Analysis of ToN-IoT, UNW-NB15, and Edge-IIoT Datasets Using DL in Cybersecurity for IoT
Abstract
:1. Introduction
- The model is DenseNet121 modified from working on two-dimensional to one-dimensional image shapes.
- To the best of our knowledge, there has been no comprehensive study on the ToN-IoT database. In this study, we conducted a complete investigation of the ToN-IoT database (Win7, Win10, Network, and IoT) to train the DenseNet and Inception Time models; the best result was when combining the network with Windows 10, with 100% accuracy.
- We used the Inception Time model in two shapes—first with a 1D input vector shape, and second with a time-series 2D input shape—using the sliding window technique with a window size of six in the start time model on the UNSW-NB15 database. There was a slight improvement in the results with multiple categories, with an accuracy of 98.6%.
- This paper is the first to use the Inception Time model on the new Edge-IIoT dataset, and there was an improvement in accuracy to 94.94% with multiple classes.
2. Background and Related Work
3. Dataset Descriptions
3.1. ToN-IoT Dataset
ToN-IoT Dataset Statistics
3.2. Edge-IIoT
3.3. UNSW-NB15
4. Structural Models
4.1. DenseNet Model
- Conv_1 consists of kernel 1, stride 1, padding same, number of filters #F;
- Conv_2 consists of kernel 3, stride 1, padding same, number of filters #4*F.
- Input: x = sample
- Output: stacked layers
- For _ in range (block_size):
- layer = Conv_Block (x, 4*filters)
- layer = Conv_Block (layer, filters, 3)
- x = concatenate ([layer, x])
- x = BatchNormalization (x)
- x = ReLU (x)
- x = Conv1D (input = x, filters, kernel, strides, padding = ‘same’)
- x = Conv_Block (x, ((x) last dimensional shape)//2)
- x = AvgPool1D (input = x, 2, strides = 2, padding = ‘same’)
- x = Conv1D (input, filters = 64, kernel = 7, strides = 2, padding = ‘same’)
- x = MaxPool1D (input = x, kernel = 3, strides = 2, padding = ‘same’)
- s_block = Dense_Block (x, block_size, filters)
- x = Transition_Layer (s_block)
- x = GlobalAveragePooling1D (s_block)
- Output = Dense (input = x, number_class, activation = ‘softmax’)
4.2. Inception Time Model
- Input: simple
- Output: staked Layers
- If use_bottleneck and input_tensor last_dimmentional > 1:
- input_inception = Conv1D (input_tensor, filters = bottleneck_size, kernel_size = 1, padding = ‘same’, activation = activation, use_bias = False)
- Else:
- input_inception = input_tensor
- Kernel_size_s = [kernel_size//(2 ** i) for i in range(3)]
- Conv_list = []
- For i in range (len(kernel_size_s)):
- conv_list.append (Conv1D)
- Max_pool = MaxPool1D (input_tensor, pool_size = 3, strides = stride, padding = ‘same’)
- Conv = Conv1D (max_pool, filters, kernel_size = 1, padding = ‘same’, activation
- x = Concatenate (conv_list, axis = 2)
- x = BatchNormalization (x)
- x = Activation (x, activation = ‘relu’)
- Shortcut = Conv1D (input_tensor, filters = out_tensor last dimensional, kernel_size = 1, Padding = ‘same’, use_bias = False)
- Shortcut = BatchNormalization(shortcut)
- x = Add ([shortcut, out_tensor])
- x = Activation (X, activation = ‘relu’)
- Input_layer = Input (input_shape)
- x = input_layer
- Input_res = input_layer
- For d in range (depth):
- x = inception_module (x)
- if use_residual and d % 3 == 2:
- x = shortcut_layer (input_res, x)
- input_res = x
- Gap_layer = GlobalAveragePooling1D()(x)
- Output_layer = Dense (gap_layer, number_classes, activation = ‘softmax’)
- Model = Model (inputs = input_layer, outputs = output_layer)
5. Design of Experiments
5.1. Datasets
5.2. Data Processing
5.3. Metrics for Evaluation
6. Experimental Results
6.1. ToN-IoT Dataset
6.2. Edge-IIoT Dataset
6.3. UNSW-NB15 Dataset
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jang-Jaccard, J.; Nepal, S. A survey of emerging threats in cybersecurity. J. Comput. Syst. Sci. 2014, 80, 973–993. [Google Scholar] [CrossRef]
- Drew, J.; Moore, T.; Hahsler, M. Polymorphic Malware Detection Using Sequence Classification Methods. In Proceedings of the 2016 IEEE Security and Privacy Workshops (SPW), San Jose, CA, USA, 22–26 May 2016; pp. 81–87. [Google Scholar] [CrossRef]
- Canfora, G.; Mercaldo, F.; Visaggio, C.A.; Di Notte, P. Metamorphic Malware Detection Using Code Metrics. Inf. Secur. J. A Glob. Perspect. 2014, 23, 57–67. [Google Scholar] [CrossRef]
- Nataraj, L.; Karthikeyan, S.; Jacob, G.; Manjunath, B.S. 2011__Malware Images, Visualization and Automatic. 2011. Available online: https://vision.ece.ucsb.edu/sites/vision.ece.ucsb.edu/files/publications/nataraj_vizsec_2011_paper.pdf (accessed on 6 April 2022).
- Kang, H.; Jang, J.-W.; Mohaisen, A.; Kim, H.K. Detecting and Classifying Android Malware Using Static Analysis along with Creator Information. Int. J. Distrib. Sens. Netw. 2015, 11, 479174. [Google Scholar] [CrossRef]
- Han, W.; Xue, J.; Wang, Y.; Huang, L.; Kong, Z.; Mao, L. MalDAE: Detecting and explaining malware based on correlation and fusion of static and dynamic characteristics. Comput. Secur. 2019, 83, 208–233. [Google Scholar] [CrossRef]
- Zhong, W.; Gu, F. A multi-level deep learning system for malware detection. Expert Syst. Appl. 2019, 133, 151–162. [Google Scholar] [CrossRef]
- Agarap, A.F. Towards Building an Intelligent Anti-Malware System: A Deep Learning Approach Using Support Vector Machine (SVM) for Malware Classification, No. 1. 2017. Available online: http://arxiv.org/abs/1801.00318 (accessed on 13 April 2022).
- Zhang, J.; Qin, Z.; Yin, H.; Ou, L.; Zhang, K. A feature-hybrid malware variants detection using CNN based opcode embedding and BPNN based API embedding. Comput. Secur. 2019, 84, 376–392. [Google Scholar] [CrossRef]
- Liu, H.; Lang, B. Machine Learning and Deep Learning Methods for Intrusion Detection Systems: A Survey. Appl. Sci. 2019, 9, 4396. [Google Scholar] [CrossRef]
- Fong, R.C.; Vedaldi, A. Interpretable Explanations of Black Boxes by Meaningful Perturbation. arXiv 2017, arXiv:1704.03296v3. [Google Scholar]
- Gad, A.R.; Nashat, A.A.; Barkat, T.M. Intrusion Detection System Using Machine Learning for Vehicular Ad Hoc Networks Based on ToN-IoT Dataset. IEEE Access 2021, 9, 142206–142217. [Google Scholar] [CrossRef]
- Singh, P.; Jishnu Jaykumar, P.; Pankaj, A.; Mitra, R. Edge-Detect: Edge-Centric Network Intrusion Detection using Deep Neural Network. In Proceedings of the 2021 IEEE 18th Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 9–12 January 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Kumar, P.; Tripathi, R.; Gupta, G.P. P2IDF: A Privacy-Preserving based Intrusion Detection Framework for Soft-ware Defined Internet of Things-Fog (SDIoT-Fog). ACM Int. Conf. Proc. Ser. 2021, 2021, 37–42. [Google Scholar] [CrossRef]
- Kumar, P.; Gupta, G.P.; Tripathi, R. TP2SF: A Trustworthy Privacy-Preserving Secured Framework for sustainable smart cities by leveraging blockchain and machine learning. J. Syst. Arch. 2021, 115, 101954. [Google Scholar] [CrossRef]
- Aleesa, A.M.; Younis, M.; Mohammed, A.A.; Sahar, N.M. Deep-intrusion detection system with enhanced UNSW-NB15 dataset based on deep learning techniques. J. Eng. Sci. Technol. 2021, 16, 711–727. [Google Scholar]
- Yin, Y.; Jang-Jaccard, J.; Xu, W.; Singh, A.; Zhu, J.; Sabrina, F.; Kwak, J. IGRF-RFE: A Hybrid Feature Selection Method for MLP-Based Network Intrusion Detection on UNSW-NB15 Dataset. 2022. Available online: http://arxiv.org/abs/2203.16365 (accessed on 19 May 2022).
- Kumar, P.; Gupta, G.P.; Tripathi, R. A distributed ensemble design based intrusion detection system using fog computing to protect the internet of things networks. J. Ambient Intell. Humaniz. Comput. 2021, 12, 9555–9572. [Google Scholar] [CrossRef]
- Wu, P.; Moustafa, N.; Yang, S.; Guo, H. Densely Connected Residual Network for Attack Recognition. In Proceedings of the 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), Guangzhou, China, 29 December 2020–1 January 2021; pp. 233–242. [Google Scholar] [CrossRef]
- Sarhan, M.; Layeghy, S.; Portmann, M. Feature Analysis for ML-based IIoT Intrusion Detection. 2021. Available online: http://arxiv.org/abs/2108.12732 (accessed on 19 May 2022).
- Moustafa, N. A new distributed architecture for evaluating AI-based security systems at the edge: Network TON_IoT datasets. Sustain. Cities Soc. 2021, 72, 102994. [Google Scholar] [CrossRef]
- Ferrag, M.A.; Friha, O.; Hamouda, D.; Maglaras, L.; Janicke, H. Edge-IIoTset: A New Comprehensive Realistic Cyber Security Dataset of IoT and IIoT Applications for Centralized and Federated Learning. IEEE Access 2022, 10, 40281–40306. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future Directions; Springer International Publishing: Cham, Switzerland, 2021; Volume 8. [Google Scholar] [CrossRef]
- Enkvetchakul, P.; Surinta, O. Effective Data Augmentation and Training Techniques for Improving Deep Learning in Plant Leaf Disease Recognition. Appl. Sci. Eng. Prog. 2022, 15, 3810. [Google Scholar] [CrossRef]
- Moustafa, N. ToN_IoT and unsw15 Datasets. Available online: https://research.unsw.edu.au/projects/toniot-datasets (accessed on 3 April 2022).
- Ferrag, M.A. EdgeIIoTset. Available online: https://www.kaggle.com/datasets/mohamedamineferrag/edgeiiotset-cyber-security-dataset-of-iot-iiot (accessed on 8 May 2022).
- Ferrag, M.A.; Friha, O.; Maglaras, L.; Janicke, H.; Shu, L. Federated Deep Learning for Cyber Security in the Internet of Things: Concepts, Applications, and Experimental Analysis. IEEE Access 2021, 9, 138509–138542. [Google Scholar] [CrossRef]
- Bagui, S.; Walauskis, M.; Derush, R.; Praviset, H.; Boucugnani, S. Spark Configurations to Optimize Decision Tree Classi-fication on UNSW-NB15. Big Data Cogn. Comput. 2022, 6, 38. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; Pleiss, G.; Van Der Maaten, L.; Weinberger, K. Convolutional Networks with Dense Connectivity. IEEE Trans. Pattern Anal. Mach. Intell. 2019. [Google Scholar] [CrossRef]
- Ji, Q.; Huang, J.; He, W.; Sun, Y. Optimized Deep Convolutional Neural Networks for Identification of Macular Diseases from Optical Coherence Tomography Images. Algorithms 2019, 12, 51. [Google Scholar] [CrossRef]
- Ismail Fawaz, H.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P.-A. Deep learning for time series classification: A review. Data Min. Knowl. Discov. 2019, 33, 917–963. [Google Scholar] [CrossRef]
- Fawaz, H.I.; Lucas, B.; Forestier, G.; Pelletier, C.; Schmidt, D.F.; Weber, J.; Webb, G.I.; Idoumghar, L.; Muller, P.-A.; Petitjean, F. InceptionTime: Finding AlexNet for time series classification. Data Min. Knowl. Discov. 2020, 34, 1936–1962. [Google Scholar] [CrossRef]
- Dunn, C.; Moustafa, N.; Turnbull, B. Robustness Evaluations of Sustainable Machine Learning Models Against Data Poisoning Attacks in the Internet of Things. Sustainability 2020, 12, 6434. [Google Scholar] [CrossRef]
- Alsaedi, A.; Moustafa, N.; Tari, Z.; Mahmood, A.; Anwar, A. TON_IoT Telemetry Dataset: A New Generation Dataset of IoT and IIoT for Data-Driven Intrusion Detection Systems. IEEE Access 2020, 8, 165130–165150. [Google Scholar] [CrossRef]
- Rani, D.; Gill, N.S.; Gulia, P.; Chatterjee, J.M. An Ensemble-Based Multi-class Classifier for Intrusion Detection Using Internet of Things. Comput. Intell. Neurosci. 2022, 2022, 1668676. [Google Scholar] [CrossRef]
- Khamis, R.A.; Matrawy, A. Evaluation of Adversarial Training on Different Types of Neural Networks in Deep Learning-based IDSs. In Proceedings of the 2020 International Symposium on Networks, Computers and Communications (ISNCC), Montreal, QC, Canada, 20–22 October 2020. [Google Scholar] [CrossRef]
- Kanimozhi, V.; Jacob, P. UNSW-NB15 dataset feature selection and network intrusion detection using deep learning. Int. J. Recent Technol. Eng. 2019, 7, 443–446. [Google Scholar]
- Kasongo, S.M.; Sun, Y. Performance Analysis of Intrusion Detection Systems Using a Feature Selection Method on the UNSW-NB15 Dataset. J. Big Data 2020, 7, 105. [Google Scholar] [CrossRef]
Auth | Dataset | Algorithm | Accuracy | Description |
---|---|---|---|---|
P.Kumar [14] | TON-IoT | ANN | 99.44% | The SDIoT-Fog data are shielded using the SAE approach from inference assaults that can be produced using system-based ML techniques. |
P. Kumar et al. [15] | TON-IoT | TP2SF | 98.84% | The data are transformed into a new reduced shape for thwarting inference and poisoning assaults using a Blockchain-based enhanced proof-of-work (ePoW) technique and principal component analysis (PCA). |
Aleesa. [16] | UNSW-NB1 | DL | 99.59% | The authors combined the entire UNSW-NB1 dataset into a single CSV file so that DL models could be tested once rather than separately for each file. |
Yin, Y. [17] | UNSW-NB15 | - | 84.24% | The authors used the IGRF-RFE hybrid feature selection method to identify MLP-based intrusion detection algorithms. |
P. Kumar [18] | UNSW-NB15 | RF | 93.21%, | To protect the IoT, XGBoost, k-nearest neighbours, and Gaussian naive Bayes are combined as individual learners. Random forests then use the obtained prediction results. |
Wu, P [19] | TON-IoT | Densely-Resnet | Win7 92.99% Network 99.93% | Connected three virtual layers (fog, edge, and cloud layers) as a whole to discover external attacks more comprehensively. |
M.Sarhan [20] | TON-IoT | DFF, RF | 96.10% 97.35% | The authors proposed a detailed analysis of feature sets that were ideal in terms of relevance and predictive power using chi-squared, correlation, and information gain. |
Moustafa, N. [21] | TON-IoT Linux | AI | — | The authors used the validation method of AI-based cybersecurity tools for malware detection, intrusion detection, and privacy protection. |
M.A. Ferrag [22] | Edge-IIoT | DNN | 94.67% | A new cybersecurity dataset for IoT and IoT applications—called Edge-IIoT—was proposed for use in ML-based intrusion-detection systems. |
Type of Event | Total Data Record | Train–Test Record |
---|---|---|
Backdoor | 508,116 | 20,000 |
DoS | 3,375,328 | 20,000 |
DDoS | 6,165,008 | 20,000 |
Injection | 452,659 | 20,000 |
MITM | 1052 | 1043 |
Scanning | 7,140,161 | 20,000 |
Ransomware | 72,805 | 20,000 |
Password | 1,718,568 | 20,000 |
XSS | 2,108,944 | 20,000 |
Normal | 796,380 | 300,000 |
Total | 22,339,021 | 461,043 |
Type of Event | Win7 | Win10 | Network | Win10–Network |
---|---|---|---|---|
Backdoor | 1779 | - | 508,116 | - |
DoS | - | 525 | 3,375,328 | 109,957 |
DDoS | 2134 | 4608 | 508,116 | 498,920 |
Injection | 998 | 612 | 452,659 | 24,311 |
Mitm | - | 15 | 1052 | 87 |
Scanning | 226 | 447 | 7,140,161 | 208,572 |
Ransomware | 82 | - | 72,805 | - |
Password | 757 | 3628 | 1,718,568 | 101,398 |
XSS | 4 | 1269 | 21,089,844 | 106,746 |
Normal | 22,387 | 24,871 | 796,380 | 23,763 |
IoT Traffic | Type of Event | Data Record |
---|---|---|
Normal | Normal | 1,091,198 |
Attack | DDoS-UDP | 97,253 |
DDoS-ICMP | 54,351 | |
SQL-injection | 40,661 | |
DDoS-TCP | 40,050 | |
Vulnerability scanner | 40,021 | |
Password | 39,946 | |
DDoS-HTTP | 38,835 | |
Uploading | 29,446 | |
Backdoor | 19,221 | |
Port-scanning | 15,982 | |
XSS | 12,058 | |
Ransomware | 7751 | |
Fingerprinting | 682 | |
MITM | 286 |
Type of Event | Data Record |
---|---|
Normal | 2,218,764 |
Generic | 215,481 |
Exploits | 44,525 |
Fuzzers | 24,246 |
Reconnaissance | 13,987 |
DoS | 16,353 |
Analysis | 2677 |
Backdoor | 2329 |
Shellcode | 1511 |
Worms | 174 |
Model | Type | |||
---|---|---|---|---|
DenseNet | Win7 | Win10 | Network | Win10–Network |
Training | 22,693 | 28,780 | 17,582,906 | 859,003 |
Testing | 5674 | 7195 | 4,395,726 | 214,751 |
Features | 132 | 124 | 42 | 166 |
Epoch of 50 | 29 | 50 | 1 | 3 |
Inception time | ||||
Training | 22,693 | 28,780 | 17,582,906 | 859,003 |
Testing | 5674 | 7195 | 4,395,726 | 214,751 |
Features | 132 | 124 | 42 | 166 |
Epoch of 50 | 32 | 42 | 1 | 5 |
Research | Method | Type | Acc | Pre | Rec | F1 | Class |
---|---|---|---|---|---|---|---|
Sarhan M., et al. [20] | DT NB | Network | 97.29 96.78 | - | - | 99 98 | Multi |
Gad A.R., et al. [12] | XGBoost | Network | 98.3 | 98.3 | 98.3 | 98.3 | Multi |
Our proposed method | DenseNet | Win7 Win10 Network Win10–N | 98.36 97.87 98.57 99.95 | 95.97 97.87 98.59 99.95 | 95.91 97.87 98.57 99.95 | 95.91 97.87 98.57 99.95 | Multi |
Inception Time | Win7 Win10 Network Win10–N | 99.21 98.30 99.65 100 | 99.21 98.30 99.68 100 | 99.21 98.30 99.64 100 | 99.21 98.30 - - | Multi |
Research | Model | KNN | ||||||
---|---|---|---|---|---|---|---|---|
A. Alsaedi, et al. [34] | Dataset | Fridge | Garage | GPS | Modbus | Motion Lighting | Thermostat | Weather |
Accuracy | 0.99 | 1.00 | 0.88 | 0.97 | 0.54 | 0.60 | 0.81 | |
Precision | 0.99 | 1.00 | 0.89 | 0.97 | 0.34 | 0.56 | 0.81 | |
Recall | 0.99 | 1.00 | 0.88 | 0.97 | 0.59 | 0.61 | 0.81 | |
F1-score | 0.99 | 1.00 | 0.88 | 0.97 | 0.43 | 0.57 | 0.81 | |
LSTM | ||||||||
Dataset | Fridge | Garage | GPS | Modbus | Motion Lighting | Thermostat | Weather | |
Accuracy | 1.00 | 1.00 | 0.87 | 0.68 | 0.59 | 0.66 | 0.82 | |
Precision | 1.00 | 1.00 | 0.89 | 0.46 | 0.35 | 0.45 | 0.82 | |
Recall | 1.00 | 1.00 | 0.88 | 0.68 | 0.59 | 0.67 | 0.81 | |
F1-score | 1.00 | 1.00 | 0.88 | 0.55 | 0.44 | 0.54 | 0.80 | |
RF | ||||||||
D. Rani, et al. [35] | Dataset | Fridge | Garage | GPS | Modbus | Motion Lighting | Thermostat | Weather |
Accuracy | 0.9136 | 0.9314 | 0.92 | 0.9216 | 0.9532 | 0.9669 | ||
Precision | 0.89 | 0.90 | 0.92 | 0.89 | 0.92 | 0.97 | ||
Recall | 0.91 | 0.93 | 0.93 | 0.92 | 0.95 | 0.97 | ||
F1-score | 0.89 | 0.91 | 0.92 | 0.90 | 0.94 | 0.96 | ||
LGBM | ||||||||
Dataset | Fridge | Garage | GPS | Modbus | Motion Lighting | Thermostat | Weather | |
Accuracy | 0.9135 | 0.9314 | 0.94 | 0.9211 | 0.9532 | 0.9680 | ||
Precision | 0.98 | 0.90 | 0.95 | 0.89 | 0.92 | 0.97 | ||
Recall | 0.91 | 0.93 | 0.95 | 0.92 | 0.95 | 0.97 | ||
F1-score | 0.89 | 0.91 | 0.95 | 0.90 | 0.94 | 0.97 | ||
Inception Time | ||||||||
Our proposed method | Dataset | Fridge | Garage | GPS | Modbus | Motion Lighting | Thermostat | Weather |
Accuracy | 0.990 | 0.994 | 1.00 | 0.999 | 0.995 | 1.00 | 1.00 | |
Precision | 0.990 | 0.994 | 1.00 | 0.999 | 0.995 | 1.00 | 1.00 | |
Recall | 0.990 | 0.994 | 1.00 | 0.999 | 0.995 | 1.00 | 1.00 | |
F1-score | 0.990 | 0.994 | 1.00 | 0.999 | 0.995 | 1.00 | 1.00 |
Research | Class | Model | Accuracy |
---|---|---|---|
M. A. Ferrag, et al. [22] | 15 | RF SVM KNN DNN | 80.83 77.61 79.18 94.67 |
Our proposed method | 15 | Inception Time | 94.94 |
Type Class | Inception Time | Inception Time–Window Size Six | Support | ||||
---|---|---|---|---|---|---|---|
Precision | Recall | F1-Score | Precision | Recall | F1-Score | ||
Analysis | 0.42 | 0.05 | 0.09 | 0.52 | 0.22 | 0.31 | 535 |
Backdoor | 0.69 | 0.07 | 0.13 | 0.75 | 0.03 | 0.05 | 466 |
DoS | 0.51 | 0.06 | 0.11 | 0.39 | 0.23 | 0.29 | 3271 |
Exploits | 0.58 | 0.93 | 0.72 | 0.65 | 0.86 | 0.74 | 8905 |
Fuzzers | 0.67 | 0.54 | 0.60 | 0.74 | 0.69 | 0.72 | 4849 |
Generic | 0.99 | 0.98 | 0.99 | 0.99 | 0.98 | 00.99 | 43096 |
Normal | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 443,753 |
Reconnaissance | 0.91 | 0.73 | 0.81 | 0.82 | 0.75 | 0.78 | 2798 |
Shellcode | 0.55 | 0.58 | 0.57 | 0.67 | 0.30 | 0.42 | 302 |
Worms | 0.80 | 0.11 | 0.20 | 0.00 | 0.00 | 0.00 | 35 |
Accuracy | 0.984 | 0.986 | |||||
Weighted average | 0.98 | 0.98 |
Research | Method | Acc | Pre | Rec | F1 | Class | Feature |
---|---|---|---|---|---|---|---|
P. Wu, et al. [19] | Densely-ResNet | 73.93 | 80.94 | 96.68 | 88.11 | Multi | |
A. R. Gad, et al. [12] | RF DT | 95.43 94.20 | 0.96 0.93 | 0.97 0.98 | 0.97 0.96 | Multi | 42 |
R. A. Khamis, et al. [36] | ANN CNN | 0.97 0.96 | 0.96 0.95 | 1.00 1.00 | - | Multi | 5 |
Y. Yin, et al. [13] | MLP | 84.24 | 83.60 | 84.24 | 82.85 | Multi | 23 |
V. Kanimozhi, et al. [37] | RF-DT | 89 | 0.99 | 0.85 | 0.91 | Multi | 4 |
S. M. Kasongo, et al. [38] | ANN KNN | 75.62 70.09 | 79.92 75.79 | 75.61 70.21 | 76.58 72.03 | Multi | 42 |
Our proposed method | Inception Inception6w | 98.4 98.6 | 99.0 98.9 | 97.9 98.4 | 98.5 98.7 | Multi | 43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tareq, I.; Elbagoury, B.M.; El-Regaily, S.; El-Horbaty, E.-S.M. Analysis of ToN-IoT, UNW-NB15, and Edge-IIoT Datasets Using DL in Cybersecurity for IoT. Appl. Sci. 2022, 12, 9572. https://doi.org/10.3390/app12199572
Tareq I, Elbagoury BM, El-Regaily S, El-Horbaty E-SM. Analysis of ToN-IoT, UNW-NB15, and Edge-IIoT Datasets Using DL in Cybersecurity for IoT. Applied Sciences. 2022; 12(19):9572. https://doi.org/10.3390/app12199572
Chicago/Turabian StyleTareq, Imad, Bassant M. Elbagoury, Salsabil El-Regaily, and El-Sayed M. El-Horbaty. 2022. "Analysis of ToN-IoT, UNW-NB15, and Edge-IIoT Datasets Using DL in Cybersecurity for IoT" Applied Sciences 12, no. 19: 9572. https://doi.org/10.3390/app12199572
APA StyleTareq, I., Elbagoury, B. M., El-Regaily, S., & El-Horbaty, E. -S. M. (2022). Analysis of ToN-IoT, UNW-NB15, and Edge-IIoT Datasets Using DL in Cybersecurity for IoT. Applied Sciences, 12(19), 9572. https://doi.org/10.3390/app12199572