Propolis as Natural Product in the Oral Cavity Bacterial Infections Treatment: A Systematic Review
Abstract
:1. Introduction
2. Search Methodology
3. Antibacterial Properties of Propolis: Mode of Action
4. Results
4.1. Selected Studies
4.2. Antibacterial Activity of Propolis in Oral Cavity Bacterial Infections
4.2.1. In Vitro Studies
Bacteria | MIC | MBC | Reference |
---|---|---|---|
Actinomyces naeslundii | 51.2 + 44.4 μg/mL * | 89.6 + 98.1μg/mL * | [19] |
800–1600 μg/mL | >1600 μg/mL | [69] | |
≤0.63% | [36] | ||
Actinomyces odontolyticus | 12.5 μg/mL | [7] | |
Aggregatibacter actinomycetemcomitans | 30–60 μg/mL | 200–400 μg/mL | [63] |
64 μg/mL | 128 μg/mL | [77] | |
Eikenella corrodens | 12.5 μg/mL | [7] | |
Fusobacterium necrophorum | 30–60 μg/mL | 200–400 μg/mL | [63] |
Fusobacterium nucleatum | 256.0 + 147.8 μg/mL * | 358.4 + 132.1 μg/mL * | [19] |
30–60 μg/mL | 200-400 μg/mL | [63] | |
12.5 μg/mL | [7] | ||
Lactobacillus acidophilus | 48.8 + 46.8 μg/mL * | 68.8 + 54.8 μg/mL * | [19] |
4.0 μg/mL | 4–8 μg/mL | [77] | |
≤0.63% | [36] | ||
600 µg/mL | [90] | ||
12.5 μg/mL (propolis solutions dissolved in benzene, diethyl ether and methyl chloride) 6.3 μg/mL (propolis solutions dissolved in acetone) | [7] | ||
4.5 µg/mL (cold ethanolic propolis) 5 µg/mL (hot ethanolic propolis) | [94] | ||
5000 μg/mL | 5000 μg/mL | [100] | |
Lactobacillus casei | 200–300 μg/mL | [62] | |
250 μg/mL (ethanol extract) | 250 μg/mL (ethanol extract) | [15] | |
29.76 mg/mL | 59.52 mg/mL | [14] | |
0.6–1.2 mg/mL | 0.6–1.2 mg/mL | [75] | |
Lactobacillus salivarius subsp. salivarius | 2.0 μg/mL | 4.0 μg/mL | [77] |
Lactobacillus spp. | 8.0 mg/mL | 16 mg/mL | [67] |
50 mg/mL (aqueous extract) 100 mg/mL (hydroalcoholic extract) | 25 mg/mL (aqueous extract) | [91] | |
0.7 mg/mL | 5.91 mg/mL | [70] | |
Peptostreptococcus anaerobius | 20.8 + 10.1 μg/mL * | 32.0 + 18.4 μg/mL * | [19] |
Peptostreptococcus micros | 16.0 + 9.2 μg/mL * | 19.2 + 11.4μg/mL * | [19] |
Porphyromonas gingivalis | 30–50 μg/mL | 200–400 μg/mL | [63] |
294.4 + 198.2 μg/mL * | 384.0 + 170.6 μg/mL * | [19] | |
32 μg/mL | 64 μg/mL | [77] | |
500 μg/mL | [92] | ||
Prevotella intermedia | 8.0 μg/mL | 8.0 μg/mL | [77] |
Prevotella melaninogenica | 204.8 + 66.0 μg/mL * | 381.6 + 132.1 μg/mL * | [19] |
Prevotella oralis | 230.4 + 54.0 μg/mL * | 460.8 + 107.9 μg/mL * | [19] |
Streptococcus bovis | 12.5 μg/mL | 50 μg/mL | [34] |
Streptococcus cricetus | 25 μg/mL (EEP BA), 50 μg/mL (EEP RS), 400 μg/mL (EEP MG) | 100 μg/mL (EEP BA), 200 μg/mL (EEP RS), >800 μg/mL (EEP MG) | [21] |
Streptococcus equinus | 12.5 μg/mL | 100 μg/mL | [34] |
Streptococcus gordonii | 1.25% | [36] | |
Streptococcus mitis | 20 μg/mL | [62] | |
12.5 μg/mL | [7] | ||
Streptococcus mitis biovar 1 | 6.25–12.5 μg/mL | 50 μg/mL | [34] |
Streptococcus mutans | 50 μg/mL (EEP BA), 100 μg/mL (EEP RS), 400 μg/mL (EEP MG) | 400 μg/mL (EEP BA), 400 μg/mL (EEP RS), >800 μg/mL (EEP MG) | [21] |
50–100 μg/mL | 800–1600 μg/mL | [59] | |
2.5–10 mg/mL | [60] | ||
8.0 μg/mL | [61] | ||
200 μg/mL | [62] | ||
25–50 μg/mL | 200–400 μg/mL | [63] | |
100−200 μg/mL | 100−200 μg/mL | [68] | |
0.17 mg/mL | [64] | ||
25–50 μg/mL | >1600 μg/mL | [69] | |
35 μg/mL | [65] | ||
1.10 mg/mL | 9.01 mg/mL | [70] | |
11.12 mg/mL | [66] | ||
250 μg/mL (ethanol extract) 500 μg/mL (water extract) | 250 μg/mL (ethanol extract) 20 mg/mL (water extract) | [15] | |
4.0 μg/mL | 8.0 μg/mL | [77] | |
50–100 μg/mL (OP1–OP4) 100–200 μg/mL (OP5, OP7) 400–800 μg/mL (OP6) | 400–800 μg/mL (OP1, OP7) 800–1600 μg/mL (OP3) >1600 μg/mL (OP2, OP4–OP6) | [44] | |
≤4.0 mg/mL (acetone extract, ethyl acetate extract), ≤1.0 mg/mL (ethanol extract), ≤2.0 mg/mL (methanol extract), ≤4.0 mg/mL (DMSO extract) | [31] | ||
1.25% | [36] | ||
292.97 μg/mL | 1171.87 μg/mL | [85] | |
6.25–25 μg/mL | 50–100 μg/mL | [34] | |
7.44 mg/mL | >29.76 mg/mL | [14] | |
300 µg/mL | [90] | ||
0.90 to 8.22 mg/mL | [72] | ||
15.7 μg/mL (EEP) | [74] | ||
0.6–1.2 mg/mL | 0.6–1.2 mg/mL | [75] | |
50 mg/mL (aqueous extract) 100 mg/mL (hydroalcoholic extract) | 25 mg/mL (aqueous extract) | [91] | |
12.5 μg/mL | [7] | ||
625 μg/mL | [97] | ||
250 μg/mL | [92] | ||
5.0 µg/mL (cold ethanolic propolis and hot ethanolic propolis) | [94] | ||
2.65 mg/mL | [87] | ||
240 µg/mL | 480 µg/mL | [98] | |
1.16 μg/mL | [93] | ||
Streptococcus oralis | 12.5–25 μg/mL (OP1–OP3) 25–50 μg/mL (OP4–OP7) | 100–200 μg/mL (OP1, OP2, OP7) 200–400 μg/mL (OP3, OP6) 400–800 μg/mL (OP4, OP5) | [44] |
0.3 mg/mL (German ethanol extract) 0.1 mg/mL (Czech ethanol extract, Irish ethanol extract) 1.2 mg/mL (German water extract) | 0.6 mg/mL (German ethanol extract) 0.3 mg/mL (Czech ethanol extract, Irish ethanol extract) 5.0 mg/mL (German water extract) | [84] | |
25 μg/mL | 50 μg/mL | [34] | |
125 μg/mL | [92] | ||
Streptococcus parasanguinis | 25 μg/mL | 200 μg/mL | [34] |
Streptococcus pyogenes | 5–10 mg/mL | [60] | |
0.6 mg/mL (German ethanol extract, German water extract) 0.08 mg/mL (Czech ethanol extract, Irish ethanol extract) | 1.2 mg/mL (German ethanol extract) 0.6 mg/mL (Irish ethanol extract) 0.1 mg/mL (Czech ethanol extract) 2.5 mg/mL (German water extract) | [84] | |
156 µg/mL | [89] | ||
8.0 μg/mL | [76] | ||
512–1024 μg/mL | [71] | ||
Streptococcus sanguinis | 30 μg/mL | [62] | |
1.25% | [36] | ||
7.44 mg/mL | >29.76 mg/mL | [14] | |
12.5 μg/mL | [7] | ||
125 μg/mL | [92] | ||
60 μg/mL | 120 μg/mL | [98] | |
1.8 μg/mL | [93] | ||
Streptococcus salivarius | 5–20 mg/mL | [60] | |
90–100 μg/mL | [62] | ||
500 μg/mL (ethanol extract) | 500 μg/mL (ethanol extract) | [15] | |
0.6–1.2 mg/mL | 0.6–1.2 mg/mL | [75] | |
≤1 mg/mL (ethyl acetate extract), ≤2 mg/mL (acetone extract, methanol extract) | [31] | ||
0.6–1.2 mg/mL | 0.6–1.2 mg/mL | [75] | |
3.12–25 μg/mL | 50–100 μg/mL | [34] | |
7.44 mg/mL | 7.44 mg/mL | [14] | |
1.16 μg/mL | [93] | ||
Streptococcus sobrinus | 25 μg/mL (EEP BA), 50 μg/mL (EEP RS), 400 μg/mL (EEP MG) | 100 μg/mL (EEP BA), 200 μg/mL (EEP RS), >800 μg/mL (EEP MG) | [21] |
25–100 μg/mL | 200–800 μg/mL | [59] | |
5–20 mg/mL | [60] | ||
2 μg/mL | [61] | ||
200 μg/mL | [62] | ||
25–50 μg/mL | 200–400 μg/mL | [63] | |
<6.25 μg/mL | 50−100 μg/mL | [68] | |
70 μg/mL | [65] | ||
0.90–8.22 mg/mL | [72] | ||
4.0–8.0 μg/mL | 8.0 μg/mL | [77] | |
25–50 μg/mL (OP2) 50–100 μg/mL (OP1, OP3, OP4) 100–200 μg/mL (OP7) 400–800 μg/mL (OP5, OP6) | >1600 μg/mL (OP1–OP7) | [44] | |
1.25% | [36] | ||
25 μg/mL | 100 μg/mL | [34] | |
625 μg/mL | [97] | ||
Streptococcus uberis | 25 μg/mL | 100 μg/mL | [34] |
Veillonella parvula | 20.8 + 10.1 μg/mL * | 32.0 + 18.4 μg/mL * | [19] |
4.2.2. In Vivo Studies
5. Discussion
- Composition: depends on the geographic specificity of the region, ecoregions, flora, and on when and how bee products were collected;
- The content of the nutritional and active ingredients;
- The storage condition: raw propolis at 4°C or -20°C in dark for 30 days;
- Different assessment methods, e.g., GC-MS to analyze the chemical composition of raw propolis, HPLC in gradient mode coupled with PAD to analyze the most appropriate ingredients of propolis, headspace solid-phase microextraction (HS-SPME) techniques to establish the fingerprint of raw propolis samples from various regions, and electrochemical techniques to determine the antioxidant properties of propolis samples at an early stage.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wayzata Dental. Available online: https://www.wayzatadental.com/dental-statistics (accessed on 10 March 2022).
- Oral Health Statistics in the UK. Available online: https://www.dentalhealth.org/oral-health-statistics (accessed on 10 March 2022).
- Delivering Better Oral Health: An Evidence-Based Toolkit for Prevention. Available online: https://www.gov.uk/government/publications/delivering-better-oral-health-an-evidence-based-toolkit-for-prevention/chapter-5-periodontal-diseases (accessed on 10 March 2022).
- Niedzielska, I.; Puszczewicz, Z.; Mertas, A.; Niedzielski, D.; Różanowski, B.; Baron, S.; Konopka, T.; Machorowska-Pieniążek, A.; Skucha-Nowak, M.; Tanasiewicz, M.; et al. The influence of ethanolic extract of Brazilian green propolis gel on hygiene and oral microbiota in patients after mandible fractures. BioMed. Res. Int. 2016, 2016, 9190814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brailsford, S.R.; Tregaskis, R.B.; Leftwich, H.S.; Beighton, D. The predominant Actinomyces spp. isolated from infected dentin of active root caries lesions. J. Dent. Res. 1999, 78, 1525–1534. [Google Scholar] [CrossRef] [PubMed]
- Koo, H.; Gomes, B.P.; Rosalen, P.L.; Ambrosano, G.M.; Park, Y.K.; Cury, J.A. In vitro antimicrobial activity of propolis and Arnica montana against oral pathogens. Arch. Oral Biol. 2000, 45, 141–148. [Google Scholar] [CrossRef]
- Tambur, Z.; Miljković-Selimović, B.; Opačić, D.; Vuković, B.; Malešević, A.; Ivančajić, L.; Aleksić, E. Inhibitory effects of propolis and essential oils on oral bacteria. J. Infect. Dev. Ctries. 2021, 15, 1027–1031. [Google Scholar] [CrossRef] [PubMed]
- Wiatrak, K.; Morawiec, T.; Rój, R.; Mertas, A.; Machorowska-Pieniążek, A.; Kownacki, P.; Tanasiewicz, M.; Skucha-Nowak, M.; Baron, S.; Piekarz, T.; et al. Oral health of patients treated with acrylic partial dentures using a toothpaste containing bee product. Evid.-Based Complement. Altern. Med. 2017, 2017, 4034179. [Google Scholar] [CrossRef] [PubMed]
- Dina, M.N.; Mărgărit, R.; Andrei, O.C. Pontic morphology as local risk factor in root decay and periodontal disease. Room J. Morphol. Embryol. 2013, 54, 361–364. [Google Scholar]
- Jabuk, S.I.; Rafla’a, S.H.; Hussein, Z.M.A.; Najam, H.M.; Naji, N.M. Isolation and identification of bacteria and parasite from teeth caries and periodontal. Adv. Environ. Biol 2015, 9, 50–53. [Google Scholar]
- Mantzourani, M.; Fenlion, M.; Beighton, D. Association between Bifidobacteriaceae and the clinical severity of root caries lesions. Oral Microbiol. Immunol. 2009, 24, 32–37. [Google Scholar] [CrossRef]
- Panesar, P.S.; Kumari, S. Lactulose: Production, purification and potential applications. Biotech. Adv. 2011, 29, 940–948. [Google Scholar] [CrossRef] [PubMed]
- Yap, D.Y.; To, K.K.; Yip, T.P.; Lui, S.L.; Chan, T.M.; Lai, K.N.; Lo, W.K. Streptococcus bovis periodontitis complicating peritoneal dialysis- a review of 10 years’ experience. Perit. Dial. Int. 2012, 32, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.L.; Monteiro, A.S.N.; Guimarães, J.E.C.; Guimarães, M.B.D.C.T.; da Silva, R.F.; Cabral, L.M.; Farah, A.; Depaula, J.; Romanos, M.T.V.; Maia, L.C.; et al. Cytotoxic and antibacterial effect of a red propolis mouthwash, with or without fluoride, on the growth of a cariogenic biofilm. Arch. Oral Biol. 2019, 107, 104512. [Google Scholar] [CrossRef] [PubMed]
- Kashi, T.S.J.; Kermanshahi, R.K.; Erfan, M.; Dastjerdi, E.V.; Rezaei, Y.; Tabatabaei, F.S. Evaluating the in-vitro antibacterial effect of Iranian propolis on oral microorganisms. Iran. J. Pharm. Res. 2011, 10, 363–368. [Google Scholar]
- Peycheva, S.; Apostolova, E.; Gardjeva, P.; Peychev, Z.; Kokova, V.; Angelov, A.; Slavov, A.; Murdjeva, M. Effect of Bulgarian propolis on the oral microflora in adolescents with plaque-induced gingivitis. Rev. Bras. Farm. 2019, 29, 271–277. [Google Scholar] [CrossRef]
- He, P.; Francois, K.; Missaghian, N.; Le, A.D.; Flynn, T.R.; Shanti, R.M. Are bacteria just bystanders in the pathogenesis of inflammatory jaw conditions? J. Oral Maxillofac. Surg. 2022, 80, 1094–1102. [Google Scholar] [CrossRef] [PubMed]
- Martin, F.E.; Nadkarni, M.A.; Jaques, N.A.; Hunter, N. Quantitative microbiological study of human carious dentine by culture and real-time PCR: Association of anaerobes with histopathological changes in chronic pulpitis. J. Clin. Microbiol. 2002, 40, 1698–1704. [Google Scholar] [CrossRef] [Green Version]
- Koru, O.; Toksoy, F.; Acikel, C.H.; Tunca, Y.M.; Baysallar, M.; Uskudar Guclu, A.; Akca, E.; Tuylu, A.O.; Sorkun, K.; Tanyuksel, M.; et al. In vitro antimicrobial activity of propolis samples from different geographical origins against certain oral pathogens. Anaerobe 2007, 13, 140–145. [Google Scholar] [CrossRef]
- Kouidhi, B.; Zmantar, T.; Hentati, H.; Bakhrouf, A. Cell surface hydrophobicity, biofilm formation, adhesives properties and molecular detection of adhesins genes in Staphylococcus aureus associated to dental caries. Microb. Pathog. 2010, 49, 14–22. [Google Scholar] [CrossRef]
- Koo, H.; Rosalen, P.L.; Cury, J.A.; Ambrosano, G.M.; Murata, R.M.; Yatsuda, R.; Ikegaki, M.; Alencar, S.M.; Park, Y.K. Effect of a new variety of Apis mellifera propolis on mutans Streptococci. Curr. Microbiol. 2000, 41, 192–196. [Google Scholar] [CrossRef]
- Refoua, Y. A study of Streptococcus viridans in the maxillofacial region. Front. Dent. 2005, 2, 174–177. [Google Scholar]
- Piekarz, T.; Mertas, A.; Wiatrak, K.; Rój, R.; Kownacki, P.; Śmieszek-Wilczewska, J.; Kopczyńska, E.; Wrzoł, M.; Cisowska, M.; Szliszka, E.; et al. The influence of toothpaste containing Australian Melaleuca alternifolia oil and ethanolic extract of polish propolis on oral hygiene and microbiome in patients requiring conservative procedures. Molecules 2017, 22, 1957. [Google Scholar] [CrossRef] [Green Version]
- Moore, W.E.; Holdeman, L.V.; Smibert, R.M.; Good, I.J.; Burmeiser, J.A.; Palcanis, K.G.; Ranney, R.R. Bacteriology of experimental gingivitis in young adult humans. Infect. Immun. 1982, 38, 651–667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Faveri, M.; Pupio, G.C.; Koo, H.; Bueno-Silva, B.; de Oliveira, K.M.; Figueiredo, L.C.; Rosalen, P.L.; Hayacibara, R.M.; Fujimaki, M. The effect of Brazilian propolis type-3 against oral microbiota and volatile sulfur compounds in subjects with morning breath malodor. Clin. Oral Investig. 2021, 26, 1531–1541. [Google Scholar] [CrossRef] [PubMed]
- Pundir, A.J.; Vishwanath, A.; Pundir, S.; Swati, M.; Banchhor, S.; Jabee, S. One-stage full mouth disinfection using 20% propolis hydroalcoholic solution: A clinico-microbiologic study. Contemp. Clin. Dent. 2017, 8, 416–420. [Google Scholar] [CrossRef] [PubMed]
- Sanghani, N.N.; Shivaprasad, B.M.; Savita, S. Health from the hive: Propolis as an adjuvant in the treatment of chronic periodontitis—A clinicomicrobiologic study. J. Clin. Diagn. Res. 2014, 8, ZC41–ZC44. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.; Coogan, M.; Galpin, J.S. Periodontal pathogens in subgingival plaque of HIV-positive subjects with chronic periodontitis. Oral Microbiol. Immunol. 2003, 18, 199–201. [Google Scholar] [CrossRef] [PubMed]
- Lisbona-González, M.J.; Muñoz-Soto, E.; Lisbona-González, C.; Vallecillo-Rivas, M.; Diaz-Castro, J.; Moreno-Fernandez, J. Effect of propolis paste and mouthwash formulation on healing after teeth extraction in periodontal disease. Plants 2021, 10, 1603. [Google Scholar] [CrossRef] [PubMed]
- Brito, F.; Zaltman, C.; Carvalho, A.T.P.; Fischer, R.G.; Persson, R.; Gustafsson, A.; Figueredo, C.M.S. Subgingival microflora in inflammatory bowel disease patients with untreated periodontitis. Eur. J. Gastroenterol. Hepatol. 2013, 25, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, H.H. In vitro antibacterial activity of propolis alum, miswak, green and black tea, cloves extracts against Porphyromonas gingivalis isolated from periodontitis patients in Hilla City, Iraq. Am. J. Phytomed. Clin. Ther. 2013, 1, 140–148. [Google Scholar]
- Gebara, E.C.; Pustiglioni, A.N.; de Lima, L.A.; Mayer, M.P. Propolis extract as an adjuvant to periodontal treatment. Oral Health Prev. Dent. 2003, 1, 29–35. [Google Scholar]
- Fosse, T.; Madinier, I.; Hitzig, C.; Charbit, Y. Prevalence of beta-lactamase-producing strains among 149 anaerobic gram-negative rods isolated from periodontal pockets. Oral Microbiol. Immunol. 1999, 14, 352–357. [Google Scholar] [CrossRef]
- Asgharpour, F.; Moghadamnia, A.A.; Zabihi, E.; Kazemi, S.; Namvar, A.E.; Gholinia, H.; Motallebnejad, M.; Nouri, H.R. Iranian propolis efficiently inhibits growth of oral streptococci and cancer cell lines. BMC Complement. Altern. Med. 2019, 19, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colombo, A.V.; Silva, C.M.; Haffajee, A.; Colombo, A.P.V. Identification of oral bacteria associated with crevicular epithelial cells from chronic periodontitis lesions. J. Med. Microbiol. 2006, 55, 609–615. [Google Scholar] [CrossRef] [PubMed]
- Habluetzel, A.; Schmid, C.; Carvalho, T.S.; Lussi, A.; Eick, S. Impact of honey on dental erosion and adhesion of early bacterial colonizers. Sci. Rep. 2018, 8, 10936. [Google Scholar] [CrossRef] [Green Version]
- Skaba, D.; Morawiec, T.; Tanasiewicz, M.; Mertas, A.; Bobela, E.; Szliszka, E.; Skucha-Nowak, M.; Dawiec, M.; Yamamoto, R.; Ishiai, S.; et al. Influence of the toothpaste with Brazilian ethanol extract propolis on the oral cavity health. Evid.-Based Complement. Altern. Med. 2013, 2013, 215391. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Sunkara, M.S.; Pantareddy, I.; Sudhakar, S. Comparison of plaque inhibiting efficacies of Aloe vera and propolis tooth gels: A randomized PCR study. J. Clin. Diagn. Res. 2015, 9, ZC01–ZC03. [Google Scholar] [CrossRef] [PubMed]
- Mashima, I.; Fujita, M.; Nakatsuka, Y.; Kado, T.; Furuichi, Y.; Heratuti, S.; Nakazawa, F. The distribution and frequency of oral Veillonella spp. associated with chronic periodontitis. Medicine 2015, 4, 150–160. [Google Scholar] [CrossRef]
- Sykes, E.A.; Wu, V.; Beyea, M.M.; Simpson, M.T.W.; Beyea, J.A. Pharyngitis: Approach to diagnosis and treatment. Can. Fam. Physician 2020, 66, 251–257. [Google Scholar] [PubMed]
- Sakamoto, M.; Umeda, M.; Ishikawa, I.; Benno, Y. Prevotella multiformis sp. nov., isolated from human subgingival plaque. Int. J. Syst. Evol. Microbiol 2005, 55, 815–819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lisbona-González, M.J.; Muñoz-Soto, E.; Reyes-Botella, C.; Olmedo-Gaya, M.V.; Diaz-Castro, J.; Moreno-Fernandez, J. Study of the antimicrobial effect of an ethanolic extract of propolis in periodontal disease. Appl. Sci. 2021, 11, 7463. [Google Scholar] [CrossRef]
- Vanni, R.; Waldner-Tomic, N.M.; Belibasakis, G.N.; Attin, T.; Schmidlin, P.R.; Thurnheer, T. Antibacterial efficacy of a propolis toothpaste and mouthrinse against a supragingival multispecies biofilm. Oral Health Prev. Dent. 2015, 13, 531–535. [Google Scholar] [CrossRef] [PubMed]
- Reyes, C.P.A.; Dalmacio, L.M.M. Bacterial diversity in the saliva and plaque of caries-free and caries-active Filipino adults. Med. Biol. 2011, 141, 217–227. [Google Scholar]
- Otręba, M.; Marek, Ł.; Tyczyńska, N.; Stojko, J.; Rzepecka-Stojko, A. Bee venom, honey, and royal jelly in the treatment of bacterial infections of the oral cavity: A review. Life 2021, 11, 1311. [Google Scholar] [CrossRef]
- Ravalia, M.; Wander, P. Bees and dentistry: Are the two linked? BDJ Pr. 2020, 33, 26–28. [Google Scholar] [CrossRef]
- Abdelrazeg, S.; Hussin, H.; Salih, M.; Shaharuddin, B. Propolis composition and applications in medicine and health. Int. Med. J. 2020, 25, 1505–1542. [Google Scholar]
- Szabat, P.; Poleszak, J.; Szabat, M.; Boreński, G.; Wójcik, M.; Milanowska, J. Apitherapy—the medical use of bee products. J. Educ. Health Sport 2019, 9, 384–396. [Google Scholar] [CrossRef]
- Przybyłek, I.; Karpiński, T.M. Antibacterial properties of propolis. Molecules 2019, 24, 2047. [Google Scholar] [CrossRef] [Green Version]
- Hassan, G.; Ghafoor, S. Herbal Medicines: An adjunct to current treatment modalities for periodontal diseases. Biomedica 2020, 36, 15–22. [Google Scholar] [CrossRef]
- Alvarenga, L.; Cardozo, L.; Borges, N.A.; Chermut, T.R.; Ribeiro, M.; Leite, M., Jr.; Shiels, P.G.; Stenvinkel, P.; Mafra, D. To bee or not to bee? The bee extract propolis as a bioactive compound in the burden of lifestyle diseases. Nutrition 2021, 83, 111094. [Google Scholar] [CrossRef] [PubMed]
- Braakhuis, A. Evidence on the health benefits of supplemental propolis. Nutrients 2019, 11, 2705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, M.V.D.; Moura, N.G.D., Jr.; Motoyama, A.B.; Ferreira, V.M. A review of the potential therapeutic and cosmetic use of propolis in topical formulations. J. Appl. Pharm. Sci. 2020, 10, 131–141. [Google Scholar] [CrossRef] [Green Version]
- Biharee, A.; Sharma, A.; Kumar, A.; Jaitak, V. Antimicrobial flavonoids as a potential substitute for overcoming antimicrobial resistance. Fitoterapia 2020, 146, 104720. [Google Scholar] [CrossRef] [PubMed]
- Almuhayawi, M.S. Propolis as a novel antibacterial agent. Saudi J. Biol. Sci. 2020, 27, 3079–3086. [Google Scholar] [CrossRef] [PubMed]
- Andre, C.B.; Chan, D.C.; Giannini, M. Antibacterial-containing dental adhesives’ effects on oral pathogens and on Streptococcus mutans biofilm: Current perspectives. Am. J. Dent. 2018, 31, 37B–41B. [Google Scholar] [PubMed]
- Xie, Y.; Yang, W.; Tang, F.; Chen, X.; Ren, L. Antibacterial activities of flavonoids: Structure-activity relationship and mechanism. Curr. Med. Chem. 2015, 22, 132–149. [Google Scholar] [CrossRef] [PubMed]
- Cornara, L.; Biagi, M.; Xiao, J.; Burlando, B. Therapeutic properties of bioactive compounds from different honeybee products. Front. Pharm. 2017, 8, 412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duarte, S.; Koo, H.; Bowen, W.H.; Hayacibara, M.F.; Cury, J.A.; Ikegaki, M.; Rosalen, P.L. Effect of a novel type of propolis and its chemical fractions on glucosyltransferases and on growth and adherence of mutans Streptococci. Biol. Pharm. Bull. 2003, 26, 527–531. [Google Scholar] [CrossRef] [Green Version]
- Sawaya, A.C.H.F.; Souza, K.S.; Marcucci, M.C.; Cunha, I.B.S.; Shimizu, M.T. Analysis of the composition of Brazilian propolis extracts by chromatography and evaluation of their in vitro activity against gram-positive bacteria. Braz. J. Microbiol. 2004, 35, 104–109. [Google Scholar] [CrossRef] [Green Version]
- Uzel, A.; Sorkun, K.; Onçağ, O.; Cogŭlu, D.; Gençay, O.; Salih, B. Chemical compositions and antimicrobial activities of four different Anatolian propolis samples. Microbiol. Res. 2005, 160, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Bruschi, M.L.; Lara, E.H.G.; Martins, C.H.G.; Vinholis, A.H.C.; Casemiro, L.A.; Panzeri, H.; Gremião, M.P.D. Preparation and antimicrobial activity of gelatin microparticles containing propolis against oral pathogens. Drug Dev. Ind. Pharm. 2006, 32, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Paula, A.M.B.; Gomes, R.T.; Santiago, W.K.; Dias, R.S.; Cortés, M.E.; Santos, V.R. Susceptibility of oral pathogenic bacteria and fungi to Brazilian green propolis extract. Pharmacology 2006, 3, 467–473. [Google Scholar]
- Popova, M.P.; Chinou, I.B.; Marekov, I.N.; Bankova, V.S. Terpenes with antimicrobial activity from Cretan propolis. Phytochemistry 2009, 70, 1262–1271. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Kim, C.S.; Kim, B.H.; Ro, S.B.; Lim, Y.K.; Park, S.N.; Cho, E.; Ko, J.H.; Kwon, S.S.; Ko, Y.M.; et al. Antimicrobial effect of Korean propolis against the Mutans Streptococci isolated from Korean. J. Microbiol. 2011, 49, 161–164. [Google Scholar] [CrossRef] [PubMed]
- Liberio, S.A.; Pereira, A.L.; Dutra, R.P.; Reis, A.S.; Araújo, M.J.; Mattar, N.S.; Silva, L.A.; Ribeiro, M.N.S.; Nascimento, F.R.F.; Guerra, R.N.; et al. Antimicrobial activity against oral pathogens and immunomodulatory effects and toxicity of geopropolis produced by the stingless bee Melipona fasciculata Smith. BMC Complement. Altern. Med. 2011, 11, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kousedghi, H.; Ahangari, Z.; Eslami, G. Antibacterial activity of propolis and Ca(OH)2 against Lactobacillus, Enterococus facalis, Peptostreptococus and Candida albicans. Afr. J. Microbiol. Res. 2012, 6, 3510–3515. [Google Scholar] [CrossRef]
- Bueno-Silva, B.; Alencar, S.M.; Koo, H.; Ikegaki, M.; Silva, G.V.; Napimoga, M.H.; Rosalen, P.L. Anti-inflammatory and antimicrobial evaluation of neovestitol and vestitol isolated from Brazilian red propolis. J. Agric. Food Chem. 2013, 61, 4546–4550. [Google Scholar] [CrossRef]
- Da Cunha, M.G.; Franchin, M.; de Carvalho Galvão, L.C.; de Ruiz, A.L.; de Carvalho, J.E.; Ikegaki, M.; de Alencar, S.M.; Koo, H.; Rosalen, P.L. Antimicrobial and antiproliferative activities of stingless bee Melipona scutellaris geopropolis. BMC Complement. Altern. Med. 2013, 13, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Dziedzic, A.; Kubina, R.; Wojtyczka, R.D.; Kabała-Dzik, A.; Tanasiewicz, M.; Morawiec, T. The antibacterial effect of ethanol extract of polish propolis on mutans Streptococci and Lactobacilli isolated from saliva. Evid.-Based Complement. Altern. Med. 2013, 2013, 681891. [Google Scholar] [CrossRef] [Green Version]
- Speciale, A.; Costanzo, R.; Puglisi, S.; Musumeci, R.; Catania, M.R.; Caccamo, F.; Iauk, L. Antibacterial activity of propolis and its active principles alone and in combination with macrolides, beta-lactams and fluoroquinolones against microorganisms responsible for respiratory infections. J. Chemother. 2013, 18, 164–171. [Google Scholar] [CrossRef]
- Barrientos, L.; Herrera, C.L.; Montenegro, G.; Ortega, X.; Veloz, J.; Alvear, M.; Cuevas, A.; Saavedra, N.; Salazar, L.A. Chemical and botanical characterization of Chilean propolis and biological activity on cariogenic bacteria Streptococcus mutans and Streptococcus sobrinus. Braz. J. Microbiol. 2013, 44, 577–585. [Google Scholar] [CrossRef]
- Da Silva, J.L.D.C.; Silva, F.F.; de Souza, T.F.M.; Generoso, W.G.; Noronha, V.R.S.; Pereira, E.M.R.; De Luca, M.P.; Abreu, S.; Santos, V. Synergic effect of associated green, red and brown Brazilian propolis extract onto Streptococcus mutans and Streptococcus sanguinis. Afr. J. Pharm. Pharmacol. 2013, 7, 2006–2010. [Google Scholar] [CrossRef]
- Hatunoğlu, E.; Oztürk, F.; Bilenler, T.; Aksakallı, S.; Simşek, N. Antibacterial and mechanical properties of propolis added to glass ionomer cement. Angle Orthod. 2014, 84, 368–373. [Google Scholar] [CrossRef] [PubMed]
- De Luca, M.P.; Franca, J.R.; Macedo, F.A.; Grenho, L.; Cortes, M.E.; Faraco, A.A.; Moreira, A.N.; Santos, V.R. Propolis varnish: Antimicrobial properties against cariogenic bacteria, cytotoxicity, and sustained-release profile. Biomed. Res. Int. 2014, 2014, 348647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ophori, E.A.; Wemabu, E.C. Antimicrobial activity of propolis extract on bacteria isolated from nasopharynx of patients with upper respiratory tract infection admitted to Central Hospital, Benin City, Nigeria. Afr. J. Microbiol. Res. 2010, 4, 1719–1723. [Google Scholar] [CrossRef]
- Akca, A.E.; Akca, G.; Topçu, F.T.; Macit, E.; Pikdöken, L.; Özgen, I.Ş. The comparative evaluation of the antimicrobial effect of propolis with chlorhexidine against oral pathogens: An in vitro study. Biomed. Res. Int. 2016, 2016, 3627463. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, J.G.; Iorio, N.L.; Rodrigues, L.F.; Couri, M.L.; Farah, A.; Maia, L.C.; Antonio, A.G. Influence of a Brazilian wild green propolis on the enamel mineral loss and Streptococcus mutans’ count in dental biofilm. Arch. Oral Biol. 2016, 65, 77–81. [Google Scholar] [CrossRef]
- Ertürk, Ö.; Çil, E.; Yoloğlu, N.; Yavuz, C. An In vitro study on antimicrobial and antioxidant activity of propolis from Rize province of Turkey. Mellifera 2016, 16, 4–18. [Google Scholar]
- Oda, H.; Nakagawa, T.; Maruyama, K.; Dono, Y.; Katsuragi, H.; Sato, S. Effect of Brazilian green propolis on oral pathogens and human periodontal fibroblasts. J. Oral Biosci. 2016, 58, 50–54. [Google Scholar] [CrossRef]
- D’Souza, E.; Mantri, J.; Surti, A. Primary screening of multipotent therapeutic properties exhibited by Indian propolis. Indian J. Nat. Prod. Res. 2016, 7, 135–140. [Google Scholar] [CrossRef]
- Tiveron, A.P.; Rosalen, P.L.; Franchin, M.; Lacerda, R.C.; Bueno-Silva, B.; Benso, B.; Denny, C.; Ikegaki, M.; De Alencar, S.M. Chemical characterization and antioxidant, antimicrobial, and anti-inflammatory activities of South Brazilian organic propolis. PLoS ONE 2016, 11, e0165588. [Google Scholar] [CrossRef] [Green Version]
- Abbas, M.J.; Abd Ali, E.H.; Alrawi, R.A. Antibacterial activity of NBF gel against Streptococcus mutans isolated from orthodontic patients. Mustansiria Dent. J. 2018, 15, 58–68. [Google Scholar]
- Al-Ani, I.; Zimmermann, S.; Reichling, J.; Wink, M. Antimicrobial activities of European propolis collected from various geographic origins alone and in combination with antibiotics. Medicines 2018, 5, 2. [Google Scholar] [CrossRef]
- Martins, M.L.; de França Leite, K.L.; Pacheco-Filho, E.F.; de Miranda Pereira, A.F.; Romanos, M.T.V.; Maia, L.C.; Fonseca-Gonçalves, A.; Padilha, W.W.N.; Cavalcanti, Y.W. Efficacy of red propolis hydro-alcoholic extract in controlling Streptococcus mutans biofilm build-up and dental enamel demineralization. Arch. Oral Biol. 2018, 93, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Roh, J.; Kim, K.R. Antimicrobial activity of Korean propolis extracts on oral pathogenic microorganisms. J. Dent. Hyg. Sci. 2018, 18, 18–23. [Google Scholar] [CrossRef] [Green Version]
- Santiago, K.B.; Piana, G.M.; Conti, B.J.; Cardoso, E.D.O.; Murbach Teles Andrade, B.F.; Zanutto, M.R.; Rall, V.L.M.; Fernandes, A.; Sforcin, J.M. Microbiological control and antibacterial action of a propolis-containing mouthwash and control of dental plaque in humans. Nat. Prod. Res. 2018, 32, 1441–1445. [Google Scholar] [CrossRef] [PubMed]
- Becerra, T.B.; Calla-Poma, R.D.; Requena-Mendizabal, M.F.; Millones-Gómez, P.A. Antibacterial effect of Peruvian propolis collected during different seasons on the growth of Streptococcus mutans. Open Dent. J. 2019, 13, 327–3331. [Google Scholar] [CrossRef]
- Governa, P.; Cusi, M.G.; Borgonetti, V.; Sforcin, J.M.; Terrosi, C.; Baini, G.; Miraldi, E.; Biagi, M. Beyond the biological effect of a chemically characterized poplar propolis: Antibacterial and antiviral activity and comparison with flurbiprofen in cytokines release by LPS-stimulated human mononuclear cells. Biomedicines 2019, 7, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nazeri, R.; Ghaiour, M.; Abbasi, S. Evaluation of antibacterial effect of propolis and its application in mouthwash production. Front. Dent. 2019, 16, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Agbor, A.M.; Tsague, R.; Kaptue, B.; Naidoo, S.; Tembe-Fokunang, E.; Fokunang, C.N.; Pilipili, C. Phytochemical characterisation and antibacterial activity of propolis on cariogenic microrganisms. Eur. J. Med. Plant. 2020, 31, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Rivero-Cruz, J.F.; Granados-Pineda, J.; Pedraza-Chaverri, J.; Pérez-Rojas, J.M.; Kumar-Passari, A.; Diaz-Ruiz, G.; Rivero-Cruz, B.E. Phytochemical constituents, antioxidant, cytotoxic, and antimicrobial activities of the ethanolic extract of Mexican brown propolis. Antioxidants 2020, 9, 70. [Google Scholar] [CrossRef] [Green Version]
- Alemrajabi, M.S.; Dastorani, M.; Hamidi, H.; Mohammadian, S.; Sadrzadeh-Afshar, M.S. Effects of propolis and persica mouthwashes on three common oral Streptococci: A comparative study. Pharm. Biochem. Res. 2021, 7, 303–316. [Google Scholar] [CrossRef]
- Bapat, S.; Nagarajappa, R.; Ramesh, G.; Bapat, K. Effect of propolis mouth rinse on oral microorganisms- a randomized controlled trial. Clin. Oral Investig. 2021, 25, 6139–6146. [Google Scholar] [CrossRef]
- Millones Gómez, P.A.; Tay Chu Jon, L.Y.; Maurtua Torres, D.J.; Bacilio Amaranto, R.E.; Collantes Díaz, I.E.; Minchón Medina, C.A.; Calla Choque, J.S. Antibacterial, antibiofilm, and cytotoxic activities and chemical compositions of Peruvian propolis in an in vitro oral biofilm. F1000Research 2021, 10, 1093. [Google Scholar] [CrossRef]
- Hajiahmadi, M.; Faghri, J.; Salehi, Z.; Heidari, F. Comparative Evaluation of Antibacterial Effect of Propolis and Aloe Vera, Xylitol, and Cpp-Acp Gels on Streptococcus mutans and Lactobacillus in vitro. In.t J. Dent. 2021, 2021, 5842600. [Google Scholar] [CrossRef] [PubMed]
- Ismail, T.N.N.T.; Wee, N.S.C.; Shafii, N. Antimicrobial activity of propolis from Trigona thoracica towards cariogenic bacteria. Malays. Appl. Biol. 2021, 50, 65–71. [Google Scholar] [CrossRef]
- Navarro-Pérez, M.L.; Vadillo-Rodríguez, V.; Fernández-Babiano, I.; Pérez-Giraldo, C.; Fernández-Calderón, M.C. Antimicrobial activity of a novel Spanish propolis against planktonic and sessile oral Streptococcus spp. Sci. Rep. 2021, 11, 23860. [Google Scholar] [CrossRef]
- Günçe, O.Z.A.N.; Meltem, M.E.R.T.; Vatansever, C. Antimicrobial effect of propolis drops on oral pathogens in vitro. Selcuk Dent. J. 2021, 8, 673–678. [Google Scholar] [CrossRef]
- Onur, E.; Gökmen, G.G.; Nalbantsoy, A.; Kışla, D. Investigation of the supportive therapy potential of propolis extract and Lactobacillus acidophilus LA-5 milk combination against breast cancer in mice. Cytokine 2022, 149, 155743. [Google Scholar] [CrossRef]
- De Carvahlo Duailibe, S.A.; Gonçalves, A.G.; Ahid, F.J.M. Effect of a propolis extract on Streptococcus mutans counts in vivo. J. Appl. Oral Sci. 2007, 15, 420–423. [Google Scholar] [CrossRef] [Green Version]
- Machorowska-Pieniążek, A.; Morawiec, T.; Mertas, A.; Tanasiewicz, M.; Dziedzic, A.; Król, W. Influence of propolis on hygiene, gingival condition, and oral microflora in patients with cleft lip and palate treated with fixed orthodontic appliances. Evid.-Based Complement. Altern. Med. 2013, 2013, 183915. [Google Scholar] [CrossRef] [PubMed]
- El-sayed, S.; El-Bayoumy, S.; Mostafa, M.; EL-Malt, M. Evaluation of the antimicrobial effect of propolis extract on oral microflora. Al-Azhar Dent. J. Girls 2016, 3, 135–140. [Google Scholar] [CrossRef] [Green Version]
- El-Allaky, H.S.; Wahba, N.A.; Talaat, D.M.; Zakaria, A.S. Evaluation of antimicrobial effect of two propolis formulae on Streptococcus mutans and Candida albicans: A randomized clinical trial. Alex. Dent. J. 2020, 45, 99–103. [Google Scholar] [CrossRef]
- Alkhaled, A.; Alsabek, L.; Al-assaf, M.; Badr, F. Effect of chlorhexidine, honey and propolis on Streptococcus mutans counts: In vitro study. Dentistry 3000 2021, 9, 107–117. [Google Scholar] [CrossRef]
- Mohsin, S.; Manohar, B.; Rajesh, S.; Asif, Y. The effects of a dentifrice containing propolis on Mutans Streptococci: A clinico-microbiological study. Ethiop. J. Health Sci. 2015, 25, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Lotif, M.; Valadas, L.; Fechine, F.V.; Fonseca, S.; Bandeira, M.; Dantas, T.; Rodrigues Neto, E.M.; Squassi, A.; Fonteles, M.M.F. A double-blind randomized clinical trial of Brazilian red propolis dentifrice efficacy in orthodontic patients. J. Oral Sci. 2022, 64, 28–32. [Google Scholar] [CrossRef] [PubMed]
- El Naggar, R.A.; Ibrahim, S.H.; Mosallam, R.S.; Khairy, M.A. Effect of propolis and pomegranate extract mouthwashes on taste alteration, salivary pH and antibacterial activity in high caries risk patients: A randomized control trial. Indian J. Public Health Res. Dev. 2021, 12, 463–470. [Google Scholar] [CrossRef]
- Nakao, R.; Ueno, T. Effects of oral moisturizing gel containing propolis following head and neck radiotherapy: Randomized controlled pilot trial. BDJ Open 2021, 7, 1–7. [Google Scholar] [CrossRef]
- Siqueira, É.C.; Campos, F.M.T.; Mendes, J.C.; De Lima, L.N.; Araújo, R.S.; Gomes, N.K.S.; da Silva Lima, L.R.; Nogueira, R.F.; Rocha, M.C.; Barros, R.J.V. Evaluation of the effects of propolis and xylitol chewable tablets on the salivary concentrations of oral micro-organisms in orthodontic patients: A pilot study. J. Young Pharm. 2021, 13, 68. [Google Scholar] [CrossRef]
- Wiatrak, K.; Morawiec, T.; Rój, R.; Kownacki, P.; Nitecka-Buchta, A.; Niedzielski, D.; Wychowański, P.; Machorowska-Pieniążek, A.; Cholewka, A.; Baldi, D.; et al. Evaluation of effectiveness of a toothpaste containing tea tree oil and ethanolic extract of propolis on the improvement of oral health in patients using removable partial dentures. Molecules 2021, 26, 4071. [Google Scholar] [CrossRef]
- Seth, T.A.; Kale, T.A.; Lendhey, S.S.; Bhalerao, P.V. Comparative evaluation of subgingival irrigation with propolis extract versus chlorhexidine as an adjunct to scaling and root planing for the treatment of chronic periodontitis: A randomized controlled trial. J. Indian Soc. Periodontol. 2022, 26, 151–156. [Google Scholar] [CrossRef]
- Ratajczak, M.; Kaminska, D.; Matuszewska, E.; Hołderna-Kedzia, E.; Rogacki, J.; Matysiak, J. Promising antimicrobial properties of bioactive compounds from different honeybee products. Molecules 2021, 26, 4007. [Google Scholar] [CrossRef]
- Luo, X.; Dong, Y.; Gu, C.; Xueli, Z.; Haile, M. Processing technologies for bee products: An overview of recent developments and perspectives. Front. Nutr. 2021, 8, 834. [Google Scholar] [CrossRef]
Disease | Bacteria |
---|---|
Caries | Actinomyces israelii [4,5], Actinomyces naeslundii [6], Actinomyces odontolyticus [7], Actinomyces viscosus [6], Alexandrium minutum [8,9], Bacteroides ovatus [8,10], Bifidobacterium longum [4,11], Bifidobacterium adolescentis [4,11], Clostridium ramosum [4,12], Clostridium perfingens [4,12], Eiknella corrodens [7], Fusobacterium nucleatum [7], Lactobacillus acidophilus [7], Lactobacillus casei [13,14,15], Lactobacillus fermentum [8,10], Peptoniphilus asaccharolyticus [16,17], Peptostreptococcus micros [18,19], Porphyromonas endodontalis [6], Porphyromonas gingivalis [6], Prevotella melaninogenica [18,19], Prevotella dentica [6], Staphylococcus aureus [8,20], Streptococcus cricetus [21], Streptococcus mitis [7], Streptococcus mutans [21], Streptococcus salivarius [15], Streptococcus sanguinis [6], Streptococcus sobrinus [21], Streptococcus viridans [16,22] |
Gingivitis | Actinomyces israelii [23], Actinomyces naeslundii [6,24], Actinomyces viscosus [6,24], Campylobacter gracilis [23], Clostridium perfrigens [23] |
Periodontitis | Actinomyces israelli [25], Actinomyces naeslundi [25], Actinomyces odontolyticus [7], Aggregatibacter actinomycetemcomitans [26], Capnocytophaga ochracea [8,25], Eikenella corrodens [7], Fusobacterium nucleatum [7,27], Fusobacterium periodonticum [25], Fusobacterium varium [16,28], Lactobacillus spp. [29], Peptostreptococcus anaerobius [19,30], Porphyromonas gingivalis [31,32], Prevotella bivia [16,33], Prevotella intermedia [27], Prevotella nigrescenes [25], Streptococcus bovis [13,34], Streptococcus gordonii [35,36], Streptococcus intermedius [37], Streptococcus intermermedius [37], Streptococcus mutans [29], Tanneralla forsythia [25,38], Treponema denticola [25,38], Veillonella parvula [19,39] |
Pharyngitis | Streptococcus pyogenes [40] |
Recurrent aphthous ulcers (RAS) | Streptococcussanguinis [6] |
Subgingival plaque | Prevotella inermedia [27], Prevotella oralis [19,41], Porphyromonas gingivalis [27,38], Tannerella forsythia [42] |
Supragingival plaque | Actinomyces naeslundii [25,43], Fusobacterium nucleatum [43], Neisseria subflava [8,44], Streptococcus mutans [43], Streptococcus oralis [8,43], Veillonella dispar [43] |
Type of Side Effect | Effect |
---|---|
More common adverse effect | Hypersensitivity (regard to topical application), resulting in allergic reactions (swelling, dermatitis, and urticarial) [52] |
Specific (individual) cases | Severe swelling of the throat, anaphylactic shock after topical application [52] |
Severe side effects (seldom occurs) | Laryngeal edema and anaphylactic shock [52] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Otręba, M.; Marek, Ł.; Tyczyńska, N.; Stojko, J.; Kurek-Górecka, A.; Górecki, M.; Olczyk, P.; Rzepecka-Stojko, A. Propolis as Natural Product in the Oral Cavity Bacterial Infections Treatment: A Systematic Review. Appl. Sci. 2022, 12, 10123. https://doi.org/10.3390/app121910123
Otręba M, Marek Ł, Tyczyńska N, Stojko J, Kurek-Górecka A, Górecki M, Olczyk P, Rzepecka-Stojko A. Propolis as Natural Product in the Oral Cavity Bacterial Infections Treatment: A Systematic Review. Applied Sciences. 2022; 12(19):10123. https://doi.org/10.3390/app121910123
Chicago/Turabian StyleOtręba, Michał, Łukasz Marek, Natalia Tyczyńska, Jerzy Stojko, Anna Kurek-Górecka, Michał Górecki, Paweł Olczyk, and Anna Rzepecka-Stojko. 2022. "Propolis as Natural Product in the Oral Cavity Bacterial Infections Treatment: A Systematic Review" Applied Sciences 12, no. 19: 10123. https://doi.org/10.3390/app121910123