Next Article in Journal
Extension of DBSCAN in Online Clustering: An Approach Based on Three-Layer Granular Models
Next Article in Special Issue
Investigation of Adenosine Precursors and Biologically Active Peptides in Cultured Fresh Mycelium of Wild Medicinal Mushrooms
Previous Article in Journal
Strategies for the Sustainable Management of the Organic Fraction of Municipal Waste
Previous Article in Special Issue
New Insight and Future Perspectives on Nutraceuticals for Improving Sports Performance of Combat Players: Focus on Natural Supplements, Importance and Advantages over Synthetic Ones
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Rosa davurica Pall., Rosa rugosa Thumb., and Rosa acicularis Lindl. Originating from Far Eastern Russia: Screening of 146 Chemical Constituents in Three Species of the Genus Rosa

by
Mayya P. Razgonova
1,2,*,
Bayana A. Bazhenova
3,
Yulia Yu. Zabalueva
4,
Anastasia G. Burkhanova
3,
Alexander M. Zakharenko
5,6,
Andrey N. Kupriyanov
7,
Andrey S. Sabitov
1,
Sezai Ercisli
8 and
Kirill S. Golokhvast
2,5,6
1
N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint-Petersburg, Russia
2
Department of Bioeconomy and Food Security, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia
3
East Siberian State University of Technology and Management, Klyuchevskaya Str. 40V, 670013 Ulan-Ude, Russia
4
K.G. Razumovsky Moscow State University of Technologies and Management, Zemlyanoy Val Str. 73, 109004 Moscow, Russia
5
Siberian Federal Scientific Centre of Agrobiotechnology, Centralnaya, Presidium, 633501 Krasnoobsk, Russia
6
Laboratory of Supercritical Fluid Research and Application in Agrobiotechnology, Tomsk State University, Lenin Str. 36, 634050 Tomsk, Russia
7
Federal Research Center of Coal and Coal-Chemistry of SB RAS, 650000 Kemerovo, Russia
8
Ataturk University, Kampusu Ataturk Universitesi, 25030 Yakutiye, Turkey
*
Author to whom correspondence should be addressed.
Appl. Sci. 2022, 12(19), 9401; https://doi.org/10.3390/app12199401
Submission received: 19 August 2022 / Revised: 11 September 2022 / Accepted: 12 September 2022 / Published: 20 September 2022
(This article belongs to the Special Issue Advances in Natural Bioactive Compounds and Biological Effects II)

Abstract

:
Rosa rugosa Thumb., Rosa davurica Pall., and Rosa acicularis Lindl. contain a large number of target analytes which are bioactive compounds. High performance liquid chromatography (HPLC), in combination with the ion trap (tandem mass spectrometry), was used to identify target analytes in MeOH extracts of R. rugosa, R. davurica, and R. acicularis, originating from the Russian Far East, Trans-Baikal Region, and Western Siberia. The results of initial studies revealed the presence of 146 compounds, of which 115 were identified for the first time in the genus Rosa (family Rosaceae). The newly identified metabolites belonged to 18 classes, including 14 phenolic acids and their conjugates, 18 flavones, 7 flavonols, 2 flavan-3-ols, 2 flavanones, 3 stilbenes, 2 coumarins, 2 lignans, 9 anthocyanins, 3 tannins, 8 terpenoids, 3 sceletium alkaloids, 4 fatty acids, 2 sterols, 2 carotenoids, 3 oxylipins, 3 amino acids, 5 carboxylic acids, etc. The proven richness of the bioactive components of targeted extracts of R. rugosa, R. davurica, and R. acicularis invites extensive biotechnological and pharmaceutical research, which can make a significant contribution both in the field of functional and enriched nutrition, and in the field of cosmetology and pharmacy.

1. Introduction

Plants have been used as medicines since the existence of human civilization [1,2]. More than 35 thousand varieties of plants from different parts of the world are actively used for medical purposes, since they contain numerous phytocomponents that can potentially treat many diseases, including infectious ones [3]. Numerous medical systems of treatment, such as Ayurveda, Unani, homeopathy, naturopathy, Siddha, and others, rely on plants as effective remedies for various life-threatening diseases [4,5]. Due to the presence of secondary metabolites in plants, they have significant potential as antimicrobial agents. The diversity of these natural products offers an endless number of possibilities for the discovery of new drugs for the treatment of various diseases [6,7,8].
In recent years, traditional medicine based on oral herbal preparations has attracted the attention of both consumers and healthcare professionals. However, the use of these medicinal products requires improved knowledge of their composition and stability over time in order to support or validate these therapies in humans. Liquid preparations from medicinal plants, such as tinctures and extracts from plant buds, are typical products that are widely used but still poorly understood. Plant bud extracts are defined as extracts obtained exclusively from fresh buds, shoots, young leaves, and/or roots, which are macerated and extracted with hydro–glycerol and water–alcohol mixtures [9]. Kidney extracts represent a new category of herbal products well known and widely used in gemmotherapy, as well as in homeopathy and herbal medicine [10].
The genus Rosa (family Rosaceae) is represented on the territory of the Trans-Baikal region, Far East (Russian Federation), and Western Siberia by 3 species—Rosa rugosa Thumb., Rosa davurica Pall., and Rosa acicularis Lindl. (Figure 1 and Figure 2). Fresh fruits and leaves contain up to 900 mg% ascorbic acid per dry pulp weight. Fresh petals contain 0.25–0.38% essential oil. Its neutral volatile fraction contains 86.3% phenylethyl alcohol, some linalool, citronellol, geraniol, nerol, etc. Eugenol was found in the phenolic fraction, phenylacetic, benzoic, and other acids in the acid fraction. R. rugosa is a medicinal plant widely used in traditional and folk medicine. Extracts of R. rugosa have been valued for Asian culinary, cosmetic, and aromatherapy purposes, and used in herbal medicines for diabetes mellitus and osteoarthritis [11]. The medicinal effects seem to be involved in the presence of many phytochemicals in R. rugosa extracts, for example flavonoids, phenylpropanoid, tannins, fatty acids, and terpenoids [12].
Several studies have reported that some compounds from rose hip extracts exhibit anti-inflammatory activity in vitro. The anti-inflammatory property of the crude hydroalcoholic extract of rose hip has been proven in vivo, suggesting its potential role as one of the main therapies for the treatment of diseases associated with inflammation [13]. In Turkish folk medicine, a decoction of fresh rose hips is prepared and used to treat various stomach disorders [14]. Trans-Tiliroside (Tribuloside) has been found to be one of the main active components of aqueous acetone extracts from fruits and seeds that inhibit weight gain and lower plasma triglyceride levels in mice [15]. Additionally, clinical studies have demonstrated the positive effect of rose hip powder in the treatment of osteoarthritis [16]. Rose hip powder enhances in vitro anti-inflammatory and chondroprotective properties in leukocytes and primary chondrocytes of human peripheral blood [17]. Unfortunately, to date, there are few data providing information on the biological action of extracts of buds and leaves, and it should be noted that these preparations have never been used for preclinical and clinical trials.
The present investigation was designed to carry out a phytochemical study involving detailed metabolomic and comparative analysis of fruits and flowers of Rosa rugosa Thumb., Rosa davurica Pall., and Rosa acicularis Lindl. originating from the Trans-Baikal region, Western Siberia, and Russian Far East.

2. Results

Approximately 300 mass spectra were assessed for each analytical replicate and MS operating condition in this comprehensive approach for a complete screening of phytochemicals (Figure 3).
This procedure allowed a detailed evaluation of the rose MeOH extract fraction and the tentative identification of up to 146 phytochemicals (Table A1 (Appendix A)). The most represented classes of polyphenolic compounds were flavonoids (flavonols, flavones, flavan-3-ols, flavanones) with a total of 68 polyphenols identified for the first time. Some polyphenols were identified for the first time in the genus Rosa (family Rosaceae).
These are the flavones: Chrysoeriol, Hispidulin, 5,7-Dimethoxyluteolin, Cirsimaritin, Cirsiliol, Tricin, Jaceosidin, Nevadensin, Syringetin, Isovitexin, Genistein C-glucoside malonylated, Chrysin 6-C-glucoside-6″-O-deoxyhexoside; flavanols: Dihydrokaempferol, Rhamnetin II, Kaempferol-3-O-α-l-rhamnoside, Taxifolin-O-pentoside, Taxifolin-3-O-hexoside, Isorhamnetin triacetyl hexoside; flavan-3-ols: Epiafzelechin and Gallocatechin; flavanone: Naringenin, Fustin; phenolic acids: Caffeic acid, Citric acid, Hydroxy methoxy dimethylbenzoic acid, Hydroxyferulic acid, Ellagic acid, p-Coumaroylquinic acid, Ginkgoic acid, Salvianolic acid D, Salvianolic acid B; stilbenes: Pinosylvin, Resveratrol, 3-Hydroxyresveratrol; lignans: Pinoresinol, Arctigenin; coumarins: 3,4,5–Trimethoxycoumarin, Fraxin; anthocyanins: Cyanidin 3-O-glucoside, Delphinidin O-pentoside, Pelargonidin 3-O-(6-O-malonyl-β-d-glucoside), Cyanidin 3-(6″-Succinyl-Glucoside), Delphinidin malonyl hexoside, Cyanidin 3-O-dioxayl-glucoside, Delphinidin 3,5-dihexoside, etc.

3. Discussion

A total of 146 compounds were identified in extracts of Rosa rugosa Thumb., Rosa davurica Pall., and Rosa acicularis Lindl. based on their accurate MS, fragment ions, and by searching online databases and the reported literature. A total of 115 compounds were identified for the first time in the genus Rosa (family Rosaceae). The newly identified metabolites belonged to 18 classes, including 14 phenolic acids and their conjugates, 18 flavones, 7 flavonols, 2 flavan-3-ols, 2 flavanones, 3 stilbenes, 2 coumarins, 2 lignans, 9 anthocyanins, 3 tannins, 8 terpenoids, 3 sceletium alkaloids, 4 fatty acids, 2 sterols, 2 carotenoids, 3 oxylipins, 3 amino acids, 5 carboxylic acids, etc. Metabolomic screening of polyphenols from extracts of R. rugosa, R. davurica, and R. acicularis included flavones, flavonols, flavan-3-oles, flavanones, anthocyanins, condensed tannins, phenolic acids, lignans, stilbenes, and coumarins.

3.1. Dimethoxyflavones

The flavones 5,7-Dimethoxyluteolin (compound 5), Cirsimaritin (compound 6), Chrysoeriol methyl ether (compound 7), Cirsiliol (compound 8), Tricin (compound 9), Jaceosidin (compound 10), and Syringetin (compound 13) (Table A1 (Appendix A)) have been already characterized as components of Syzygium aromaticum [18], Ocimum [19], Rosmarinus officinalis [20], Bougainvillea [21], Triticum aestivum [22]; millet grains [23]; Sasa veitchii; Phyllostachys nigra [24], etc. Thus, the flavone Jaceosidin was found in extracts of R. davurica. The flavone 5,7-Dimethoxyluteolin was found in extracts of R. rugosa and R. davurica. The CID-spectrum (collision induced dissociation spectrum) in negative ion modes of Tricin from extracts of R. davurica is shown in Figure 4.
The [M – H] ion produced three fragment ions at m/z 313, m/z 259, and m/z 229 (Figure 4). The fragment ion with m/z 313 produced two daughter ions at m/z 298 and m/z 271. The fragment ion with m/z 298 yielded two daughter ions at m/z 271 and m/z 227. It was identified in the bibliography in extracts of Triticum aestivum [22]; millet grains [23]; Sasa veitchii; Phyllostachys nigra [24].

3.2. Trimethoxyflavones

The flavones Nevadensin (compound 12) and Pentahydroxy trimethoxy flavone (compound 15) (Table A1 (Appendix A)) have been already characterized as components of Ocimum [19], F. glaucescens; C. edulis [25], Mentha [26], etc. Thus, the flavone Nevadensin was found in extracts of R. acicularis. The CID-spectrum in positive ion modes of Nevadensin from extracts of R. acicularis is shown in Figure 5.
The [M + H]+ ion produced two fragment ions at m/z 330 and m/z 212 (Figure 5). The fragment ion with m/z 330 yielded one daughter ion at m/z 314. The fragment ion with m/z 314 yielded five daughter ions at m/z 312, m/z 286, m/z 259, m/z 182, and m/z 133. It was identified in the bibliography in extracts of Ocimum [19] and Mentha [26].

3.3. Trihydroxyflavones

The flavones Apigenin (compound 2), Chrysoeriol (compound 3), Isovitexin (compound 16), and flavonol Isokaempferide (compound 22) have been already characterized as components of Mentha [26], Hedyotis diffusa [27], Andean blueberry [28], Stevia rebaudiana [29], Rosa rugosa [30], Propolis [31], Rhus coriaria [32], Mexican lupine species [33], etc. Thus, the flavonol Isokaempferide was found in extracts of R. davurica. The CID-spectrum in positive ion modes of Isokaempferide from extracts of R. davurica is shown in Figure 6.
The [M + H]+ ion produced five fragment ions at m/z 300, m/z 274, m/z 256, m/z 212, and m/z 184 (Figure 6). The fragment ion with m/z 300 yielded three daughter ions at m/z 285, m/z 241, and m/z 200. The fragment ion with m/z 285 yielded one daughter ion at m/z 239. It was identified in the bibliography in extracts of Rosa rugosa [30] and Propolis [31].

3.4. Tetrahydroxyflavones

The flavonols Kaempferol (compound 20), Dihydrokaempferol (compound 21), Kaempferol-3-O-α-l-rhamnoside (compound 30), Kaempferol diacetyl hexoside (compound 34), Kaempferol 3-O-rutinoside (compound 35), and Kaempferol 3-O-deoxyhexosylhexoside (compound 36) have been already characterized as components of F. glaucescens [25], Andean blueberry [28], Rhus coriaria (Sumac) [32], Lonicera japonica [34], Potato leaves [35], Rapeseed petals [36], Echinops lanceolatus [37], Camellia kucha [38]. Thus, the flavonol Kaempferol was found in extracts of R. rugosa, R. davurica, and R. acicularis. The CID-spectrum in positive ion modes of luteolin from extracts of D. palmatum is shown in Figure 7.
The [M + H]+ ion produced six fragment ions at m/z 269, m/z 242, m/z 213, m/z 175, m/z 157, and m/z 139 (Figure 7). The fragment ion with m/z 175 yielded two daughter ions at m/z 157 and m/z 139. It was identified in the bibliography in extracts of Andean blueberry [28], Rhus coriaria (Sumac) [32], Lonicera japonica [34], and Potato leaves [35].

3.5. Pentahydroxyflavones

The flavonols Quercetin (compound 23), Morin (compound 24), Rhamnetin I (compound 25), Rhamnetin II (compound 26), Isorhamnetin (compound 27), Avicularin (compound 31), Taxifolin-O-pentoside (compound 32), Taxifolin-3-O-hexoside (compound 33), and Isorhamnetin triacetyl hexoside (compound 37) have been already characterized as components of Bougainvillea [21], Rosa rugosa [30], Propolis [31], Rhus coriaria [32], and Potato leaves [35]. Thus, the flavonol Taxifolin-O-pentoside was found in extracts of R. davurica. The CID-spectrum in negative ion modes of Taxifolin-O-pentoside from extracts of R. davurica is shown in Figure 8.
The [M − H] ion produced three fragment ions at m/z 387, m/z 300, and m/z 177 (Figure 8). The fragment ion with m/z 300 yielded two daughter ions at m/z 284 and m/z 177. The fragment ion with m/z 284 yielded two daughter ions at m/z 240 and m/z 175. It was identified in the bibliography in extracts of millet grains [23] and A. cordifolia [25].

3.6. Flavan-3-ols

The flavan-3-ols Epiafzelechin (compound 38), Catechin (compound 39), (epi)Catechin (compound 40), and Gallocatechin (compound 41) have been characterized as components of millet grains [23], G. linguiforme [25], Camellia kucha [38], strawberry, cherimoya [39], Rosa rugosa [40], Myrtle [41], Radix polygoni multiflori [42], Licania ridigna [43], and Rhodiola rosea [44]. The flavan-3-ol Gallocatechin (compound 41) was found in extract of R. rugosa and R. davurica. The CID-spectrum in negative ion modes of Gallocatechin from R. rugosa is shown in Figure 9.
The [M − H] ion produced one fragment ion at m/z 273 (Figure 9). The fragment ion with m/z 273 yielded two daughter ions at m/z 269 and m/z 217. The fragment ion with m/z 245 yielded four daughter ions at m/z 243, m/z 217, m/z 173, and m/z 145. It was identified in the bibliography in extracts from G. linguiforme [25], Licania ridigna [43], and Rhodiola rosea [44].

3.7. Condensed Tannin

Prodelphinidin A-type (compound 83) and (S)-Flavogallonic acid (compound 84) have been already characterized as components of Vitis vinifera [45], Terminalia arjuna [46], and R. rugosa [47]. CID-spectrum in positive ion modes of (S)-Flavogallonic acid from R. davurica is shown in Figure 10. The [M + H]+ ion produced four fragment ions at m/z 453, m/z 407, m/z 321, m/z 247, and m/z 205 (Figure 10). The fragment ion with m/z 407 yielded three daughter ions at m/z 389, m/z 307, and m/z 205. This compound was identified in the bibliography in extracts from Terminalia arjuna [46] and R. rugosa [47].
The polyphenol composition distribution table of varieties Rosa rugosa Thumb., Rosa davurica Pall., and Rosa acicularis Lindl. is shown below [Table 1]. The comparison table shows the presence of some polyphenols in three types of the genus Rosa (kaempferol, ellagic acid). Some polyphenols are present in only one variety of the genus Rosa.
The following polyphenols are present in only R. rugosa: Hydroxy-methoxy (iso)flavone, Chrysoeriol, Hispidulin, Cirsiliol, 5,6,4′-Trihydroxy-7,8-dimetoxyflavone, Dihydroxy-tetramethoxy (iso)flavone, Pentahydroxy trimethoxy flavone, Isovitexin, Chrysin 6-C-glucoside-6″-O-deoxyhexoside, Kaempferol-3-O-α-l-rhamnoside, Naringenin, Eriodictyol-7-O-glucoside, trans-Ferulic acid, 3,3,4,4-Tetrahydroxy-5-oxo-cyclohexanecarboxylic acid, Ginkgoic acid, 1-[(Acetyl-l-cysteinyl)oxy]-2,3,4,5-tetrahydroxycyclohexane-1-carboxylic acid, Neochlorogenic acid, Rosmarinic acid, Salvianolic acid D, Pinosylvin, Pinoresinol, 3,4,5-rimethoxy coumarin, Fraxin, Anthocyanidin [cyanidin chloride; Cyanidin], Cyanidin-3-O-dioxayl-glucoside.
The following polyphenols are present in only R. davurica—Chrysoeriol methyl ether, Tricin, Jaceosidin, Syringetin, Genistein C-glucoside malonylated, Diosmin, Dihydrokaempferol, Isokaempferide, Isorhamnetin, Myricetin, Mearnsetin, Taxifolin-O-pentoside, Kaempferol diacetyl hexoside, Kaempferol 3-O-rutinoside, Epiafzelechin, (epi)Catechin, Fustin, Hydroxy methoxy dimethylbenzoic acid, Hydroxyferulic acid, Sinapic acid, p-Coumaroylquinic acid, Salvianolic acid B, Cyanidin-3-O-glucoside, Delphinidin-O-pentoside, Pelargonidin-3-O-(6-O-malonyl-beta-d-glucoside), Delphinidin malonyl hexoside, Delphinidin 3,5-dihexoside, (S)-Flavogallonic acid, Punicalin alpha, Coniferin.
The following polyphenols are present in only R. acicularis—Cirsimaritin, Nevadensin, Morin, Rhamnetin I, Rhamnetin II, Nevadensin, Taxifolin-3-O-hexoside, Kaempferol 3-O-deoxyhexosylhexoside, Isorhamnetin triacetyl hexoside, Eriodictyol, 2,4,6-Trihydroxy-3,5-dimethoxybenzoic acid, Arctigenin, Prodelphinidin A-type, Ethyl gallate, Diphylloside B.
Thus, 146 metabolome compounds were identified in the extracts of R. rugosa, R. davurica, and R. acicularis, many of which are characteristic of the genus Rosa (family Rosaceae). Of these, 115 components were identified for the first time in the genus Rosa. These are flavones: Chrysoeriol, Hispidulin, 5,7-Dimethoxyluteolin, Cirsimaritin, Cirsiliol, Tricin, Jaceosidin, Nevadensin, Syringetin, Isovitexin, Genistein C-glucoside malonylated, Chrysin 6-C-glucoside-6″-O-deoxyhexoside; flavanols: Dihydrokaempferol, Rhamnetin II, Kaempferol-3-O-α-l-rhamnoside, Taxifolin-O-pentoside, Taxifolin-3-O-hexoside, Isorhamnetin triacetyl hexoside; flavan-3-ols: Epiafzelechin and Gallocatechin; flavanones: Naringenin, Fustin; phenolic acids: Caffeic acid, Citric acid, Hydroxy methoxy dimethylbenzoic acid, Hydroxyferulic acid, Ellagic acid, p-Coumaroylquinic acid, Ginkgoic acid, Salvianolic acid D, Salvianolic acid B; stilbenes: Pinosylvin, Resveratrol, 3-Hydroxyresveratrol; lignans: Pinoresinol, Arctigenin; coumarins: 3,4,5–Trimethoxycoumarin, Fraxin; anthocyanins Cyanidin 3-O-glucoside, Delphinidin O-pentoside, Pelargonidin 3-O-(6-O-malonyl-β-d-glucoside), Cyanidin 3-(6″-Succinyl-Glucoside), Delphinidin malonyl hexoside, Cyanidin 3-O-dioxayl-glucoside, Delphinidin 3,5-dihexoside, etc.

4. Materials and Methods

4.1. Materials

Aboveground phyto Rosa rugosa Thumb., Rosa davurica Pall., and Rosa acicularis Lindl. collected during expedition work on the territory of the Russian Far East, Trans-Baikal Region, and Western Siberia during the period of ripening (July–September, 2020). Phyto mass of R. davurica was collected on the territory of Buryatia (N 52°21′97″ E 108°59′84″), in September 2020. Phyto mass of R. rugosa was collected on the territory of Primorsky Krai, Russia (N 42°36′10″ E 131°10′55″), during the period from 10 to 20 August, 2020. Phyto mass of R. acicularis was collected on the territory of Kemerovo, Western Siberia (N 55°21′15′’ E 86°05′23″), in August 2020. All samples were morphologically authenticated according to the current standard of Pharmacopoeia of the Eurasian Economic Union [48].
The results were obtained using the equipment of the Center for Collective Use of Scientific Equipment of TSU named after G.R. Derzhavin.

4.2. Chemicals and Reagents

HPLC-grade acetonitrile was purchased from Fisher Scientific (Southborough, UK), MS-grade formic acid was from Sigma-Aldrich (Steinheim, Germany). Ultra-pure water was prepared from a SIEMENS ULTRA clear (SIEMENS water technologies, Germany), and all other chemicals were analytical grade.

4.3. Fractional Maceration

To obtain highly concentrated extracts, fractional maceration was applied. In this case, the total amount of the extractant (methyl alcohol of reagent grade) is divided into 3 parts and is consistently infused on potato with the first part, then with the second and third. The infusion time of each part of the extractant was 7 days.

4.4. Liquid Chromatography

HPLC was performed using Shimadzu LC-20 Prominence HPLC (Shimadzu, Japan), equipped with an UV-sensor and a Shodex ODP-40 4E reverse phase column to perform the separation of multicomponent mixtures. The gradient elution program was as follows: 0.01–5 min, 100% CH3CN; 5–45 min, 100–25% CH3CN; 45–55 min, 25–0% CH3CN; control washing: 55–60 min, 0% CH3CN. The entire HPLC analysis was conducted with an ESI detector at wavelengths of 230 ηm and 330 ηm; the temperature corresponded to 17 °C. The injection volume was 1 mL.

4.5. Mass Spectrometry

MS analysis was performed on an ion trap amaZon SL (BRUKER DALTONIKS, Germany) equipped with an ESI source in negative and positive ion modes. The optimized parameters were obtained as follows: ionization source temperature: 70 °C, gas flow: 4 L/min, nebulizer gas (atomizer): 7.3 psi, capillary voltage: 4500 V, end plate bend voltage: 1500 V, fragmentary: 280 V, collision energy: 60 eV. A four-stage ion separation mode (MS/MS mode) was implemented.

5. Conclusions

The extracts of Rosa rugosa Thumb., Rosa davurica Pall., and Rosa acicularis Lindl. contain a large number of polyphenolic complexes which are biologically active compounds. For the most complete and safe extraction, the method of maceration with MeOH was used. To identify target analytes in extracts, HPLC was used in combination with the ion trap. The results of a preliminary study showed the presence of 146 bioactive compounds, of which 115 were identified for the first time in the genus Rosa (family Rosaceae). Of these 115 chemical compounds identified for the first time in the genus Rosa, 70 compounds belonged to the polyphenolic group: 18 flavones, 7 flavonols, 3 flavan-3-ols, 2 flavanones, 14 phenolic acids, 3 stilbenes, 2 lignans, 2 coumarins, 9 anthocyanidins, 3 tannins, etc. The proven richness of the bioactive components of targeted extracts of R. rugosa, R. davurica, and R. acicularis invites extensive biotechnological and pharmaceutical research, which can make a significant contribution both in the field of functional and enriched nutrition, and in the field of cosmetology and pharmacy. It should also be noted that the variability of the genus Rosa (family Rosaceae) contributes to the selection of the most drought-resistant species and samples for household, decorative, and forest reclamation needs in the arid climatic zones of Eurasia.
It is important to note that the useful properties of the genus Rosa (family Rosaceae) are: food (R. rugosa, R. acicularis), perfumery (R. acicularis, R. ecae), nectariferous (R. canina, R. cinnamomea), decorative (R. acicularis, R. rugosa), and soil-strengthening (R. acicularis, R. rugosa, R. spinosissima). A wide variety of biologically active polyphenolic compounds opens up rich opportunities for the creation of new drugs, as well as bioactive additives based on extracts from the genus Rosa.

Author Contributions

Conceptualization, B.A.B., A.N.K. and M.P.R.; methodology, Y.Y.Z., A.G.B. and M.P.R.; software, M.P.R.; validation, A.N.K., M.P.R. and K.S.G.; formal analysis, M.P.R. and A.M.Z.; investigation, A.S.S. and S.E.; resources, K.S.G., B.A.B., and Y.Y.Z.; data curation, B.A.B.; writing—original draft preparation—M.P.R. and A.M.Z.; writing—review and editing A.M.Z. and K.S.G.; visualization, M.P.R. and A.M.Z.; supervision, K.S.G.; project administration, B.A.B., K.S.G. and S.E. All authors have read and agreed to the published version of the manuscript.

Funding

The work was carried out with the support of the grant Young Scientists ESSTUM 2022 and according to No. 0662-2019-0003, “Genetic resources of vegetable and melons of the world collection of N.I. Vavilov All-Russian Institute of Plant Genetic Resources: effective ways of expanding diversity, disclosing the patterns of hereditary variability, use of adaptive potential”.

Institutional Review Board Statement

No applicable.

Informed Consent Statement

No applicable.

Data Availability Statement

No applicable.

Acknowledgments

Research work according to No. 0662-2019-0003 “Genetic resources of vegetable and melons of the world collection of N.I. Vavilov All-Russian Institute of Plant Genetic Resources: effective ways of expanding diversity, disclosing the patterns of hereditary variability, use of adaptive potential”.

Conflicts of Interest

The authors declare no conflict of interest.

Appendix A

Table A1. Compounds identified from the extracts of Rosa rugosa Thumb., Rosa davurica Pall., and Rosa acicularis Lindl. in positive and negative ionization modes by HPLC–ion trap–MS/MS.
Table A1. Compounds identified from the extracts of Rosa rugosa Thumb., Rosa davurica Pall., and Rosa acicularis Lindl. in positive and negative ionization modes by HPLC–ion trap–MS/MS.
No.Class of CompoundsIdentified CompoundsFormulaMassMolecular Ion [M − H]Molecular Ion [M + H]+2 Fragmentation MS/MS 3 Fragmentation MS/MS 4 Fragmentation MS/MS References
POLYPHENOLS
1FlavoneHydroxy-methoxy (iso) flavone *C16H12O4268.2641 269252221190Propolis [31]
2FlavoneApigenin [5,7-Dixydroxy-2-(40Hydroxyphenyl)-4H-Chromen-4-One]C15H10O5270.2369 271253224 Hedyotis diffusa [27]; Andean blueberry [28]; Stevia rebaudiana [29]; Rosa rugosa [30]; Propolis [31]
3FlavoneChrysoeriol [Chryseriol] *C16H12O6300.2629 301269; 195241 Mentha [25]; Propolis [31]; Rhus coriaria [32]; Mexican lupine species [33]
4FlavoneHispidulin *C16H12O6300.2629 301269; 241; 197224; 180; 153 Mentha [25]; Cirsium japonicum [49]
5Flavone5,7-Dimethoxyluteolin *C17H14O6314.2895313 212; 285; 184; 113113; 145; 185 Syzygium aromaticum [18]
6FlavoneCirsimaritin [Scrophulein; 4′,5-Dihydroxy-6,7-Dimethoxyflavone; 7-Methylcapillarisin] *C17H14O6314.2895 315300; 240; 213; 185272; 227; 185; 168; 135185Ocimum [19]; Rosmarinus officinalis [20]
7FlavoneChrysoeriol methyl ether *C17H14O6314.2895 315287; 241; 187187169Bougainvillea [21]
8FlavoneCirsiliol *C17H14O7330.2889329 229211; 127209; 125Ocimum [19]
9FlavoneTricin [5,7,4′-trihydroxy-3′,5′-dimetoxyflavone] *C17H14O7330.2889329 314; 259; 229299; 271271; 227Triticum aestivum [22]; millet grains [23]; Sasa veitchii; Phyllostachys nigra [24]
10FlavoneJaceosidin [5,7,4′-trihydroxy-6′,5′-dimetoxyflavone] *C17H14O7330.2889 331303; 185 Mentha [26,50]
11Flavone5,6,4′-Trihydroxy-7,8-dimetoxyflavone *C17H14O7330.2889 331299; 179211 F. glaucescens; F. herrerae [25]; Mentha [26]
12FlavoneNevadensin *C18H16O7344.3154 345330315286; 259; 183; 133Ocimum [19]; Mentha [26]
13FlavoneSyringetin *C17H14O8346.2883 347317; 218289; 218261; 191C. edulis [25]
14FlavoneDihydroxy-tetramethoxy(iso)flavone *C19H18O8374.3414 375343315225Propolis [31]
15FlavonePentahydroxy trimethoxy flavone *C18H16O10392.3136 393377; 375; 275; 213357329; 286F. glaucescens; C. edulis [25]
16FlavoneIsovitexin [Saponaretin; Homovitexin; Apigenin-6-C-Glucoside] *C21H20O10432.3775 433415; 335; 243; 175261; 243; 191; 155135millet grains [23]; Phyllostachys nigra [24]; Rhus coriaria [32]
17FlavoneGenistein C-glucoside malonylated *C24H22O13518.4237517 473; 455455; 413; 339425Mexican lupine species [33]
18FlavoneChrysin 6-C-glucoside-6″-O-deoxyhexoside *C27H30O13562.5193 563400; 363; 305; 239130; 162; 191; 214 Passiflora incarnata [51]
19FlavoneDiosmin [Diosmetin-7-O-rutinoside; Barosmin; Diosimin] *C28H32O15608.5447 609591; 429; 355; 269285269F. glaucescens [25]; Mentha [26]; Lemon [39]; Grataegi Fructus [52]
20FlavonolKaempferol [3,5,7-Trihydroxy-2-(4-hydro- xyphenyl)-4H-chromen-4-one]C15H10O6286.2363 287187; 227189; 125 Andean blueberry [28]; Rhus coriaria (Sumac) [32]; Lonicera japonica [34]; Potato leaves [35]; Rapeseed petals [36]
21FlavonolDihydrokaempferol [Aromadendrin; Katuranin] *C15H12O6288.2522287 259; 185; 117215197F. glaucescens [25]; Andean blueberry [28]; Echinops lanceolatus [37]; Camellia kucha [38]
22FlavonolIsokaempferide [3-O-Methylkaempferol]C16H12O6300.2629 301300; 274; 257; 212; 184286; 242; 201240Rosa rugosa [30]; Propolis [31]
23FlavonolQuercetinC15H10O7302.2357 303285257201;117Bougainvillea [21]; Propolis [31]; Rosa rugosa [30]; Rhus coriaria [32]; Potato leaves [35]
24FlavonolMorin [Aurantica; Calico Yellow; Toxylon Pomiferum; 2′,3,4′,5,7-Pentahydroxyflavone]C15H10O7302.2357301 283; 265; 221221203; 151; 127Rosa rugosa [30]; Red wines [53]
25FlavonolRhamnetin I [beta-Rhamnocitrin; Quercetin 7-Methyl ether]C16H12O7316.2623 317299; 269; 233; 185; 165147; 123 Rosa rugosa [30]; Rhus coriaria L. (Sumac) [32]
26FlavonolRhamnetin II *C16H12O7316.2623 317165;185; 155; 123147; 123119Syzygium aromaticum [18]; Propolis [31]; Rhus coriaria L. (Sumac) [32]; Spondias purpurea [54]
27FlavonolIsorhamnetin [Isorhamnetol; Quercetin 3′-Methyl ether; 3-Methylquercetin]C16H12O7316.2623 317285; 234; 190; 156256; 214229; 201Rosmarinus officinalis [20]; Andean blueberry [28]; Rosa rugosa [30]; Propolis [31]; Vaccinium macrocarpon [55]; Embelia [56]
28FlavonolMyricetinC15H10O8318.2351 319289; 217; 185261; 191 millet grains [23]; F. glaucescens [25]; Andean blueberry [28]; Rosa rugosa [30]; Propolis [31]; Vaccinium macrocarpon [55]
29FlavonolMearnsetin *C16H12O8332.2617331 287259215; 187; 159Eucalyptus [57]
30FlavonolKaempferol-3-O-α-l-rhamnoside *C21H20O10432.3775 433415; 313; 241; 195123; 257; 239 C.edulis; F. glaucescens [25]; Rhus coriaria [32]; Cassia abbreviata [58]; Euphorbia hirta [59]
31FlavonolAvicularin (Quercetin 3-Alpha-l-Arabinofuranoside; Avicularoside)C20H18O11434.3503433 301273; 229; 192; 179; 151169; 151Propolis [31]; Eucalyptus Globulus [60]; Rosa rugosa [61]
32FlavonolTaxifolin-O-pentoside [Dihydroquercetin pentoside] *C20H20O11436.371435301; 177285; 177241; 175 millet grains [23]; A. cordifolia [25]
33FlavonolTaxifolin-3-O-hexoside [Dihydroquercetin-3-O-hexoside] *C21H22O12466.3922 467287; 305; 334; 449268; 256; 227; 202 millet grains [23]; Andean blueberry [28]; Euphorbia hirta [59]; Rubus ulmifolius [62]
34FlavonolKaempferol diacetyl hexosideC25H24O13532.4503 533432; 531; 289415; 295385A. cordifolia [25]
35FlavonolKaempferol 3-O-rutinosideC27H30O15594.5181 595285; 165165 Rhus coriaria [32]; Lonicera japonica [34]; Camellia kucha [38]; Strawberry [39]
36FlavonolKaempferol 3-O-deoxyhexosylhexosideC27H30O15594.5181 595287; 263; 165213; 197; 165157; 145Stevia rebaudiana [29]; Rosa rugosa [40]; Spondias purpurea [54]
37FlavonolIsorhamnetin triacetyl hexoside *C28H28O15604.5129 605443; 417; 317; 279329; 311; 255; 211 A. cordifolia [25]
38Flavan-3-olEpiafzelechin [(epi)Afzelechin] *C15H14O5274.2687 275244; 157157; 215127A. cordifolia; F. glaucescens; F. herrerae [25]; Cassia abbreviata [58]; Cassia granidis [63]
39Flavan-3-olCatechin [D-Catechol]C15H14O6290.2681 291272; 174245198millet grains [23]; C. edulis [25]; Camellia kucha [38]; strawberry, cherimoya [39]; Rosa rugosa [40]; Myrtle [41]; Radix polygoni multiflori [42]; Rosa rugosa [64]
40Flavan-3-ol(epi)Catechin *C15H14O6290.2681 291273; 117255; 145 Andean blueberry [28]; C. edulis [25]; Camellia kucha [38]; Radix polygoni multiflori [42]
41Flavan-3-olGallocatechin [+(-)Gallocatechin] *C15H14O7306.2675 307291263; 189206G. linguiforme [25]; Licania ridigna [43]; Rhodiola rosea [44]
42FlavanoneNaringenin [Naringetol; Naringenine]C15H12O5272.5228 273153; 256125 G. linguiforme [25]; Andean blueberry [28]; Stevia rebaudiana [29]; Rosa rugosa [30]; Mexican lupine species [33]; Rapeseed petals [36]; Punica granatum [65]
43FlavanoneFustin [2,3-Dihydrofistein] *C15H12O6288.2522 289269; 140179 F. glaucescens; F. pottsii [25]
44FlavanoneEriodictyol [3′,4′,5,7-tetrahydroxy-flavanone]C15H12O6288.2522287 269; 241; 155; 127267; 251; 223; 183; 155249; 199; 155Rosmarinus officinalis [20]; Andean blueberry [28]; Rosa rugosa [30]; Propolis [31]; Embelia [56]
45FlavanoneEriodictyol-7-O-glucoside [Pyracanthoside; Miscanthoside] *C21H22O11450.3928449 269; 151225 Impatients glandulifera Royle [66]
46Hydroxycinnamic acidCaffeic acid *C9H8O4180.1574 181135119 Triticum [22]; millet grains [23]; Lonicera japonica [24]; Radix polygoni multiflori [42]; Mentha [50]; Malva sylvestris [67]
47Phenolic acidQuinic acidC7H12O6192.1666 193191; 147173; 136131Andean blueberry [28]; Stevia rebaudiana [29]; Rhus coriaria [32]; Lonicera japonicum [34]; Camellia kucha [38]; Rosa rugosa [40]
48Phenolic acidCitric acid [Anhydrous; Citrate] *C6H8O7192.1235191 111; 173111 Stevia rebaudiana [29]; Potato leaves [35]; Strawberry, Lemon, Cherimoya, Papaya, Passion fruit [39]; Mentha [50]; Punica granatum [65]
49Phenolic acidtrans-Ferulic acidC10H10O4194.184 195153125 millet grains [23]; Rosa rugosa [30]; Sanguisorba officinalis [68]
50Phenolic acidHydroxy methoxy dimethylbenzoic acid *C10H12O4196.1999195 129; 177 F. herrerae; F. glaucescens [25]
51Phenolic acidSyringic acidC9H10O5198.1727 199157; 183; 119142 Bougainvillea [21]; millet grains [29]; A. cordifolia; G. linguiforme; F. glaucescens [25]; Rosa rugosa [30]; Actinidia [69]
52Phenolic acid3,3,4,4-Tetrahydroxy-5-oxo-cyclohexanecarboxylic acid *C7H10O7206.1501 207161; 189143119Actinidia [69]
53Phenolic acidHydroxyferulic acid *C10H10O5210.1834 211193175133Andean blueberry [28]
54Hydroxycinnamic acidSinapic acid [trans-Sinapic acid]C11H12O5224.2100 225209139; 192 millet grains [23]; Andean blueberry [28]; Rosa rugosa [30]; Rapeseed petals [36]; Cherimoya [39]
55Phenolic acid2,4,6-Trihydroxy-3,5-dimethoxybenzoic acid *C9H10O7230.1715 231229; 211; 185; 155168; 143127Actinidia [69]
56Hydroxybenzoic acidEllagic acid [Benzoaric acid; Elagostasine; Lagistase; Eleagic acid] *C14H6O8302.1926301 256185 Rhus coriaria [32]; Eucalyptus [57]; Eucalyptus Globulus [60]
57Phenolic acidp-Coumaroylquinic acid *C16H18O8338.3093 339191; 320; 252149 Andean blueberry [28]; F. glaucescens [25]; Eucalyptus Globulus [60]; Actinidia [69]
58Phenolic acidGinkgoic acid [Ginkgolic acid; Romanicardic acid] *C22H34O3346.5036 347301; 130130 Propolis [31]
59Phenolic acid1-[(Acetyl-l-cysteinyl)oxy]-2,3,4,5-tetrahydroxycyclohexane-1-carboxylic acid *C12H19O9NS353.3456 354335192; 286132; 176Actinidia [69]
60Phenolic acidChlorogenic acid [3-O-Caffeoylquinic acid] *C16H18O9354.3087353 191173 Bougainvillea [21]; Andean blueberry [28]; Rhus coriaria [32]; Lonicera japonicum [34]; Potato leaves [35]; Rapeseed petals [28]; Vaccinium macrocarpon [55]
61Phenolic acidNeochlorogenic acid [5-O-Caffeoylquinic acid]C16H18O9354.3087353 173; 111 Andean blueberry [28]; Stevia rebaudiana [29]; Rosa rugosa [30]; Lonicera japonicum [34]; Euphorbia hirta [59]; Crataegus monogyna, Sambucus nigra [67]
62Phenolic acidRosmarinic acidC18H16O8360.3148 361343; 327; 301; 253; 19; 161253; 121225; 210; 179Rosmarinus officinalis [20]; Mentha [26]; Rosa rugosa [30]; Mentha [70]; Huolisu Oral Liquid [71]; Rosemary [72]
63Phenolic acid5-Hydroxy feruloyl hexose *C16H20O10372.3240 373211; 277; 354175 millet grains [23]
64Phenolic acidSalvianolic acid D *C20H18O10418.3509417 373347; 303 Mentha [70,73]; Salvia multiorrizae [74]
65Phenolic acidSalvianolic acid B [Danfensuan B] *C36H30O16718.6138 719521; 199475 Bougainvillea [21]; Mentha [50]; Huolisu Oral Liquid [71]; Mentha [73]; Salvia miltiorrhiza [74]
66StilbenePinosylvin [3,5-Stilbenediol; Trans-3,5-Dihydroxystilbene] *C14H12O2212.2439 213195; 171143127Pinus resinosa [75]; Pinus sylvestris [76]
67StilbeneResveratrol [trans-Resveratrol; 3,4′,5-Trihydroxystilbene; Stilbentriol] *C14H12O3228.2433 229169; 210; 141; 115141113A. cordifolia; F. glaucescens; F. herrerae [25]; Radix polygoni multiflori [42]; Embelia [56]; Vine stilbenoids [77]
68Stilbene3-Hydroxyresveratrol [Piceatannol] *C14H12O4244.2427 245199; 112112 G. linguiforme [25]; Vine stilbenoids [77]; Oenocarpus bataua [78]
69LignanPinoresinol *C20H22O6358.3851 359340; 208322; 196274; 214Passiflora incarnata [51]; Punica granatum [65]; Eucommia cortex [79]; Lignans [80]
70LignanArctigenin *C21H24O6372.4117 373354; 336; 283; 252; 211336; 318; 288; 252; 218288; 236; 197Lignans [80]; Triticum aestivum [81]; Forsythia [82]
71Coumarin3,4,5-Trimethoxycoumarin *C12H12O5236.2207 237192; 206; 178132130; 117Propolis [31]
72CoumarinFraxin (Fraxetin-8-O-glucoside) *C16H18O10370.3081 371191127 Vitis vinifera [45]; Actinidia [69]; Solanum tuberosum [83]
73AnthocyanidinAnthocyanidin [cyanidin chloride; Cyanidin] *C15H11O6+287.2442 287213; 195; 167196; 163; 125 F. herrerae [25]; Andean blueberry [28]; Malpighia emarginata [84]
74AnthocyanidinPetunidin *C16H13O7+317.2702 318256; 300228; 212; 184212A. cordifolia; C. edulis [25]
75AnthocyanidinCyanidin-3-O-glucoside [Cyanidin 3-O-beta-d-Glucoside; Kuromarin] *C21H21O11+449.3848447 285; 195255 Triticum aestivum [22]; Malpighia emarginata [84]
76AnthocyanidinDelphinidin O-pentoside *C20H19O11435.3583 435303; 245245; 149 Andean blueberry [28]; Myrtle [41]; Gaultheria mucronata; Gaultheria antarctica [85]
77AnthocyanidinPelargonidin 3-O-(6-O-malonyl-beta-d-glucoside) *C24H23O13519.4388 519271253 Gentiana lutea [86]; Wheat [87]
78AnthocyanidinCyanidin 3-(6″-Succinyl-Glucoside) [Cyanidin 3-(6″-O-succinoyl-Beta-d-Glucopyranoside)] *C25H25O14549.4576 549286268240Wheat [87]
79AnthocyanidinDelphinidin malonyl hexoside *C24H23O15551.4304 551465; 425; 287; 198271; 157 F. glaucescens [25]
80AnthocyanidinCyanidin-3-O-dioxayl-glucoside *C31H28O12592.5468 593287; 165213; 153 Rubus ulmifolius [62]
81AnthocyanidinDelphinidin 3,5-dihexoside *C27H31O17627.5248 627413; 227227; 351 F. herrerae [25]; Andean blueberry [28]; Berberis microphylla [85]
82TanninProdelphinidin A-type *C30H26O13594.5286 595406; 287; 245241; 213; 165; 153213Vitis vinifera [45]
83Hydrolysable tannin(S)-Flavogallonic acidC21H10O13470.2963 471407; 321; 247; 205205; 307; 389177; 131Terminalia arjuna [46]; Rosa rugosa [47]
84EllagitanninPunicalin alpha *C34H22O22782.5253 783721; 449; 599; 535596 Myrtle [41]; Terminalia arjuna [46]; Punica granatum [65]
85Phenylpropanoid (cinnamic alcohol glycoside)Coniferin [Coniferyl Alcohol Beta-d-Glucoside] *C16H22O8342.3411 343240183127Hedyotis diffusa [27]; Rhodiola crenulata [88]
86Gallate esterEthyl gallate *C9H10O5198.1727197 169; 125124 Bougainvillea [21]; Terminalia arjuna [46]; Euphorbia hirta [59]
87Gallate esterBeta-Glucogallin [1-O-Galloyl-Beta-d-Glucose; Galloyl glucose; Monogalloyl glucose] *C13H16O10332.2601 333273; 227; 169169; 191; 209 Syzygium aromaticum [18]; Terminalia arjuna [46]; Euphorbia hirta [59]; Cassia granidis [63]
88DihydrochalconePhloretin [Dihydronaringenin; Phloretol] *C15H14O5274.2687 275257; 229; 215255; 239; 229; 210 G. linguiforme [25]; Punica granatum [65]; Malus toringoides [89]
89FlavonoidDiphylloside B *C38H48O19808.7763 809647; 592; 531; 483; 431; 369; 317533; 484; 419; 369; 269419Huolisu Oral Liquid [71]
90FlavonoidDemethylanhydroicaritin-7-O-glucopyranosyl-3-O-acetylated rhamnopyranosyl-xylopyranoside *C39H48O20836.7854 837675; 603; 541; 503; 403441; 341341; 241Huolisu Oral Liquid [71]
OTHERS
91Cyclohexenecarboxylic acidShikimic acid [L-Schikimic acid] *C7H10O5174.1513173 111 A. cordifolia [25]; Camellia kucha [38]; Euphorbia hirta [59]
92VitaminL-Ascorbic acid [Vitamin C]C6H8O6176.1241175 127 Potato leaves [35]; Strawberry, Lemon, Papaya [39]
93MonoterpenoidMethyl eugenol *C11H14O2178.2277 179161133 Ocimum [19]; Olive leaves [90]
94Omega-hydroxy amino acidHydroxy decenoic acid *C10H18O3186.2481 187169; 142141 F. glaucescens [25]
95Essential amino acidL-Tryptophan [Tryptophan; (S)-Tryptophan] *C11H12N2O2204.2252 205186; 158146; 169144; 118Rapeseed petals [36]; Camellia kucha [38]; Passiflora incarnata [51]; Euphorbia hirta [59]; Huolisu Oral Liquid [71]
96SesquiterpenoidCaryophyllene oxide [Caryophyllene-alpha-oxide] *C15H24O220.3505 221161147 Olive leaves [90]
97 3,4,5-Trimethoxyphenylacetic acidC11H14O5226.2259 227127; 145; 169; 199145; 117127Rosa rugosa [30]
98Omega-5 fatty acidMyristoleic acid [Cis-9-Tetradecanoic acid] *C14H26O2226.3550 227209; 127139 F. glaucescens [25]
99Quaianolide sesquiterpene lactoneDehydrocostus Lactone *C15H18O2230.3022 231214168 Weichang’an Pill [91]
100GermacranolideCostunolide *C15H20O2232.3181 233186168; 131155Weichang’an Pill [91]
101Biphenyl derivativeRandaiol *C15H14O3242.2699 243225; 211; 182182; 167; 132166Magnolia officinalis [92]
102Peptide5-Oxo-l-propyl-l-isoleucine *C11H18N2O4242.2716 243197165137Potato leaves [35]
103Hydroxy monocarboxylic acidHydroxy myristic acid [2S-Hydroxytetradecanoic acid; Alpha-Hydroxy Myristic acid] *C14H28O3244.3703 245229; 222; 211; 201227; 211; 201 F. pottsii [25]
104Medium-chain fatty acidHydroxy dodecanoic acid *C12H22O5246.3001 247229; 202; 174; 156183; 156; 144156F. glaucescens [25]
105Acyclic alcohol nitrile glycosideRhodiocyanoside A *C11H17NO6259.2558 260186; 232168141Rhodiola rosea [93]; Rhodiola sacra [94]
106NaphthoquinoneSpinochrome A *C12H8O7264.1877 265247219 Rhus coriaria [32]
107Aporphine alkaloidAnonaine *C17H15NO2265.3065 266247; 190; 166166 Magnolia officinalis [92]
108Ribonucleoside composite of adenine (purine)Adenosine *C10H13N5O4267.2413 268136 Lonicera japonica [34]; Huolisu Oral Liquid [71]
109 3,4,8,9,10-Penthahydroxydibenzo [b,d]pyran-6-one *C13H8O7276.1984 277175; 231; 259131; 177 Terminalia arjuna [46]
110 Linoleic acid amide *C18H33NO279.4607 280262244; 196; 164; 128226; 196; 164Propolis [31]; Rhus coriaria [32]
111 Oleamide *C18H35NO281.4766 282247173; 201; 145145Propolis [31]
112TerpenoidRugosic acid AC15H22O5282.3322 283239; 265; 167211193; 170Rosa rugosa [95]
113AlkaloidMesembrenol *C17H23NO3289.3694 290272; 146224; 182164Sceletium [96]
114AlkaloidMesembranol *C17H25NO3291.3853 292274; 226; 111121 A. cordifolia [25]; Sceletium [96]
115 Brevifolincarboxylic acid *C13H8O8292.4131291 247219; 203; 191; 175; 147191Euphorbia hirta [59]
116Alkaloid3′-Methoxy-4′-O-methyl joubertimine *C18H25NO3303.3960 304257; 195; 153231; 149213A. cordifolia [25]
117DiterpenoidTanshinone IIB [(S)-6-(Hydroxymethyl)-1,6-Dimethyl-6,7,8,9-Tetrahydrophenanthro [1,2-B]Furan-10,11-Dione] *C19H18O4310.3438 311293; 265; 253; 228; 181264; 192; 159 Huolisu Oral Liquid [72]; Salviae Miltiorrhizae [97]
118Oxylipins11-Hydroperoxy-octadecatrienoic acid *C18H30O4310.4284309 291; 247; 198; 183181 Potato leaves [35]
119TyraminesN-Feruloyl tyramine *C18H19NO4313.3478 314296; 236; 175222; 206; 178222; 194; 180Bougainvillea [21]
120 Terpenoid trilactone Bilobalide [(-)-Bilobalide] *C15H18O8326.2986325 183119; 199 Malus toringoides [89]; Ginkgo biloba [98,99]
121Oxylipins9,10-Dihydroxy-8-oxooctadec-12-enoic acid [oxo-DHODE; oxo-Dihydroxy-octadecenoic acid] *C18H32O5328.4437327 229; 291211; 125183Phyllostachys nigra [24]; Bituminaria bituminosa [100]
122Oxylipins13- Trihydroxy-Octadecenoic acid [THODE] *C18H34O5330.4596329 291; 309; 239; 211; 197; 171273; 217; 179255; 228Sasa veitchii [24]; Bituminaria bituminosa [100]; Broccoli [101]
123Sceletium alkaloidO-acetyl mesembrenol *C19H25NO4331.4061330 270; 226; 198226; 209; 166166A. cordifolia [25]
124DiterpenoidCarnosic acidC20H28O4332.4339331 287; 243; 187259215Rosmarinus officinalis [20]; Rosemary [72]; Lepechinia [102]
125 Dihydroxy eicosatrienoic acid *C20H34O4338.4816 339321; 177303; 274; 233178; 148G. linguiforme; A. cordifolia; C. edulis [25]
126Berberine alkaloidPalmatine [Berbericinine; Burasaine] *C21H22NO4352.4037 353335; 308; 270; 235; 195317; 243; 215; 160 Ocotea [103]; Palmatine [104]
127Unsaturated fatty acidDihydroxy docosanoic acid *C22H44O4372.5824 373341327 A. cordifolia; F. pottsii [25]
128Unsaturated fatty acidPentacosenoic acid *C25H48O2380.6474 381363; 334; 290; 261; 231342; 303; 276 F. glaucescens [25]
129SterolCampesterol [Dihydrobrassicasterol] *C28H48O400.6801 401383; 369; 337; 310; 279350; 321; 285; 249262A. cordifolia; C. edulis [25]; Oryza sativa [105]
130AlkaloidErysothiopine *C19H21NO7S407.4375 408389345; 183299; 161Camellia kucha [38]
131SterolStigmasterol [Stigmasterin; Beta-Stigmasterol] *C29H48O412.6908 413301188 A. cordifolia; F. pottsii [25]; Hedyotis diffusa [27]; Olive leaves [90]
132Iridoid monoterpenoidDihydroisovaltrate *C22H32O8424.4847 425365; 281309; 235 Rhus coriaria [32]
133Anabolic steroid; Androgen; Androgen esterVebonol *C30H44O3452.6686 453435; 336; 226336209Rhus coriaria [32]; Hylocereus polyrhizus [106]
134TriterpenoidBetulonic acid [Betunolic acid; Liquidambaric acid] *C30H46O3454.6844 455437; 357; 245176; 395; 336; 261; 213 Rhus coriaria [32]
135TriterpenoidPomolic acid *C30H48O4472.6997 473413; 214395; 255241Sanguisorba officinalis [68]; Malus domestica [107]
136Thromboxane receptor antagonistVapiprost *C30H39NO4477.6350 478337; 263; 218; 173181; 128 Rhus coriaria [32]; Hylocereus polyrhizus [106]
137Ursane triterpeneAnnurcoic acid *C30H46O5486.6922485 467; 423424; 393; 335413Annurca apple [108]
138Pentacyclic triterpenoidMethyl arjunolate *C31H50O5502.7257 503485; 205397; 197 G. linguiforme; C. edulis [25]
139Indole sesquiterpene alkaloidSespendole *C33H45NO4519.7147 520185; 502125 Rhus coriaria [32]; Hylocereus polyrhizus [106]
140SchisandrinBenzoylgomisin H *C30H34O8522.5862 523504; 448; 399; 369486; 447; 424; 405; 362424; 350; 290; 252Schisandra chinensis [109,110]
141Carotenoid(all-E)-alpha-CryptoxanthinC40H56O552.872 553535517; 499; 443; 395499; 457; 363; 307Carica papaya [111]; Physalis peruviana [112]; Rosa rugosa [113]
142 N’,N’,N’’’- Tri-p-coumaroyl spermidineC34H37N3O6583.6741 584565; 467; 438; 387; 335204; 292; 218; 147147Rosa rugosa [11]; Propolis [31]
143 N’,N’,N’’’- Di-p-coumaroyl caffeoyl spermidineC34H37N3O7599.6735 600582; 497; 438; 420419; 328; 292; 274147Rosa rugosa [11]
144Cycloartanol [Steroids]Cyclopassifloic acid glucoside *C37H62O12698.8810 699537; 421; 365520 Passiflora incarnata [51]
145Carotenoid(all-E)-violaxanthin caproate * 755 755719; 645; 566; 425657; 620 Carotenoids [114]
146Derivative of ChlorophyllePheophytin b *C55H72N4O6885.1834 886607547475; 419Physalis peruviana [112,115]
* Compounds identified for the first time in genus Rosa.

References

  1. Thomas, E.; Vandebroek, I.; Sanca, S.; van Damme, P. Cultural Significance of Medicinal Plant Families and Species among Quechua Farmers in Apillapampa, Bolivia. J. Ethnopharmacol. 2009, 122, 60–67. [Google Scholar] [CrossRef] [PubMed]
  2. Sultana, A.; Hossain, M.J.; Kuddus, M.R.; Rashid, M.A.; Zahan, M.S.; Mitra, S.; Roy, A.; Alam, S.; Sarker, M.M.R.; Naina Mohamed, I. Ethnobotanical Uses, Phytochemistry, Toxicology, and Pharmacological Properties of Euphorbia neriifolia Linn. against Infectious Diseases: A Comprehensive Review. Molecules 2022, 27, 4374. [Google Scholar] [CrossRef] [PubMed]
  3. Abidullah, S.; Rauf, A.; Khan, S.W.; Ayaz, A.; Liaquat, F.; Saqib, S. A Comprehensive Review on Distribution, Paharmacological Uses and Biological Activities of Argyrolobium Roseum (Cambess.). Jaub. Spach. Acta Ecol. Sin. 2021, 42, 198–205. [Google Scholar] [CrossRef]
  4. Das, R.; Mitra, S.; Tareq, A.M.; Emran, T.B.; Hossain, M.J.; Alqahtani, A.M.; Alghazwani, Y.; Dhama, K.; Simal-Gandara, J. Medicinal plants used against hepatic disorders in Bangladesh: A comprehensive review. J. Ethnopharmacol. 2022, 282, 114588. [Google Scholar] [CrossRef]
  5. Mitra, S.; Lami, M.S.; Uddin, T.M.; Das, R.; Islam, F.; Anjum, J.; Hossain, M.J.; Emran, T.B. Prospective multifunctional roles and pharmacological potential of dietary flavonoid narirutin. Biomed. Pharmacother. 2022, 150, 112932. [Google Scholar] [CrossRef]
  6. Demain, A.L.; Fang, A. The Natural Functions of Secondary Metabolites. In History of Modern Biotechnology, I; Springer: Berlin/Heidelberg, Germany, 2000; pp. 1–39. [Google Scholar]
  7. Wink, M. Modes of Action of Herbal Medicines and Plant Secondary Metabolites. Medicines 2015, 2, 251–286. [Google Scholar] [CrossRef]
  8. Anjum, J.; Mitra, S.; Das, R.; Alam, R.; Mojumder, A.; Emran, T.B.; Islam, F.; Rauf, A.; Hossain, M.J.; Aljohani, A.S.; et al. A renewed concept on the MAPK signaling pathway in cancers: Polyphenols as a choice of therapeutics. Pharmacol. Res. 2022, 184, 106398. [Google Scholar] [CrossRef]
  9. Campanini, E. Dizionario di Fitoterapia e Piante Medicinali, 2nd ed.; Tecniche Nuove: Milano, Italy, 2006; pp. 566–571. [Google Scholar]
  10. Ieri, F.; Innocenti, M.; Possieri, L.; Gallori, S. Phenolic composition of “bud extracts” of Ribes nigrum L., Rosa canina L. and Tilia tomentosa M. J. Pharmaceut. Biomed. Analys. 2015, 115, 1–9. [Google Scholar] [CrossRef]
  11. Yang, Y.; Zhang, J.-J.; Zhou, Q.; Wang, L.; Huang, W.; Wang, R. Effect of ultrasonic and ball-milling treatment on cell wall, nutrients, and antioxidant capacity of rose (Rosa rugosa) bee pollen, and identification of bioactive components. J. Sci. Food Agric. 2019, 99, 5350–5357. [Google Scholar] [CrossRef]
  12. Hashidoko, Y. The phytochemistry of Rosa rugosa. Phytochemistry 1996, 43, 535–549. [Google Scholar] [CrossRef]
  13. Lattanzio, F.; Greco, E.; Carretta, D.; Cervellati, R.; Govoni, P.; Speroni, E. In vivo anti-inflammatory effect of Rosa canina L. extract. J. Ethnopharmacol. 2011, 137, 880–885. [Google Scholar] [CrossRef] [PubMed]
  14. Gurbuz, I.; Ustun, O.; Yesilada, E.; Sezik, E.; Kutsal, O. Anti-ulcerogenic activity of some plants used as folk remedy in Turkey. Ethnopharmacology 2003, 88, 93–97. [Google Scholar] [CrossRef]
  15. Ninomiya, K.; Matsuda, H.; Kubo, M.; Morikawa, T.; Nishida, N.; Yoshikawa, M. Potent anti-obese principle from Rosa canina: Structural requirements and mode of action of trans-tiliroside. Bioorganic Med. Chem. Lett. 2007, 17, 3059–3064. [Google Scholar] [CrossRef] [PubMed]
  16. Chrubasik, C.; Roufogalis, B.D.; Muller-Lander, U.; Chrubasik, S. A Systematic Review on the Rosa canina Effect and Efficacy Profiles. Phytother. Res. 2008, 22, 725–733. [Google Scholar] [CrossRef] [PubMed]
  17. Schwager, J.; Richard, N.; Schoop, R.; Wolfram, S. A Novel Rose Hip Preparation with Enhanced Anti-Inflammatory and Chondroprotective Effects. Mediat. Inflamm. 2014, 105710. [Google Scholar] [CrossRef] [PubMed]
  18. Fathoni, A.; Saepudin, E.; Cahyana, A.H.; Rahayu, D.U.C.; Haib, J. Dentification of nonvolatile compounds in clove (Syzygium aromaticum) from Manado. AIP Conf. Proc. 1862, 2017, 030079. [Google Scholar]
  19. Pandey, R.; Kumar, B. HPLC–QTOF–MS/MS-based rapid screening of phenolics and triterpenic acids in leaf extracts of Ocimum species and their interspecies variation. J. Liq. Chromatogr. Relat. Tech. 2016, 39, 225–238. [Google Scholar] [CrossRef]
  20. Mena, P.; Cirlini, M.; Tassotti, M.; Herrlinger, K.A.; Dall’Asta, C.; Del Rio, D. Phytochemical Profiling of Flavonoids, Phenolic Acids, Terpenoids, and Volatile Fraction of a Rosemary (Rosmarinus officinalis L.) Extract. Molecules 2016, 21, 1576. [Google Scholar] [CrossRef]
  21. El-Sayed, M.A.; Abbas, F.A.; Refaat, S.; El-Shafae, A.M.; Fikry, E. UPLC-ESI-MS/MS Profile of The Ethyl Acetate Fraction of Aerial Parts of Bougainvillea ‘Scarlett O’Hara’ Cultivated in Egypt. Egypt. J. Chem. 2021, 64, 22. [Google Scholar] [CrossRef]
  22. Sharma, M.; Sandhir, R.; Singh, A.; Kumar, P.; Mishra, A.; Jachak, S.; Singh, S.P.; Singh, J.; Roy, J. Comparison analysis of phenolic compound characterization and their biosynthesis genes between two diverse bread wheat (Triticum aestivum) varieties differing for chapatti (unleavened flat bread) quality. Front. Plant. Sci. 2016, 7, 1870. [Google Scholar] [CrossRef]
  23. Chandrasekara, A.; Shahidi, F. Determination of antioxidant activity in free and hydrolyzed fractions of millet grains and characterization of their phenolic profiles by HPLC-DAD-ESI-MSn. J. Funct. Foods 2011, 3, 144–158. [Google Scholar] [CrossRef]
  24. Van Hoyweghen, L.; De Bosscher, K.; Haegeman, G.; Deforce, D.; Heyerick, A. In Vitro Inhibition of the Transcription Factor NF-kB and Cyclooxygenase by Bamboo Extracts. Phytother. Res. 2014, 28, 224–230. [Google Scholar] [CrossRef] [PubMed]
  25. Hamed, A.R.; El-Hawary, S.S.; Ibrahim, R.M.; Abdelmohsen, U.R.; El-Halawany, A.M. Identification of Chemopreventive Components from Halophytes Belonging to Aizoaceae and Cactaceae Through LC/MS –Bioassay Guided Approach. J. Chrom. Sci. 2021, 59, 618–626. [Google Scholar] [CrossRef] [PubMed]
  26. Xu, L.L.; Xu, J.J.; Zhong, K.R.; Shang, Z.P.; Wang, F.; Wang, R.F.; Liu, B. Analysis of non-volatile chemical constituents of Menthae Haplocalycis herba by ultra-high performance liquid chromatography—High resolution mass spectrometry. Molecules 2017, 22, 1756. [Google Scholar] [CrossRef] [PubMed]
  27. Chen, X.; Zhu, P.; Liu, B.; Wei, L.; Xu, Y. Simultaneous determination of fourteen compounds of Hedyotis diffusa Willd extract in rats by UHPLC-MS/MS method: Application to pharmacokinetics and tissue distribution study. J. Pharmaceut. Biomed. Analys. 2018, 159, 490–512. [Google Scholar] [CrossRef]
  28. Aita, S.E.; Capriotti, A.L.; Cavaliere, C.; Cerrato, A.; Giannelli Moneta, B.; Montone, C.M.; Piovesana, S.; Lagana, A. Andean Blueberry of the Genus Disterigma: A High-Resolution Mass Spectrometric Approach for the Comprehensive Characterization of Phenolic Compounds. Separations 2021, 8, 58. [Google Scholar] [CrossRef]
  29. Lee, S.Y.; Shaari, K. LC–MS metabolomics analysis of Stevia rebaudiana Bertoni leaves cultivated in Malaysia in relation to different developmental stages. Phytochem. Analys. 2021, 33, 249–261. [Google Scholar] [CrossRef]
  30. Olech, M.; Pietrzak, W.; Nowak, R. Characterization of Free and Bound Phenolic Acids and Flavonoid Aglycones in Rosa rugosa Thunb. Leaves and Achenes Using LC–ESI–MS/MS–MRM Methods. Molecules 2020, 25, 1804. [Google Scholar] [CrossRef]
  31. Belmehdi, O.; Bouyahya, A.; József, J.E.K.Ő.; Cziáky, Z.; Zengin, G.; Sotkó, G.; Elbaaboua, A.; Senhaji, N.S.; Abrini, J. Synergistic interaction between propolis extract, essential oils, and antibiotics against Staphylococcus epidermidis and methicillin resistant Staphylococcus aureus. Int. J. Second Metab. 2021, 8, 195–213. [Google Scholar] [CrossRef]
  32. Abu-Reidah, I.M.; Ali-Shtayeh, M.S.; Jamous, R.M.; Arraes-Roman, D.; Segura-Carretero, A. HPLC–DAD–ESI-MS/MS screening of bioactive components from Rhus coriaria L. (Sumac) fruits. Food Chem. 2015, 166, 179–191. [Google Scholar] [CrossRef]
  33. Wojakowska, A.; Piasecka, A.; Garcia-Lopez, P.M.; Zamora-Natera, F.; Krajewski, P.; Marczak, L.; Kachlicki, P.; Stobiecki, M. Structural analysis and profiling of phenolic secondary metabolites of Mexican lupine species using LC–MS techniques. Phytochemistry 2013, 92, 71–86. [Google Scholar] [CrossRef] [PubMed]
  34. Cai, Z.; Wang, C.; Zou, L.; Liu, X.; Chen, J.; Tan, M.; Mei, Y.; Wei, L. Comparison of Multiple Bioactive Constituents in the Flower and the Caulis of Lonicera japonica Based on UFLC-QTRAP-MS/MS Combined with Multivariate Statistical Analysis. Molecules 2019, 24, 1936. [Google Scholar] [CrossRef]
  35. Rodriguez-Perez, C.; Gomez-Caravaca, A.M.; Guerra-Hernandez, E.; Cerretani, L.; Garcia-Villanova, B.; Verardo, V. Comprehensive metabolite profiling of Solanum tuberosum L. (potato) leaves T by HPLC-ESI-QTOF-MS. Molecules 2018, 112, 390–399. [Google Scholar] [CrossRef]
  36. Yin, N.-W.; Wang, S.-X.; Jia, L.-D.; Zhu, M.-C.; Yang, J.; Zhou, B.-J.; Yin, J.-M.; Lu, K.; Wang, R.; Li, J.-N.; et al. Identification and Characterization of Major Constituents in Different-Colored Rapeseed Petals by UPLC−HESI-MS/MS. Agric. Food Chem. 2019, 67, 11053–11065. [Google Scholar] [CrossRef] [PubMed]
  37. Seukep, A.J.; Zhang, Y.-L.; Xu, Y.-B.; Guo, M.-Q. In Vitro Antibacterial and Antiproliferative Potential of Echinops lanceolatus Mattf. (Asteraceae) and Identification of Potential Bioactive Compounds. Pharmaceuticals 2020, 13, 59. [Google Scholar] [CrossRef] [PubMed]
  38. Qin, D.; Wang, Q.; Li, H.; Jiang, X.; Fang, K.; Wang, Q.; Li, B.; Pan, C.; Wu, H. Identification of key metabolites based on non-targeted metabolomics and chemometrics analyses provides insights into bitterness in Kucha [Camellia kucha (Chang et Wang) Chang]. Food Res. Int. 2020, 138, 109789. [Google Scholar] [CrossRef] [PubMed]
  39. Spinola, V.; Pinto, J.; Castilho, P.C. Identification and quantification of phenolic compounds of selected fruits from Madeira Island by HPLC-DAD-ESI-MSn and screening for their antioxidant activity. Food Chem. 2015, 173, 14–30. [Google Scholar] [CrossRef] [PubMed]
  40. Nijat, D.; Lu, C.-F.; Lu, J.-J.; Abdulla, R.; Hasan, A.; Aidarhan, N.; Aisa, H.A. Spectrum-effect relationship between UPLC fingerprints and antidiabetic and antioxidant activities of Rosa rugosa. J. Chromatogr. B 2021, 1179, 496–507. [Google Scholar] [CrossRef] [PubMed]
  41. D’Urso, G.; Sarais, G.; Lai, C.; Pizza, C.; Montoro, P. LC-MS based metabolomics study of different parts of myrtle berry from Sardinia (Italy). J. Berry Res. 2017, 7, 217–229. [Google Scholar] [CrossRef]
  42. Zhu, Z.-W.; Li, J.; Gao, X.-M.; Amponsem, E.; Kang, L.-Y.; Hu, L.-M.; Zhang, B.-L.; Chang, Y.-X. Simultaneous determination of stilbenes, phenolic acids, flavonoids and anthraquinones in Radix polygoni multiflori by LC–MS/MS. J. Pharmaceut. Biomed. Analys. 2012, 62, 162–166. [Google Scholar] [CrossRef]
  43. De Freitas, M.A.; Silva Alves, A.I.; Andrade, J.C.; Leite-Andrade, M.C.; Lucas dos Santos, A.T.; de Oliveira, T.F.; dos Santos, F.; Silva Buonafina, M.D. Evaluation of the Antifungal Activity of the Licania Rigida Leaf Ethanolic Extract against Biofilms Formed by Candida Sp. Isolates in Acrylic Resin Discs. Antibiotics 2019, 8, 250. [Google Scholar] [CrossRef] [Green Version]
  44. Zakharenko, A.M.; Razgonova, M.P.; Pikula, K.S.; Golokhvast, K.S. Simultaneous determination of 78 compounds of Rhodiola rosea extract using supercritical CO2-extraction and HPLC-ESI-MS/MS spectrometry. Biochem. Res. Int. 2021, 2021, 9957490. [Google Scholar] [CrossRef] [PubMed]
  45. Goufo, P.; Singh, R.K.; Cortez, I. Phytochemical A Reference List of Phenolic Compounds (Including Stilbenes) in Grapevine (Vitis vinifera L.) Roots, Woods, Canes, Stems, and Leaves. Antioxidants. 2020, 9, 398. [Google Scholar] [CrossRef] [PubMed]
  46. Singh, J.; Kumar, S.; Rathi, B.; Bhrara, K.; Chhikara, B.S. Therapeutic analysis of Terminalia arjuna plant extracts in combinations with different metal nanoparticles. J. Mater. NanoSci. 2015, 2, 1–7. [Google Scholar]
  47. Gu, D.; Yang, Y.; Bakri, M.; Chen, Q.; Xin, X.; Aisa, H.A. A LC/QTOF–MS/MS Application to Investigate Chemical Compositions in a Fraction with Protein Tyrosine Phosphatase 1B Inhibitory Activity from Rosa Rugosa Flowers. Phytochem. Anal. 2013, 24, 661–670. [Google Scholar] [CrossRef] [PubMed]
  48. Pharmacopoeia of the Eurasian Economic Union, Approved by Decision of the Board of Eurasian Economic Commission No. 100 Dated 11 August 2020. Available online: http://www.eurasiancommission.org/ru/act/texnreg/deptexreg/LSMI/Documents/Фармакoпея%20Сoюза%2011%2008.pdf (accessed on 1 January 2020).
  49. Zhang, Z.; Jia, P.; Zhang, X.; Zhang, Q.; Yang, H.; Shi, H.; Zhang, L. LC-MS/MS determination and pharmacokinetic study of seven flavonoids in rat plasma after oral administration of Cirsium japonicum DC. extract. J. Ethnopharmacol. 2014, 158, 66–75. [Google Scholar] [CrossRef]
  50. Marzouk, M.M.; Hussein, S.R.; Elkhateeb, A.; El-shabrawy, M.; Abdel-Hameed, E.-S.S.; Kawashty, S.A. Comparative study of Mentha species growing wild in Egypt: LC-ESI-MS analysis and chemosystematic significance. J. Appl. Pharm. Sci. 2018, 8, 116–122. [Google Scholar]
  51. Ozarowski, M.; Piasecka, A.; Paszel-Jaworska, A.; de Chaves, D.S.A.; Romaniuk, A.; Rybczynska, M.; Gryszczynska, A.; Sawikowska, A.; Kachlicki, P.; Mikolajczak, P.L.; et al. Comparison of bioactive compounds content in leaf extracts of Passiflora incarnata, P. caerulea and P. alata and in vitro cytotoxic potential on leukemia cell lines. Braz. J. Pharmacol. 2018, 28, 179–191. [Google Scholar] [CrossRef]
  52. Huang, Y.; Yao, P.; Leung, K.W.; Wang, H.; Kong, X.P.; Wang, L.; Dong, T.T.X.; Chen, Y.; Tsim, K.W.K. The Yin-Yang Property of Chinese Medicinal Herbs Relates to Chemical Composition but Not Anti-Oxidative Activity: An Illustration Using Spleen-Meridian Herbs. Front. Pharmacol. 2018, 9, 1304. [Google Scholar] [CrossRef]
  53. Sun, J.; Liang, F.; Bin, Y.; Li, P.; Duan, C. Screening Non-colored Phenolics in Red Wines using Liquid Chromatography/Ultraviolet and Mass Spectrometry/Mass Spectrometry Libraries. Molecules 2007, 12, 679–693. [Google Scholar] [CrossRef]
  54. Engels, C.; Gräter, D.; Esquivel, P.; Jiménez, V.M.; Gänzle, M.G.; Schieber, A. Characterization of phenolic compounds in jocote (Spondias purpurea L.) peels by ultra-high-performance liquid chromatography/electrospray ionization mass spectrometry. Food Res. Int. 2012, 46, 557–562. [Google Scholar] [CrossRef]
  55. Rafsanjany, N.; Senker, J.; Brandt, S.; Dobrindt, U.; Hensel, A. In Vivo Consumption of Cranberry Exerts ex Vivo Antiadhesive Activity against FimH-Dominated Uropathogenic Escherichia coli: A Combined in Vivo, ex Vivo, and in Vitro Study of an Extract from Vaccinium macrocarpon. J. Agric. Food Chem. 2015, 63, 8804–8818. [Google Scholar] [CrossRef] [PubMed]
  56. Vijayan, K.P.R.; Raghu, A.V. Tentative characterization of phenolic compounds in three species of the genus Embelia by liquid chromatography coupled with mass spectrometry analysis. Spectrosc. Lett. 2019, 52, 653–670. [Google Scholar] [CrossRef]
  57. Santos, S.A.O.; Freire, C.S.R.; Domingues, M.R.M.; Silvestre, A.J.D.; Neto, C.P. Characterization of Phenolic Components in Polar Extracts of Eucalyptus globulus Labill. Bark by High-Performance Liquid Chromatography-Mass Spectrometry. Agric. Food Chem. 2011, 59, 9386–9393. [Google Scholar] [CrossRef] [PubMed]
  58. Sobeh, M.; Mahmoud, M.F.; Abdelfattah, M.A.O.; Cheng, H.; El-Shazly, A.M.; Wink, M. A proanthocyanidin-rich extract from Cassia abbreviata exhibits antioxidant and hepatoprotective activities in vivo. J. Ethnopharmacol. 2018, 213, 38–47. [Google Scholar] [CrossRef] [PubMed]
  59. Mekam, P.N.; Martini, S.; Nguefack, J.; Tagliazucchi, D.; Stefani, E. Phenolic compounds profile of water and ethanol extracts of Euphorbia hirta L. leaves showing antioxidant and antifungal properties. South Afr. J. Bot. 2019, 127, 319–332. [Google Scholar] [CrossRef]
  60. Pan, M.; Lei, Q.; Zang, N.; Zhang, H. A Strategy Based on GC-MS/MS, UPLC-MS/MS and Virtual Molecular Docking for Analysis and Prediction of Bioactive Compounds in Eucalyptus Globulus Leaves. Int. J. Mol. Sci. 2019, 20, 3875. [Google Scholar] [CrossRef]
  61. Nowak, R.; Olech, M.; Pecio, L.; Oleszek, W.; Los, R.; Malm, A.; Rzymowska, J. Cytotoxic, antioxidant, antimicrobial properties and chemical composition of rose petals. J. Sci. Food Agric. 2014, 94, 560–567. [Google Scholar] [CrossRef]
  62. Da Silva, L.P.; Pereira, E.; Pires, T.C.S.P.; Alves, M.J.; Pereira, O.R.; Barros, L.; Ferreira, I.C.F.R. Rubus ulmifolius Schott fruits: A detailed study of its nutritional, chemical and bioactive properties. Food Res. Int. 2019, 119, 34–43. [Google Scholar] [CrossRef] [PubMed]
  63. Marcia Fuentes, J.A.; Lopez-Salas, L.; Borras-Linares, I.; Navarro-Alarcon, M.; Segura-Carretero, A.; Lozano-Sanchez, J. Development of an Innovative Pressurized Liquid Extraction Procedure by Response Surface Methodology to Recover Bioactive Compounds from Carao Tree Seeds. Foods 2021, 10, 398. [Google Scholar] [CrossRef] [PubMed]
  64. Cendrowski, A.; Scibisz, I.; Kieliszek, M.; Kolniak-Ostek, J.; Mitek, M. UPLC-PDA-Q/TOF-MS Profile of Polyphenolic Compounds of Liqueurs from Rose Petals (Rosa rugosa). Molecules 2017, 22, 1832. [Google Scholar] [CrossRef]
  65. Mena, P.; Calani, L.; Dall’Asta, C.; Galaverna, G.; Garcia-Viguera, C.; Bruni, R.; Crozier, A.; Del Rio, D. Rapid and Comprehensive Evaluation of (Poly)phenolic Compounds in Pomegranate (Punica granatum L.) Juice by UHPLC-MSn. Molecules 2012, 17, 14821–14840. [Google Scholar] [CrossRef] [PubMed]
  66. Viera, M.N.; Winterhalter, P.; Jerz, G. Flavonoids from the flowers of Impatients glandulifera Royle isolated by high performance countercurrent chromatography. Phytochem. Anal. 2016, 27, 116–125. [Google Scholar] [CrossRef] [PubMed]
  67. Barros, L.; Duenas, M.; Carvalho, A.M.; Ferreira, I.C.F.R.; Santos-Buelga, C. Characterization of phenolic compounds in flowers of wild medicinal plants from Northeastern Portugal. Food Chem. Toxicol. 2012, 50, 1576–1582. [Google Scholar] [CrossRef]
  68. Kim, S.; Oh, S.; Noh, H.B.; Ji, S.; Lee, S.H.; Koo, J.M.; Choi, C.W.; Jhun, H.P. In Vitro Antioxidant and Anti-Propionibacterium acnes Activities of Cold Water, Hot Water, and Methanol Extracts, and Their Respective Ethyl Acetate Fractions, from Sanguisorba officinalis L. Roots. Molecules 2018, 23, 3001. [Google Scholar] [CrossRef]
  69. Chen, Y.; Cai, X.; Li, G.; He, X.; Yu, X.; Yu, X.; Xiao, Q.; Xiang, Z.; Wang, C. Chemical constituents of radix Actinidia chinensis planch by UPLC–QTOF–MS. Biomedical Chromatography. Biomed. Chromatogr. 2021, 35, e5103. [Google Scholar] [CrossRef]
  70. Chen, X.; Zhang, S.; Xuan, Z.; Ge, D.; Chen, X.; Zhang, J.; Wang, Q.; Wu, Y.; Liu, B. The Phenolic Fraction of Mentha haplocalyx and Its Constituent Linarin Ameliorate Inflammatory Response through Inactivation of NF-kB and MAPKs in Lipopolysaccharide-Induced RAW264.7 Cells. Molecules 2017, 22, 811. [Google Scholar] [CrossRef]
  71. Yin, Y.; Zhang, K.; Wei, L.; Chen, D.; Chen, Q.; Jiao, M.; Li, X.; Huang, J.; Gong, Z.; Kang, N.; et al. The Molecular Mechanism of Antioxidation of Huolisu Oral Liquid Based on Serum Analysis and Network Analysis. Front. Pharma. 2021, 12, 710976. [Google Scholar] [CrossRef] [PubMed]
  72. Romo Vaquero, M.; Garcia Villalba, R.; Larrosa, M.; Yáñez-Gascón, M.J.; Fromentin, E.; Flanagan, J.; Roller, M.; Tomás-Barberán, F.A.; Espín, J.C.; García-Conesa, M.T. Bioavailability of the major bioactive diterpenoids in a rosemary extract: Metabolic profile in the intestine, liver, plasma, and brain of Zucker rats. Mol. Nutr. Food Res. 2013, 57, 1834–1846. [Google Scholar] [CrossRef]
  73. Cirlini, M.; Mena, P.; Tassotti, M.; Herrlinger, K.A.; Nieman, K.M.; Dall’Asta, C.; Del Rio, D. Phenolic and volatile composition of a dry spearmint (Mentha spicata L.) extract. Molecules 2016, 21, 1007. [Google Scholar] [CrossRef] [PubMed]
  74. Jiang, R.-W.; Lau, K.-M.; Hon, P.-M.; Mak, T.C.W.; Woo, K.-S.; Fung, K.-P. Chemistry and Biological Activities of Caffeic Acid Derivatives from Salvia miltiorrhiza. Curr. Med. Chem. 2005, 12, 237–246. [Google Scholar] [CrossRef] [PubMed]
  75. Simard, F.; Legault, J.; Lavoie, S.; Mshvildadze, V.; Pichette, A. Isolation and Identification of Cytotoxic Compounds from the Wood of Pinus resinosa. Phytother. Res. 2008, 22, 919–922. [Google Scholar] [CrossRef] [PubMed]
  76. Ekeberg, D.; Flate, P.-O.; Eikenes, M.; Fongen, M.; Naess-Andresen, C.F. Qualitative and quantitative determination of extractives in heartwood of Scots pine (Pinus sylvestris L.) by gas chromatography. J. Chromatogr. A 2006, 1109, 267–272. [Google Scholar] [CrossRef] [PubMed]
  77. Moss, R.; Mao, Q.; Taylor, D.; Saucier, C. Investigation of monomeric and oligomeric wine stilbenoids in red wines by ultra-high-performance liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2013, 27, 1815–1827. [Google Scholar] [CrossRef]
  78. Rezaire, A.; Robinson, J.C.; Bereau, D.; Verbaere, A.; Sommerer, N.; Khan, M.K.; Durand, P.; Prost, E.; Fils-Lycaon, B. Amazonian palm Oenocarpus bataua (‘‘patawa’’): Chemical and biological antioxidant activity—Phytochemical composition. Food Chem. 2014, 149, 62–70. [Google Scholar] [CrossRef]
  79. Hu, F.; An, J.; Li, W.; Zhang, Z.; Chen, W.; Wang, C.; Wang, Z. UPLC-MS/MS determination and gender-related pharmacokinetic study of five active ingredients in rat plasma after oral administration of Eucommia cortex extract. J. Ethnopharmacol. 2015, 169, 145–155. [Google Scholar] [CrossRef]
  80. Eklund, P.C.; Backman, M.J.; Kronberg, L.A.; Smeds, A.I.; Sjoholm, R.E. Identification of lignans by liquid chromatography-electrospray ionization ion-trap mass spectrometry. J. Mass Spectr. 2008, 43, 97–107. [Google Scholar] [CrossRef]
  81. Dinelli, G.; Marotti, I.; Bosi, S.; Benedettelli, S.; Ghiselli, L.; Cortacero-Ramirez, S.; Carrasco-Pancorbo, A.; Segura-Carretero, A.; Fernandez-Gutierrez, A. Lignan profile in seeds of modern and old Italian soft wheat (Triticum aestivum L.) cultivars as revealed by CE-MS analyses. Electrophoresis 2007, 28, 4212–4219. [Google Scholar] [CrossRef]
  82. Michalak, B.; Filipek, A.; Chomicki, P.; Pyza, M.; Woźniak, M.; Żyżyńska-Granica, B.; Piwowarski, J.P.; Kicel, A.; Olszewska, M.A.; Kiss, A.K. Lignans From Forsythia x Intermedia Leaves and Flowers Attenuate the Pro-inflammatory Function of Leukocytes and Their Interaction With Endothelial Cells. Front. Pharmacol. 2018, 9, 401. [Google Scholar] [CrossRef]
  83. Oertel, A.; Matros, A.; Hartmann, A.; Arapitsas, P.; Dehmer, K.J.; Martens, S.; Mock, H.P. Metabolite profiling of red and blue potatoes revealed cultivar and tissue specific patterns for anthocyanins and other polyphenols. Planta 2017, 246, 281–297. [Google Scholar] [CrossRef]
  84. Vera de Rosso, V.; Hillebrand, S.; Cuevas Montilla, E.; Bobbio, F.O.; Winterhalter, P.; Mercadante, A.Z. Determination of anthocyanins from acerola (Malpighia emarginata DC.) and ac-ai (Euterpe oleracea Mart.) by HPLC–PDA–MS/MS. J. Food Composit. Analys. 2008, 21, 291–299. [Google Scholar] [CrossRef]
  85. Ruiz, A.; Hermosín-Gutiérrez, I.; Vergara, C.; von Baer, D.; Zapata, M.; Hitschfeld, A.; Obando, L.; Mardones, C. Anthocyanin profiles in south Patagonian wild berries by HPLC-DAD-ESI-MS/MS. Food Res. Int. 2013, 51, 706–713. [Google Scholar] [CrossRef]
  86. Diretto, G.; Jin, X.; Capell, T.; Zhu, C.; Gomez-Gomez, L. Differential accumulation of pelargonidin glycosides in petals at three different developmental stages of the orange-flowered gential (Gentiana lutea L. var. aurantiaca). PLoS ONE 2019, 14, e0212062. [Google Scholar] [CrossRef] [PubMed]
  87. Garg, M.; Chawla, M.; Chunduri, V.; Kumar, R.; Sharma, S.; Sharma, N.K.; Kaur, N.; Kumar, A.; Mundey, J.K.; Saini, M.K.; et al. Transfer of grain colors to elite wheat cultivars and their characterization. J. Cereal Sci. 2016, 71, 138–144. [Google Scholar] [CrossRef]
  88. Nakamura, S.; Li, X.; Matsuda, H.; Yoshikawa, M. Bioactive constituents from Chinese natural medicines. XXVIII. Chemical structures of acyclic alcohol glycosides from the roots of Rhodiola crenulata. Chem. Pharm. Bull. 2008, 56, 536–540. [Google Scholar] [CrossRef] [PubMed]
  89. Fan, Z.; Wang, Y.; Yang, M.; Cao, J.; Khan, A.; Cheng, G. UHPLC-ESI-HRMS/MS analysis on phenolic compositions of different E Se tea extracts and their antioxidant and cytoprotective activities. Food Chem. 2020, 318, 126512. [Google Scholar] [CrossRef]
  90. Suarez Montenegro, Z.J.; Alvarez-Rivera, G.; Mendiola, J.A.; Ibanez, E.; Cifuentes, A. Extraction and Mass Spectrometric Characterization of Terpenes Recovered from Olive Leaves Using a New Adsorbent-Assisted Supercritical CO2 Process. Foods 2021, 10, 1301. [Google Scholar] [CrossRef]
  91. Zhang, J.; Gao, W.; Liu, Z.; Zhang, Z. Identification and Simultaneous Determination of Twelve Active Components in the Methanol Extract of Traditional Medicine Weichang’an Pill by HPLC-DAD-ESI-MS/MS. Iran. J. Pharmaceut. Res. 2013, 12, 15–24. [Google Scholar]
  92. Guo, K.; Tong, C.; Fu, Q.; Xu, J.; Shi, S.; Xiao, Y. Identification of minor lignans, alkaloids, and phenylpropanoid glycosides in Magnolia officinalis by HPLC-DAD-QTOF-MS/MS. J. Pharmaceut. Biomed. Analys. 2019, 170, 153–160. [Google Scholar] [CrossRef]
  93. Van Diermen, D.; Marston, A.; Bravo, J.; Reist, M.; Carrupt, P.A.; Hostettmann, K. Monoamine oxidase inhibition by Rhodiola rosea L. roots. J. Ethnopharmacol. 2009, 122, 397–401. [Google Scholar] [CrossRef]
  94. Ohsugi, M.; Fan, W.; Hase, K.; Xiong, Q.; Tezuka, Y.; Komatsu, K.; Namba, T.; Saitoh, T.; Tazawa, K.; Kadota, S. Active-oxygen scavenging activity of traditional nourishing-tonic herbal medicines and active constituents of Rhodiola sacra. J. Ethnopharmacol. 1999, 67, 111–119. [Google Scholar] [CrossRef]
  95. Kim, K.H.; Park, Y.J.; Jang, H.J.; Lee, S.J.; Lee, S.; Yun, B.S.; Lee, S.W.; Rho, M.C. Rugosic acid A, derived from Rosa rugosa Thunb., is novel inhibitory agent for NF-κB and IL-6/STAT3 axis in acute lung injury model. Phytother. Res. 2020, 34, 3200–3210. [Google Scholar] [CrossRef] [PubMed]
  96. Patnala, S.; Kanfer, I. Medicinal use of Sceletium: Characterization of Phytochemical Components of Sceletium Plant Species using HPLC with UV and Electrospray Ionization—Tandem Mass Spectroscopy. J. Pharm. Pharm. Sci. 2015, 18, 414–423. [Google Scholar] [CrossRef]
  97. Yang, S.T.; Wu, X.; Rui, W.; Guo, J.; Feng, Y.F. UPLC/Q-TOF-MS Analysis for Identification of Hydrophilic Phenolics and Lipophilic Diterpenoids from Radix Salviae Miltiorrhizae. Acta Chromatogr. 2015, 27, 711–728. [Google Scholar] [CrossRef] [Green Version]
  98. Xie, J.; Ding, C.; Ge, Q.; Zhou, Z.; Zhi, X. Simultaneous determination of ginkgolides A, B, C and bilobalide in plasma by LC–MS/MS and its application to the pharmacokinetic study of Ginkgo biloba extract in rats. J. Chromatogr. B 2008, 864, 87–94. [Google Scholar] [CrossRef]
  99. Xiao, J.; Wang, T.; Li, P.; Liu, R.; Li, Q.; Bi, K. Development of two step liquid–liquid extraction tandem UHPLC–MS/MS method for the simultaneous determination of Ginkgo flavonoids, terpene lactones and nimodipine in rat plasma: Application to the pharmacokinetic study of the combination of Ginkgo biloba dispersible tablets and Nimodipine tablets. J. Chromatogr. B 2016, 1028, 33–41. [Google Scholar]
  100. Llorent-Martinez, E.J.; Spinola, V.; Gouveia, S.; Castilho, P.C. HPLC-ESI-MSn characterization of phenolic compounds, terpenoid saponins, and other minor compounds in Bituminaria bituminosa. Ind. Crops Prod. 2015, 69, 80–90. [Google Scholar] [CrossRef]
  101. Park, S.K.; Ha, J.S.; Kim, J.M.; Kang, J.Y.; Lee, D.S.; Guo, T.J.; Lee, U.; Kim, D.-O.; Heo, H.J. Antiamnesic Effect of Broccoli (Brassica oleracea var. italica) Leaves on Amyloid Beta (Aβ)1-42-Induced Learning and Memory Impairment. J. Agric. Food. Chem. 2016, 64, 3353–3361. [Google Scholar] [CrossRef]
  102. Serrano, C.A.; Villena, G.K.; Rodriguez, E.F. Phytochemical profile and rosmarinic acid purification from two Peruvian Lepechinia Willd. species (Salviinae, Mentheae, Lamiaceae). Sci. Rep. 2021, 11, 7260. [Google Scholar] [CrossRef]
  103. Ozarowski, M.; Piasecka, A.; Paszel-Jaworska, A.; de Chaves, D.S.A.; Romaniuk, A.; Rybczynska, M.; Gryszczynska, A.; Sawikowska, A.; Kachlicki, P.; Mikolajczak, P.L.; et al. Acetylcholinesterase inhibitory activities and bioguided fractionation of the Ocotea percoriacea extracts: HPLC-DAD-MS/MS characterization and molecular modeling of their alkaloids in the active fraction. Comput. Biol. Chem. 2019, 83, 107129. [Google Scholar]
  104. Yang, L.; Meng, X.; Yu, X.; Kuang, H. Simultaneous determination of anemoside B4, phellodendrine, berberine, palmatine, obakunone, esculin, esculetin in rat plasma by UPLC–ESI–MS/MS and its application to a comparative pharmacokinetic study in normal and ulcerative colitis rats. J. Pharm. Biomed. Analys. 2017, 134, 43–52. [Google Scholar] [CrossRef] [PubMed]
  105. Seekhaw, P.; Mahatheeranont, S.; Sookwong, P.; Luangkamin, S.; Na Lampang Neonplab, A.; Puangsombat, P. Phytochemical Constituents of Thai Dark Purple Glutinous Rice Bran Extract [Cultivar Luem Pua (Oryza sativa L.)]. Chiang Mai J. Sci. 2018, 45, 1383–1395. [Google Scholar]
  106. Wu, Y.; Xu, J.; He, Y.; Shi, M.; Han, X.; Li, W.; Zhang, X.; Wen, X. Metabolic Profiling of Pitaya (Hylocereus polyrhizus) during Fruit Development and Maturation. Molecules 2019, 24, 1114. [Google Scholar] [CrossRef] [PubMed]
  107. Sut, S.; Zengin, G.; Maggi, F.; Malagoli, M.; Dall’Acqua, S. Triterpene Acid and Phenolics from Ancient Apples of Friuli Venezia Giulia as Nutraceutical Ingredients: LC-MS Study and In Vitro Activities. Molecules 2019, 24, 1109. [Google Scholar] [CrossRef]
  108. D’Abrosca, B.; Fiorentino, A.; Monaco, P.; Oriano, P.; Pacifico, S. Annurcoic acid: A new antioxidant ursane triterpene from fruits of cv. Annurca apple. Food Chem. 2006, 98, 285–290. [Google Scholar]
  109. Liu, H.; Lai, H.; Jia, X.; Liu, J.; Zhang, Z.; Oi, Y.; Zhang, J.; Song, J.; Wu, C.; Zhang, B.; et al. Comprehensive chemical analysis of Schisandra chinensis by HPLC-DAD-MS combined with chemometrics. Phytomedicine 2013, 20, 1135–1143. [Google Scholar] [CrossRef] [PubMed]
  110. Razgonova, M.; Zakharenko, A.; Pikula, K.; Kim, E.; Chernyshev, V.; Ercisli, S.; Cravotto, G.; Golokhvast, K. Rapid Mass Spectrometric Study of a Supercritical CO2-extract from Woody Liana Schisandra chinensis by HPLC-SPD-ESI-MS/MS. Molecules 2020, 25, 2689. [Google Scholar]
  111. Lara-Abia, S.; Lobo-Rodrigo, G.; Welti-Chanes, J.; Pilar Cano, M. Carotenoid and Carotenoid Ester Profile and Their Deposition in Plastids in Fruits of New Papaya (Carica papaya L.) Varieties from the Canary Islands. Foods 2021, 10, 434. [Google Scholar] [CrossRef]
  112. Etzbach, L.; Pfeiffer, A.; Weber, F.; Schieber, A. Characterization of carotenoid profiles in goldenberry (Physalis peruviana L.) fruits at various ripening stages and in different plant tissues by HPLC-DADAPCI-MSn. Food Chem. 2018, 245, 508–517. [Google Scholar]
  113. Al-Yafeai, A.; Malarski, A.; Bohm, V. Characterization of carotenoids and vitamin E in R. rugosa and R. canina: Comparative analysis. Food Chem. 2018, 242, 435–442. [Google Scholar] [PubMed]
  114. Petry, F.C.; Mercadante, A.Z. Composition by LC-MS/MS of New Carotenoid Esters in Mango and Citrus. J. Agric. Food Chem. 2016, 64, 8207–8224. [Google Scholar] [CrossRef] [PubMed]
  115. van Breemen, R.B.; Canjura, F.L.; Schwartz, S.J. Identification of Chlorophyll Derivatives by Mass Spectrometry. J. Agric. Food Chem. 1991, 39, 1452–1456. [Google Scholar] [CrossRef]
Figure 1. (A) Rosa rugosa (Far Eastern Russia); (B) Rosa davurica (Trans-Baikal region).
Figure 1. (A) Rosa rugosa (Far Eastern Russia); (B) Rosa davurica (Trans-Baikal region).
Applsci 12 09401 g001
Figure 2. Rosa acicularis (Western Siberia).
Figure 2. Rosa acicularis (Western Siberia).
Applsci 12 09401 g002
Figure 3. Representative chemical profiles of the R. rugosa (Primorye, Russia) total ion chromatogram from the MeOH extract.
Figure 3. Representative chemical profiles of the R. rugosa (Primorye, Russia) total ion chromatogram from the MeOH extract.
Applsci 12 09401 g003
Figure 4. CID-spectrum of Tricin from extracts of R. davurica, m/z 329.19.
Figure 4. CID-spectrum of Tricin from extracts of R. davurica, m/z 329.19.
Applsci 12 09401 g004
Figure 5. CID-spectrum of Nevadensin from extracts of R. acicularis, m/z 346.86.
Figure 5. CID-spectrum of Nevadensin from extracts of R. acicularis, m/z 346.86.
Applsci 12 09401 g005
Figure 6. CID-spectrum of Isokaempferide from extracts of R. davurica, m/z 301.96.
Figure 6. CID-spectrum of Isokaempferide from extracts of R. davurica, m/z 301.96.
Applsci 12 09401 g006
Figure 7. CID-spectrum of Kaempferol from extracts of R. acicularis, m/z 287.
Figure 7. CID-spectrum of Kaempferol from extracts of R. acicularis, m/z 287.
Applsci 12 09401 g007
Figure 8. CID-spectrum of Taxifolin-O-pentoside from extracts of R. davurica, m/z 285.03.
Figure 8. CID-spectrum of Taxifolin-O-pentoside from extracts of R. davurica, m/z 285.03.
Applsci 12 09401 g008
Figure 9. CID-spectrum of Gallocatechin from R. rugosa, m/z 305.10.
Figure 9. CID-spectrum of Gallocatechin from R. rugosa, m/z 305.10.
Applsci 12 09401 g009
Figure 10. CID-spectrum of (S)-Flavogallonic acid from extracts of R. davurica, m/z 471.11.
Figure 10. CID-spectrum of (S)-Flavogallonic acid from extracts of R. davurica, m/z 471.11.
Applsci 12 09401 g010
Table 1. The flavonoid composition distribution of varieties R. rugosa Thumb., R. davurica Pall., and R. acicularis Lindl. Blue square—presence in extracts of R. rugosa; red square—in extracts of R. davurica; green square—in extracts of R. acicularis.
Table 1. The flavonoid composition distribution of varieties R. rugosa Thumb., R. davurica Pall., and R. acicularis Lindl. Blue square—presence in extracts of R. rugosa; red square—in extracts of R. davurica; green square—in extracts of R. acicularis.
No.Class of CompoundsIdentified CompoundsR. rugosaR. davuricaR. acicularis
1FlavoneHydroxy-methoxy (iso) flavone *
2FlavoneApigenin
3FlavoneChrysoeriol [Chryseriol] *
4FlavoneHispidulin *
5Flavone5,7-Dimethoxyluteolin *
6FlavoneCirsimaritin *
7FlavoneChrysoeriol methyl ether *
8FlavoneCirsiliol *
9FlavoneTricin *
10FlavoneJaceosidin *
11Flavone5,6,4′-Trihydroxy-7,8-dimetoxyflavone *
12FlavoneNevadensin *
13FlavoneSyringetin *
14FlavoneDihydroxy-tetramethoxy(iso)flavone *
15FlavonePentahydroxy trimethoxy flavone *
16FlavoneIsovitexin *
17FlavoneGenistein C-glucoside malonylated *
18FlavoneChrysin 6-C-glucoside-6″-O-deoxyhexoside *
19FlavoneDiosmin *
20FlavonolKaempferol
21FlavonolDihydrokaempferol *
22FlavonolIsokaempferide [3-O-Methylkaempferol]
23FlavonolQuercetin
24FlavonolMorin
25FlavonolRhamnetin I
26FlavonolRhamnetin II *
27FlavonolIsorhamnetin
28FlavonolMyricetin
29FlavonolMearnsetin *
30FlavonolKaempferol-3-O-α-l-rhamnoside *
31FlavonolAvicularin
32FlavonolTaxifolin-O-pentoside *
33FlavonolTaxifolin-3-O-hexoside *
34FlavonolKaempferol diacetyl hexoside
35FlavonolKaempferol 3-O-rutinoside
36FlavonolKaempferol 3-O-deoxyhexosylhexoside
37FlavonolIsorhamnetin triacetyl hexoside *
38Flavan-3-olEpiafzelechin [(epi)Afzelechin] *
39Flavan-3-olCatechin [D-Catechol]
40Flavan-3-ol(+)-Epicatechin *
41Flavan-3-olGallocatechin [+(-)Gallocatechin] *
42FlavanoneNaringenin [Naringetol; Naringenine]
43FlavanoneFustin [2,3-Dihydrofistein] *
44FlavanoneEriodictyol [3′,4′,5,7-tetrahydroxy-flavanone]
45FlavanoneEriodictyol-7-O-glucoside *
46Hydroxycinnamic acidCaffeic acid *
47Phenolic acidQuinic acid
48Phenolic acidCitric acid [Anhydrous; Citrate] *
49Phenolic acidtrans-Ferulic acid
50Phenolic acidHydroxy methoxy dimethylbenzoic acid *
51Phenolic acidSyringic acid
52Phenolic acid3,3,4,4-Tetrahydroxy-5-oxo-cyclohexanecarboxylic acid *
53Phenolic acidHydroxyferulic acid *
54Hydroxycinnamic acidSinapic acid [trans-Sinapic acid]
55Phenolic acid2,4,6-Trihydroxy-3,5-dimethoxybenzoic acid *
56Hydroxybenzoic acidEllagic acid *
58Phenolic acidp-Coumaroylquinic acid *
58Phenolic acidGinkgoic acid *
59Phenolic acid1-[(Acetyl-l-cysteinyl)oxy]-2,3,4,5-tetrahydroxycyclohexane-1-carboxylic acid *
60Phenolic acidChlorogenic acid [3-O-Caffeoylquinic acid] *
61Phenolic acidNeochlorogenic acid [5-O-Caffeoylquinic acid]
62Phenolic acidRosmarinic acid
63Phenolic acid5-Hydroxy feruloyl hexose *
64Phenolic acidSalvianolic acid D *
65Phenolic acidSalvianolic acid B [Danfensuan B] *
66StilbenePinosylvin *
67StilbeneResveratrol *
68Stilbene3-Hydroxyresveratrol *
69LignanPinoresinol *
70LignanArctigenin *
71Coumarin3,4,5-Trimethoxycoumarin *
72CoumarinFraxin (Fraxetin-8-O-glucoside) *
73AnthocyanidinAnthocyanidin [cyanidin chloride; Cyanidin] *
74AnthocyanidinPetunidin *
75AnthocyanidinCyanidin-3-O-glucoside [Cyanidin 3-O-beta-d-Glucoside; Kuromarin] *
76AnthocyanidinDelphinidin O-pentoside *
77AnthocyanidinPelargonidin 3-O-(6-O-malonyl-beta-d-glucoside) *
78AnthocyanidinCyanidin 3-(6″-Succinyl-Glucoside) *
79AnthocyanidinDelphinidin malonyl hexoside *
80AnthocyanidinCyanidin-3-O-dioxayl-glucoside *
81AnthocyanidinDelphinidin 3,5-dihexoside *
82TanninProdelphinidin A-type *
83Hydrolysable tannin(S)-Flavogallonic acid
84EllagitanninPunicalin alpha *
85PhenylpropanoidConiferin *
86Gallate esterEthyl gallate *
87Gallate esterBeta-Glucogallin *
88DihydrochalconePhloretin [Dihydronaringenin; Phloretol] *
89FlavonoidDiphylloside B *
90FlavonoidDemethylanhydroicaritin-7-O-glucopyranosyl-3-O-acetylated rhamnopyranosyl-xylopyranoside *
* Polyphenols identified for the first time in genus Rosa.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Razgonova, M.P.; Bazhenova, B.A.; Zabalueva, Y.Y.; Burkhanova, A.G.; Zakharenko, A.M.; Kupriyanov, A.N.; Sabitov, A.S.; Ercisli, S.; Golokhvast, K.S. Rosa davurica Pall., Rosa rugosa Thumb., and Rosa acicularis Lindl. Originating from Far Eastern Russia: Screening of 146 Chemical Constituents in Three Species of the Genus Rosa. Appl. Sci. 2022, 12, 9401. https://doi.org/10.3390/app12199401

AMA Style

Razgonova MP, Bazhenova BA, Zabalueva YY, Burkhanova AG, Zakharenko AM, Kupriyanov AN, Sabitov AS, Ercisli S, Golokhvast KS. Rosa davurica Pall., Rosa rugosa Thumb., and Rosa acicularis Lindl. Originating from Far Eastern Russia: Screening of 146 Chemical Constituents in Three Species of the Genus Rosa. Applied Sciences. 2022; 12(19):9401. https://doi.org/10.3390/app12199401

Chicago/Turabian Style

Razgonova, Mayya P., Bayana A. Bazhenova, Yulia Yu. Zabalueva, Anastasia G. Burkhanova, Alexander M. Zakharenko, Andrey N. Kupriyanov, Andrey S. Sabitov, Sezai Ercisli, and Kirill S. Golokhvast. 2022. "Rosa davurica Pall., Rosa rugosa Thumb., and Rosa acicularis Lindl. Originating from Far Eastern Russia: Screening of 146 Chemical Constituents in Three Species of the Genus Rosa" Applied Sciences 12, no. 19: 9401. https://doi.org/10.3390/app12199401

APA Style

Razgonova, M. P., Bazhenova, B. A., Zabalueva, Y. Y., Burkhanova, A. G., Zakharenko, A. M., Kupriyanov, A. N., Sabitov, A. S., Ercisli, S., & Golokhvast, K. S. (2022). Rosa davurica Pall., Rosa rugosa Thumb., and Rosa acicularis Lindl. Originating from Far Eastern Russia: Screening of 146 Chemical Constituents in Three Species of the Genus Rosa. Applied Sciences, 12(19), 9401. https://doi.org/10.3390/app12199401

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop