.; Yang, Y. The Influence of Concreteness of Concepts on the Integration of Novel Words into the Semantic Network. Front. Psychol. 2017, 8, 2111. [Google Scholar] [CrossRef] [Green Version]
- Sadoski, M.; Kealy, W.A.; Goetz, E.T.; Paivio, A. Concreteness and Imagery Effects in the Written Composition of Definitions. J. Educ. Psychol. 1997, 89, 518–526. [Google Scholar] [CrossRef]
- Hayashi, A.; Okamoto, Y.; Yoshimura, S.; Yoshino, A.; Toki, S.; Yamashita, H.; Matsuda, F.; Yamawaki, S. Visual imagery while reading concrete and abstract Japanese kanji words: An fMRI study. Neurosci. Res. 2014, 79, 61–66. [Google Scholar] [CrossRef] [Green Version]
- Papagno, C. The neural correlates of abstract and concrete words. Handb. Clin. Neurol. 2022, 187, 263–275. [Google Scholar] [CrossRef]
- Hemati, S.; Hossein-Zadeh, G.-A. Distinct Functional Network Connectivity for Abstract and Concrete Mental Imagery. Front. Hum. Neurosci. 2018, 12, 515. [Google Scholar] [CrossRef] [Green Version]
- West, W.C.; Holcomb, P.J. Imaginal, semantic, and surface-level processing of concrete and abstract words: An electrophysiological investigation. J. Cogn. Neurosci. 2000, 12, 1024–1037. [Google Scholar] [CrossRef]
- Wang, X.; Bi, Y. Idiosyncratic Tower of Babel: Individual Differences in Word-Meaning Representation Increase as Word. Abstractness Increases. Psychol. Sci. 2021, 32, 1617–1635. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.P.; Altmann, G.T.M.; Yee, E. Situational systematicity: A role for schema in understanding the differences between. abstract and concrete concepts. Cogn. Neuropsychol. 2020, 37, 142–153. [Google Scholar] [CrossRef] [PubMed]
Ci + Ct (n = 40) | Ci + At (n = 40) | Ai + Ct (n = 40) | Ai + At (n = 40) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
M | ±SD | M | ±SD | M | ±SD | M | ±SD | F | p | |
Graphic complexity | 3.00 | ±0.60 | 3.10 | ±0.71 | 3.15 | ±0.77 | 3.25 | ±0.81 | 0.822 | 0.483 |
Graphic familiarity | 3.25 | ±0.90 | 3.13 | ±0.79 | 3.30 | ±0.91 | 3.27 | ±0.87 | 0.319 | 0.812 |
Concrete icons (n = 80) | Abstract icons (n = 80) | |||||||||
M | ±SD | M | ±SD | t | p | |||||
Graphic semantic distance | 3.85 | ±0.79 | 2.95 | ±0.73 | 7.900 | 0.000 | ||||
Graphic concreteness | 3.91 | ±0.74 | 2.99 | ±0.86 | 7.233 | 0.000 | ||||
Concrete text (n = 80) | Abstract text (n = 80) | |||||||||
M | ±SD | M | ±SD | t | p | |||||
Text concreteness | 3.625 | ±0.68 | 2.92 | ±0.76 | 6.061 | 0.000 |
High Construal Level | Low Construal Level | |
---|---|---|
n | 32 | 32 |
Sex | Male = 16; female = 16 | Male = 14; female = 18 |
Age | M = 25.38; SD = 1.13 | M = 26.06; SD = 1.32 |
Response Time(s) | Match Rate | |||
---|---|---|---|---|
M | ±SD | M | ±SD | |
Ci + Ct | 789.253 | ±8.279 | 4.699 | ±0.277 |
Ci + At | 1036.310 | ±94.593 | 4.479 | ±0.293 |
Ai + Ct | 1072.674 | ±75.098 | 3.984 | ±0.587 |
Ai + At | 1161.170 | ±101.912 | 3.318 | ±0.726 |
Ci + Ct × HCL | 787.580 | ±7.972 | 4.709 | ±0.291 |
Ci + Ct × LCL | 790.927 | ±8.365 | 4.688 | ±0.268 |
Ci + At × HCL | 1016.735 | ±32.973 | 4.479 | ±0.294 |
Ci + At × LCL | 1055.884 | ±127.696 | 4.323 | ±0.392 |
Ai + Ct × HCL | 1039.184 | ±42.008 | 4.323 | ±0.392 |
Ai + Ct × LCL | 1106.164 | ±85.914 | 3.645 | ±0.555 |
Ai + At × HCL | 1096.392 | ±65.734 | 3.739 | ±0.492 |
Ai + At × LCL | 1225.948 | ±90.130 | 2.897 | ±0.680 |
Source of Variance | Response Time | Match Rate | ||||
---|---|---|---|---|---|---|
F | p | η2 | F | p | η2 | |
Combination design type | 332.055 | 0.000 | 0.801 | 1687.105 | 0.000 | 0.953 |
Construal level | 46.740 | 0.000 | 0.159 | 430.062 | 0.000 | 0.634 |
Design type × construal level | 9.305 | 0.000 | 0.101 | 57.68 | 0.000 | 0.411 |
Direct Effect of Combination Design Type | ||||
Coeff | Boot-S.E | BootLLCI | BootULCI | |
Constant | −1.143 | 0.033 | −1.207 | −1.079 |
Ci + At | 1.416 | 0.071 | 1.272 | 1.554 |
Ai + Ct | 1.453 | 0.056 | 1.349 | 1.570 |
Ai + At | 1.703 | 0.096 | 1.520 | 1.895 |
Indirect Effect of Combination Design Type × Construal Level | ||||
Coeff | Boot-S.E | BootLLCI | BootULCI | |
Ci + At | −0.062 | 0.053 | −0.172 | 0.035 |
Ai + Ct | −0.303 | 0.076 | −0.455 | −0.163 |
Ai + At | −0.378 | 0.096 | −0.584 | −0.199 |
Index of Moderated Mediation | ||||
Index | Boot-S.E | BootLLCI | BootULCI | |
−0.337 | 0.037 | −0.407 | −0.264 |
Direct Effect of Combination Design Type | ||||
Coeff | Boot-S.E | BootLLCI | BootULCI | |
Constant | 0.908 | 0.029 | 0.851 | 0.966 |
Ci + At | −0.682 | −0.682 | −0.732 | −0.632 |
Ai + Ct | −1.053 | −1.056 | −1.172 | −0.944 |
Ai + At | −1.898 | −1.899 | −2.055 | −1.761 |
Indirect Effect of Combination Design Type × Construal Level | ||||
Coeff | Boot-S.E | BootLLCI | BootULCI | |
Ci + At | 0.065 | 0.054 | −0.037 | 0.173 |
Ai + Ct | 0.316 | 0.072 | 0.178 | 0.461 |
Ai + At | 0.394 | 0.094 | 0.218 | 0.585 |
Index of Moderated Mediation | ||||
Index | Boot-S.E | BootLLCI | BootULCI | |
0.351 | 0.282 | 0.293 | 0.405 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Li, Y.; Lin, Y.; Chen, M.; Guo, Q.; Zhang, Z. Research on the Influence of User and Graphic–Text Combined Icon Construal Level Fitting on Visual Cognition. Appl. Sci. 2022, 12, 10111. https://doi.org/10.3390/app121910111
Zhu Y, Li Y, Lin Y, Chen M, Guo Q, Zhang Z. Research on the Influence of User and Graphic–Text Combined Icon Construal Level Fitting on Visual Cognition. Applied Sciences. 2022; 12(19):10111. https://doi.org/10.3390/app121910111
Chicago/Turabian StyleZhu, Yanfei, Ying Li, Yun Lin, Mo Chen, Qi Guo, and Zhisheng Zhang. 2022. "Research on the Influence of User and Graphic–Text Combined Icon Construal Level Fitting on Visual Cognition" Applied Sciences 12, no. 19: 10111. https://doi.org/10.3390/app121910111
APA StyleZhu, Y., Li, Y., Lin, Y., Chen, M., Guo, Q., & Zhang, Z. (2022). Research on the Influence of User and Graphic–Text Combined Icon Construal Level Fitting on Visual Cognition. Applied Sciences, 12(19), 10111. https://doi.org/10.3390/app121910111