Four-Dimension Seismic Analysis in Carbonate: A Closed Loop Study
Abstract
:1. Introduction
2. Materials and Methods
1D Well-Based Time-Lapse Feasibility Study
- Mix mineral properties.
- Add pores using effective media theories.
- Calculate fluid properties.
- Perform fluid substitution.
- −
- In-situ (pre-production).
- −
- Water displacing gas to different saturations: 10, 50 and 85%.
- −
- CO2 displacing gas to different saturations: 10, 50 and 85%.
- Matching with the in-situ situation showed the validity of the rock physics model used, i.e., the Gassmann fluid substitution performed, and the accuracy of the measured logs.
- The water-sweep scenarios showed minimal changes in the logs, indicating that water flooding in an oil reservoir is relatively difficult to quantify on a time-lapse seismic image.
- For the same oil reservoir, on the other hand, CO2 flooding showed stronger changes, especially in P-wave velocity and thus impedance, making CO2 sweep scenarios more observable on time-lapse seismic.
- It is quite clear that CO2 showed pronounced signatures in the form of acoustic impedance changes.
- The matching with the in-situ situation showed some discrepancy between the measured log and the log produced by the rock physics, especially in the very porous sections of the reservoir.
- The water sweep scenarios showed some degree of change in the logs, suggesting that a water flood may be observable in the gas reservoir on a time-lapse seismic image.
3. Results & Discussion
3.1. 4D Seismic Co-Processing
3.2. Seismic Inversion and Supervising Machine Learning Neural Network
- (1)
- Examine the log and seismic data at well locations to determine which set of attributes is appropriate.
- (2)
- Derive a relationship using multi-linear regression or Neural Networks.
- (3)
- Apply the derived relationship to a 3D SEG-Y volume to create a volume of the desired log property.
3.3. Matching of 4D Seismic Signal with Reservoir Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cambois, G.; Al Mesaabi, S.; Casson, G.A.; Cowell, J.; Mahgoub, M.; Al Kobaisi, A. The World’s Largest Continuous 3D Onshore and Offshore Seismic Survey Sets Ambitious Quality and Turnaround Targets. In SEG Technical Program Expanded Abstracts; OnePetro: Richardson, TX, USA, 2019. [Google Scholar]
- Smith, R.; Hemyari, E.; Bakulin, A.; Alramadhan, A. Making seismic monitoring work in a complex desert environment—4D processing. Geophysics 2019, 38, 637–645. [Google Scholar] [CrossRef]
- Calvert, R. Insights and Methods for 4D Reservoir Monitoring and Characterization: SEG/EAGE DISC (Distinguished Instructor Lecture Course. 2005. Available online: https://library.seg.org/doi/abs/10.1190/1.9781560801696 (accessed on 23 June 2021).
- Sarkar, S.; Gouveia, W.P.; Johnston, D.H. On the inversion of time-lapse seismic data. SEG Tech. Program Expand. Abstr. 2003, 22, 1489–1492. [Google Scholar]
- Niri, M.E. 3D and 4D Seismic Data Integration in Static and Dynamic Reservoir Modeling: A Review. Pet. Sci. Technol. 2018, 8, 38–56. [Google Scholar] [CrossRef]
- Pacheco, C. Predicting Pressure and Fluid Saturation Changes Using 4D Seismic Attributes, Production Data and Simulation Model, FORCE, 30 Years of 4D Seismic on the Norwegian Continental Shelf. 2018. Available online: https://www.npd.no/globalassets/2-force/2019/bilder-og-illustrasjoner/seminars/previous-seminars/30-years-of-4d-seismic-on-the-ncs/predictingpressuresandfluidsaturations4d-2.pdf (accessed on 12 July 2021).
- Downie, W.A.; Hood, B.F. Development of the Umm Shaif Field in Abu Dhabi. In Proceedings of the Arab Petroleum Congress, Dubai, United Arab Emirates, 10–16 March 1975; Volume 130. [Google Scholar]
- Bashir, Y.; Faisal, M.A.; Biswas, A.; Babasafari, A.A.; Ali, S.H.; Imran, Q.S.; Siddiqui, N.A.; Ehsan, M. Seismic expression of Miocene carbonate platform and reservoir characterization through geophysical approach: Application in central Luconia, offshore Malaysia. J. Pet. Explor. Prod. Technol. 2021, 11, 1533–1544. [Google Scholar] [CrossRef]
- Maleki, M.; Davolio, A.; Schiozer, D.J. Qualitative time-lapse seismic interpretation of Norne Field to assess challenges of 4D seismic attributes. Geophysics 2018, 37, 754–762. [Google Scholar] [CrossRef]
- Babasafari, A.A.; Rezaei, S.; Sambo, C.; Bashir, Y.; Ghosh, D.P.; Salim, A.M.A.; Yusoff, W.I.W.; Kazemeini, S.H.; Kordi, M. Practical workflows for monitoring saturation and pressure changes from 4D seismic data: A case study of Malay Basin. J. Appl. Geophys. 2021, 195, 104472. [Google Scholar] [CrossRef]
- Babasafari, A.A.; Bashir, Y.; Ghosh, D.P.; Salim, A.M.A.; Janjuhah, H.T.; Kazemeini, S.H.; Kordi, M. A new approach to petroelastic modeling of carbonate rocks using an extended pore-space stiffness method, with application to a carbonate reservoir in Central Luconia, Sarawak, Malaysia. Geophysics 2020, 39, 592a1–592a10. [Google Scholar] [CrossRef]
- Mahgoub, M.; Bashir, Y.; Bery, A.A.; Noufal, A.W. 4D seismic co-processing pre-stack depth migration for scarce acquisition repeatability. J. Pet. Explor. Prod. Technol. 2022, 1–15. [Google Scholar] [CrossRef]
- Dramsch, J.S.; Christensen, A.N.; MacBeth, C.; Luthje, M. Deep Unsupervised 4D Seismic 3D Time-Shift Estimation with Convolutional Neural Networks. 2019. Available online: https://eartharxiv.org/repository/view/592 (accessed on 15 February 2021).
- Kumar, U.; Legendre, C.P.; Zhao, L.; Chao, B.F. Dynamic Time Warping as an Alternative to Windowed Cross Correlation in Seismological Applications. Seism. Res. Lett. 2022, 93, 1909–1921. [Google Scholar] [CrossRef]
- Tarantola, A. Inverse Problem Theory and Methods for Model Parameter Estimation; Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, USA, 2005. [Google Scholar] [CrossRef]
- Frazer, B.; Andres Bruun, A.; Alfaro, J.K.; Roberts, R. Seismic Inversion Reading between the Lines, Oilfield Review. 2008. Available online: https://www.slb.com/-/media/files/oilfield-review/seismic-inversion (accessed on 25 December 2020).
- Souza, R.; Lumley, D.; Shragge, J. Estimation of reservoir fluid saturation from 4D seismic data: Effects of noise on seismic amplitude and impedance attributes. J. Geophys. Eng. 2017, 14, 51–68. [Google Scholar] [CrossRef] [Green Version]
- Francis, A. Limitations of deterministic and advantages of stochastic seismic inversion. CSEG Recorder 2005, 30, 5–11. [Google Scholar]
- Goloshubin, G.; Silin, D. Using frequency-dependent seismic attributes in imaging of a fractured reservoir zone. In Proceedings of the 2005 SEG Annual Meeting, Houston, TX, USA, 6–11 November 2005. [Google Scholar]
- Landrø, M.; Amundsen, L. 4D Seismic—Status and Future Challenges; GEO ExPro; Energy & Geoscience Institute Salt Lake City: Salt Lake City, UT, USA, 2007. [Google Scholar]
- Downton, J. Deep Neural Networks to Predict Reservoir Properties from Seismic CGG-Geosoftware. 2018. Available online: www.cgg.com (accessed on 15 May 2022).
- Quirein, J.; Hampson, D.; Schuelke, J. Use of multi-attribute transforms to predict log properties from seismic data. In Proceedings of the EAGE Conference on Exploring the Synergies between Surface and Borehole Geoscience-Petrophysics meets Geophysics, Paris, France, 6–8 November 2000. [Google Scholar]
- Webb, B.; Rizzetto, C.; Pirera, F.; Paparozzi, E.; Milluzzo, V.; Mastellone, D.; Marchesini, M.; Colombi, N.; Buia, M.; Bertarini, M. 4D seismic opportunity: From feasibility to reservoir characterization—A case study offshore West Africa. First Break 2019, 37, 69–77. [Google Scholar] [CrossRef]
- Gassmann, F. Elastic Waves through a Packing of Spheres. Geophysics 1951, 16, 673–685. [Google Scholar] [CrossRef]
- Xu, S.; Payne, M.A. Modeling elastic properties in carbonate rocks. Lead. Edge 2009, 28, 66–74. [Google Scholar] [CrossRef]
- Kube, C.M.; Turner, J.A. Voigt, Reuss, Hill, and self-consistent techniques for modeling ultrasonic scattering. AIP Conf. Proc. 2015, 1650, 926–934. [Google Scholar] [CrossRef]
- Lumley, D.; Behrens, R.A.; Wang, Z. Assessing the technical risk of a 4-D seismic project. Geophysics 1997, 16, 1287–1292. [Google Scholar] [CrossRef]
- CGG 4D Portfolio. 2019. Available online: www.CGG.com (accessed on 20 December 2020).
- Lecerf, D.; Burren, J.; Hodges, E.; Barros, C. Repeatability Measure for Broadband 4D seismic. In SEG Technical Program Expanded Abstracts; Society of Exploration Geophysicists: Houston, TX, USA, 2015; pp. 5483–5487. [Google Scholar]
- Eiken, O.; Haugen, G.U.; Schonewille, M.; Duijndam, A. A proven method for acquiring highly repeatable towed streamer seismic data. Geophysics 2003, 68, 1303–1309. [Google Scholar] [CrossRef]
- Kragh, E.; Christie, P. Seismic repeatability, normalized rms, and predictability. Geophysics 2002, 21, 640–647. [Google Scholar] [CrossRef]
- Detomo, R. 4D Time Lapse Seismic Reservoir Monitoring of African Reservoirs. SEG Regional Honorary Lecturer. 2013. Available online: https://docplayer.net/54664158-4d-time-lapse-seismic-reservoir-monitoring-of-african-reservoirs-dr-rocco-rocky-detomo-head-shell-e-p-reservoir-monitoring-research-houston-tx.html (accessed on 19 December 2020).
Mineral | Density (g/cc) | Bulk Modulus (GPa) | Shear Modulus (GPa) |
---|---|---|---|
Calcite | 2.71 | 69.3 | 32 |
Dolomite | 2.87 | 74.5 | 35.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahgoub, M.; Bashir, Y.; Bery, A.A.; Noufal, A. Four-Dimension Seismic Analysis in Carbonate: A Closed Loop Study. Appl. Sci. 2022, 12, 9438. https://doi.org/10.3390/app12199438
Mahgoub M, Bashir Y, Bery AA, Noufal A. Four-Dimension Seismic Analysis in Carbonate: A Closed Loop Study. Applied Sciences. 2022; 12(19):9438. https://doi.org/10.3390/app12199438
Chicago/Turabian StyleMahgoub, Mohamed, Yasir Bashir, Andy Anderson Bery, and Abdelwahab Noufal. 2022. "Four-Dimension Seismic Analysis in Carbonate: A Closed Loop Study" Applied Sciences 12, no. 19: 9438. https://doi.org/10.3390/app12199438
APA StyleMahgoub, M., Bashir, Y., Bery, A. A., & Noufal, A. (2022). Four-Dimension Seismic Analysis in Carbonate: A Closed Loop Study. Applied Sciences, 12(19), 9438. https://doi.org/10.3390/app12199438