Automatic Registration Algorithm for the Point Clouds Based on the Optimized RANSAC and IWOA Algorithms for Robotic Manufacturing
Abstract
:1. Introduction
2. Optimized RANSAC Algorithm Using IWOA
2.1. RANSAC Algorithm
2.2. Improve WOA Based on Nonlinear Convergence Factor
2.3. Realize Point Cloud Initial Registration Process
3. Realize Point Cloud Fine Registration Using Improved ICP Algorithm
3.1. Mathematical Models of the ICP Algorithm
3.2. Realize Accurate Registration of Point Cloud
- (1)
- Downsample the point cloud to be registered P and the target point cloud Q;
- (2)
- Search for the closest point of the target cloud using KD-tree, calculate the distance di in accordance with Equation (17); if di < k, calculate the normal vector θi of the two corresponding points in P and Q, and the point is determined as the corresponding point in P if θi < θ, otherwise, repeat the iteration;
- (3)
- Calculate the average distance d of the corresponding point set. If it is less than the preset threshold, or if the times of iterations are greater than the preset maximum number of iterations τ, leave the loop and stop the iterations; otherwise, return to recalculate the transformation matrix until the convergence requirements are met. The registration flow of the algorithm proposed in this paper is shown in Figure 3.
4. Verification and Analysis
4.1. Registration Visualization
4.2. Analysis of Experimental Data
5. Conclusions and Future Work
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Allah, A.A.A.; Aly, A.; Abdelnaim, A. Interactive fluid flow simulation in computer graphics using incompressible smoothed particle hydrodynamics. Comput. Animat. Virtual Worlds 2019, 31, e1916. [Google Scholar] [CrossRef]
- Abdelnaim, A.; Hassaballah, M.; Aly, A.M. Fluid-structure interactions simulation and visualization using ISPH approach. J. Flow Vis. Image Process. 2019, 26, 223–238. [Google Scholar] [CrossRef]
- Sobreira, H.; Costa, C.M.; Sousa, I.; Rocha, L.; Lima, J.; Farias, P.; Costa, P.; Moreira, A.P. Map-matching algorithms for robot self-localization: A comparison between perfect match, iterative closest point and normal distributions transform. J. Intell. Robot. Syst. 2019, 93, 533–546. [Google Scholar] [CrossRef]
- Hafiz, A.M.; Bhat, R.U.A.; Parah, S.A.; Hassaballah, M. SE-MD: A Single-encoder multiple-decoder deep network for point cloud generation from 2D images. arXiv 2021, arXiv:2106.15325. [Google Scholar]
- Besl, P.J.; McKay, N.D. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256. [Google Scholar] [CrossRef]
- Sun, J.; Chen, H.; Geng, G. Optimization algorithm for alignment of 3D cultural relics point cloud model. J. Comput. Aided Des. Graph. 2016, 28, 1068–1074. [Google Scholar]
- Yu, W.-L.; Zhou, M.-Q.; Tax, W.-Y.; Wu, Z.-K. Curvature-based automatic point cloud alignment method. J. Syst. Simul. 2015, 27, 50. [Google Scholar]
- Wang, Y.; Lian, T.; Wu, M.; Gao, Q. A point cloud alignment method based on octree and KD tree indexing. Surv. Mapp. Eng. 2017, 08, 35–40. [Google Scholar]
- Wang, D.; Zhou, K. Application of point cloud alignment in the positioning of large surface workpieces. Comput. Appl. Res. 2015, 32, 2347–2349. [Google Scholar]
- Segal, A.; Haehnel, D.; Thrun, S. Generalized-icp. Robot. Sci. Syst. 2009, 2, 435. [Google Scholar]
- Yang, J.; Li, H.; Campbell, D.; Jia, Y. Go-ICP: A Globally Optimal Solution to 3D ICP Point-Set Registration. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 2241–2254. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Yang, Z. Research on point cloud registration technology based on genetic algorithm. J. Cent. South Univ. Natl. 2018, 37, 104–108. [Google Scholar]
- Huang, S.; Wen, P.; He, H. 3D point cloud alignment based on hierarchical particle swarm optimization. J. Jinan University 2021, 35, 376–380. [Google Scholar]
- Wu, H. Research on the Improved Algorithm of Automatic Point Cloud Alignment Based on ICP Algorithm; Liaoning University of Engineering and Technology: Fuxin, China, 2016. [Google Scholar]
- Li, C.; Sun, W. Point cloud alignment algorithm based on Gaussian likelihood estimation factor analysis. Comput. Appl. Softw. 2021, 38, 232–236. [Google Scholar]
- Zhang, X.; Zhang, A.; Wang, Z. Point Cloud Registration Based on Improved Normal Distribution Transform Algorithm. Laser Optoelectron. Prog. 2014, 51, 041002. [Google Scholar] [CrossRef]
- Tian, Y.; Li, G.-Q.; Song, X. A Novel 3D Terrain Feature Detecting and Matching Method. J. Astronaut. 2018, 39, 690–696. [Google Scholar]
- Rusu, B.R.; Blodow, N.; Beetz, M. Fast point feature histograms (FPFH) for 3D registration. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 18 August 2009; pp. 3212–3217. [Google Scholar]
- Liu, M.; Wang, X.; Li, X.; Gao, E. Application of improved RANSAC algorithm in 3D point cloud registration. Prog. Laser Optoelectron. 2018, 55, 165–171. [Google Scholar]
- Ren, S.; Chen, X.; Cai, H.; Wang, Y.; Liang, H.; Li, H. Color Point Cloud Registration Algorithm Based on Hue. Appl. Sci. 2021, 11, 5431. [Google Scholar] [CrossRef]
- Choi, O.; Hwang, W. Colored Point Cloud Registration by Depth Filtering. Sensors 2021, 21, 7023. [Google Scholar] [CrossRef]
- Ge, X. Non-rigid registration of 3D point clouds under isometric deformation. ISPRS J. Photogramm. Remote Sens. 2016, 121, 192–202. [Google Scholar] [CrossRef]
- Yang, L.; Li, Y.; Li, X.; Meng, Z.; Luo, H. Efficient plane extraction using normal estimation and RANSAC from 3D point cloud. Comput. Stand. Interfaces 2022, 82, 103608. [Google Scholar] [CrossRef]
- Ghahremani, M.; Williams, K.; Corke, F.; Tiddeman, B.; Liu, Y.; Wang, X.; Doonan, J.H. Direct and accurate feature extraction from 3D point clouds of plants using RANSAC. Comput. Electron. Agric. 2021, 187, 106240. [Google Scholar] [CrossRef]
- Mitra, N.J.; Nguyen, A. Estimating surface normals in noisy point cloud data. In Proceedings of the Nineteenth Annual Symposium on Computational Geometry, San Diego, CA, USA, 8–10 June 2003; pp. 322–328. [Google Scholar] [CrossRef]
- Masuda, T.; Yokoya, N. A Robust Method for Registration and Segmentation of Multiple Range Images. Comput. Vis. Image Underst. 1995, 61, 295–307. [Google Scholar] [CrossRef]
- Rantoson, R.; Nouira, H.; Anwer, N.; Mehdi-Souzani, C. Improved curvature-based registration methods for high-precision dimensional metrology. Precis Eng. 2016, 46, 232–242. [Google Scholar] [CrossRef]
- Donoso, F.; Austin, K.; McAree, P. How do ICP variants perform when used for scan matching terrain point clouds? Robot. Auton. Syst. 2017, 87, 147–161. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Zhao, K. Research on the Alignment Algorithm Based on RGB-D Point Cloud Data in 3D Reconstruction; Tianjin University: Tianjin, China, 2016. [Google Scholar] [CrossRef]
Point Cloud | ICP | RANSAC | Depth Filtering-ICP | IWOA-RANSAC-ICP |
---|---|---|---|---|
Bunny | 745.52 | 1026.437 | 1652.41 | 1156.532 |
Monkey | 2044.7 | 2806.24 | 3758.65 | 3025.42 |
Point Cloud | Error | ||||
---|---|---|---|---|---|
ICP | RANSAC | Depth Filtering-ICP | Algorithm of This Paper | ||
Bunny | x | 0.321532 | 0.161132 | 0.752535 | 0.125004 |
y | 0.247523 | 0.106212 | 0.532120 | 0.113524 | |
z | 0.374156 | 0.264652 | 0.332154 | 0.154236 | |
Monkey | x | 2.51821 | 3.152478 | 5.354225 | 2.245156 |
y | 0.618039 | 0.872515 | 0.952452 | 0.528965 | |
z | 1.98336 | 1.502146 | 1.752154 | 0.896534 |
Point Cloud | ICP | RANSAC | Depth Filtering-ICP | Algorithm of This Paper |
---|---|---|---|---|
A | 961,357 | 13,252,610 | 2,512,542 | 989,790 |
B | 150,330 | 261,587 | 452,535 | 368,283 |
Point Cloud | Error | ||||
---|---|---|---|---|---|
ICP | RANSAC | Depth Filtering-ICP | Algorithm of This Paper | ||
A | x | 2.49386 | 2.38141 | 3.245254 | 1.145785 |
y | 0.885543 | 0.507815 | 1.251014 | 0.751423 | |
z | 0.307292 | 0.65359 | 1.321525 | 0.895243 | |
B | x | 1.215468 | 0.856487 | 1.321587 | 0.786325 |
y | 0.569874 | 1.325469 | 0.514524 | 0.684751 | |
z | 0.965124 | 0.956787 | 1.025410 | 0.884265 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Cui, Y.; Wang, L.; Meng, L. Automatic Registration Algorithm for the Point Clouds Based on the Optimized RANSAC and IWOA Algorithms for Robotic Manufacturing. Appl. Sci. 2022, 12, 9461. https://doi.org/10.3390/app12199461
Li G, Cui Y, Wang L, Meng L. Automatic Registration Algorithm for the Point Clouds Based on the Optimized RANSAC and IWOA Algorithms for Robotic Manufacturing. Applied Sciences. 2022; 12(19):9461. https://doi.org/10.3390/app12199461
Chicago/Turabian StyleLi, Guanglei, Yahui Cui, Lihua Wang, and Lei Meng. 2022. "Automatic Registration Algorithm for the Point Clouds Based on the Optimized RANSAC and IWOA Algorithms for Robotic Manufacturing" Applied Sciences 12, no. 19: 9461. https://doi.org/10.3390/app12199461
APA StyleLi, G., Cui, Y., Wang, L., & Meng, L. (2022). Automatic Registration Algorithm for the Point Clouds Based on the Optimized RANSAC and IWOA Algorithms for Robotic Manufacturing. Applied Sciences, 12(19), 9461. https://doi.org/10.3390/app12199461