High-Speed Alumina Stereolithography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Particle Dispersion Modelling and Optical Analysis
2.2. Paste Formation
2.3. Stereolithographic Additive Manufacturing
2.4. Parameter Investigation
2.5. De-Binding and Sintering
3. Results and Discussion
3.1. Computational Analysis
3.1.1. Particle Dispersion Modelling and Ray Tracing Analysis
3.1.2. Paste Formulation and Stereolithography Processing
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gibson, I.; Rosen, D.; Stucker, B. Additive Manufacturing Technologies, 2nd ed.; Springer: New York, NY, USA, 2015. [Google Scholar]
- Ford, S.; Despeisse, M. Additive Manufacturing and Sustainability: An Exploratory Study of the Advantages and Challenges. J. Clean. Prod. 2016, 137, 1573–1587. [Google Scholar] [CrossRef]
- Halloran, J.W. Ceramic Stereolithography: Additive Manufacturing for Ceramics by Photopolymerization. Annu. Rev. Mater. Res. 2016, 46, 19–40. [Google Scholar] [CrossRef]
- Felzmann, R.; Gruber, S.; Mitteramskogler, G.; Tesavibul, P.; Boccaccini, A.R.; Liska, R.; Stampfl, J. Lithography-Based Additive Manufacturing of Cellular Ceramic Structures. Adv. Eng. Mater. 2012, 14, 1052–1058. [Google Scholar] [CrossRef]
- Du, X.; Fu, S.; Zhu, Y. 3D Printing of Ceramic-Based Scaffolds for Bone Tissue Engineering: An Overview. J. Mater. Chem. B 2018, 6, 4397–4412. [Google Scholar] [CrossRef] [PubMed]
- Zocca, A.; Colombo, P.; Gomes, C.M.; Günster, J. Additive Manufacturing of Ceramics: Issues, Potentialities, and Opportunities. J. Am. Ceram. Soc. 2015, 98, 1983–2001. [Google Scholar] [CrossRef]
- Bae, C.J.; Ramachandran, A.; Chung, K.; Park, S. Ceramic Stereolithography: Additive Manufacturing for 3D Complex Ceramic Structures. J. Korean Ceram. Soc. 2017, 54, 470–477. [Google Scholar] [CrossRef]
- Lakhdar, Y.; Tuck, C.; Binner, J.; Terry, A.; Goodridge, R. Additive Manufacturing of Advanced Ceramic Materials. Prog. Mater. Sci. 2021, 116, 100736. [Google Scholar] [CrossRef]
- Kirihara, S. Systematic Compounding of Ceramic Pastes in Stereolithographic Additive Manufacturing. Materials 2021, 14, 7090. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.; Kirihara, S. Stereolithographic Additive Manufacturing of Zirconia Electrodes with Dendritic Patterns for Aluminum Smelting. Appl. Sci. 2021, 11, 8168. [Google Scholar] [CrossRef]
- Wu, H.; Liu, W.; He, R.; Wu, Z.; Jiang, Q.; Song, X.; Chen, Y.; Cheng, L.; Wu, S. Fabrication of Dense Zirconia-Toughened Alumina Ceramics through a Stereolithography-Based Additive Manufacturing. Ceram. Int. 2017, 43, 968–972. [Google Scholar] [CrossRef]
- Li, M.; Liu, W.; Nie, J.; Wang, C.; Li, W.; Xing, Z. Influence of Yttria-Stabilized Zirconia Content on Rheological Behavior and Mechanical Properties of Zirconia-Toughened Alumina Fabricated by Paste-Based Stereolithography. J. Mater. Sci. 2021, 56, 2887–2899. [Google Scholar] [CrossRef]
- Schwentenwein, M.; Homa, J. Additive Manufacturing of Dense Alumina Ceramics. Int. J. Appl. Ceram. Technol. 2015, 12, 1–7. [Google Scholar] [CrossRef]
- Chen, S.; Wang, C.-S.; Zheng, W.; Wu, J.-M.; Yan, C.-Z.; Shi, Y.-S. Effects of Particle Size Distribution and Sintering Temperature on Properties of Alumina Mold Material Prepared by Stereolithography. Ceram. Int. 2022, 48, 6069–6077. [Google Scholar] [CrossRef]
- Liu, W.; Li, M.; Nie, J.; Wang, C.; Li, W.; Xing, Z. Synergy of Solid Loading and Printability of Ceramic Paste for Optimized Properties of Alumina via Stereolithography-Based 3D Printing. J. Mater. Res. Technol. 2020, 9, 11476–11483. [Google Scholar] [CrossRef]
- Brady, A.; Grumman, N.; Chu, T.-M.G.; Halloran, J.W. Curing Behavior of Ceramic Resin for Stereolithography. In International Solid Freeform Fabrication Symposium; The University of Texas: Austin, TX, USA, 1996. [Google Scholar]
- Doreau, F.; Chaput, C.; Chartier, T. Stereolithography for Manufacturing Ceramic Parts. Adv. Eng. Mater. 2000, 2, 493–496. [Google Scholar] [CrossRef]
- Sigmund, W.M.; Bell, N.S.; Bergström, L. Novel Powder-Processing Methods for Advanced Ceramics. J. Am. Ceram. Soc. 2004, 83, 1557–1574. [Google Scholar] [CrossRef]
- Chartier, T.; Chaput, C.; Doreau, F.; Loiseau, M. Stereolithography of Structural Complex Ceramic Parts. J. Mater. Sci. 2002, 37, 3141–3147. [Google Scholar] [CrossRef]
- Xing, H.; Zou, B.; Liu, X.; Wang, X.; Chen, Q.; Fu, X.; Li, Y. Effect of Particle Size Distribution on the Preparation of ZTA Ceramic Paste Applying for Stereolithography 3D Printing. Powder Technol. 2020, 359, 314–322. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, X. The Influences of the Material Properties on Ceramic Micro-Stereolithography. Sens. Actuators A Phys. 2002, 101, 364–370. [Google Scholar] [CrossRef]
Property | Value | |
---|---|---|
Solid Particles and Solid Wall | Density (kg/m3) | 3850 |
Poisson’s Ratio | 0.20 | |
Young’s Modulus (GPa) | 370 | |
Coefficient of Restitution | 0.5 | |
Static Friction Coefficient | 0.5 | |
Rolling Friction Coefficient | 0.01 | |
External Force | Gravitational Acceleration (m/s2) | 9.8 |
Element | Property | Value |
---|---|---|
Light Source | Wavelength (nm) | 355 |
Power (mW) | 50–250 | |
Environmental Material | Material | Acrylic |
Refractive Index | 1.50 | |
Solid Particles | Material | Alumina |
Refractive Index | 1.75 | |
Transmittance (/m) | 0.90 | |
Reflectance (%) | 70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spirrett, F.; Ito, T.; Kirihara, S. High-Speed Alumina Stereolithography. Appl. Sci. 2022, 12, 9760. https://doi.org/10.3390/app12199760
Spirrett F, Ito T, Kirihara S. High-Speed Alumina Stereolithography. Applied Sciences. 2022; 12(19):9760. https://doi.org/10.3390/app12199760
Chicago/Turabian StyleSpirrett, Fiona, Tatsuya Ito, and Soshu Kirihara. 2022. "High-Speed Alumina Stereolithography" Applied Sciences 12, no. 19: 9760. https://doi.org/10.3390/app12199760
APA StyleSpirrett, F., Ito, T., & Kirihara, S. (2022). High-Speed Alumina Stereolithography. Applied Sciences, 12(19), 9760. https://doi.org/10.3390/app12199760