Application of Deep Learning to Spectroscopic Features of the Balmer-Alpha Line for Hydrogen Isotopic Ratio Determination in Tokamaks
Abstract
1. Introduction
2. Classical Physical Model for the Hydrogen Isotopic Ratio Determination
3. Some Notions on Machine Learning and Deep Learning
4. Application of Machine Learning to Spectroscopic Features of Hα/Dα Line Profiles
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Keilhacker, M.; Watkins, M.L.; JET Team. D-T experiments in the JET tokamak. J. Nucl. Mater. 1999, 266–269, 1–13. [Google Scholar] [CrossRef]
- Kim, H.; Sips, A.C.C.; Challis, C.D.; Keeling, D.; King, D.; Joffrin, E.; Szepesi, G.; Buchanan, J.; Horton, L.D.; Yuan, X.; et al. 1997 JET DT experiments revisited—comparative analysis of DD and DT stationary baseline discharges. Nucl. Fusion 2020, 60, 066003. [Google Scholar] [CrossRef]
- Mailloux, J.; Abid, N.; Abraham, K.; Abreu, P.; Adabonyan, O.; Adrich, P.; Afanasev, V.; Afzal, M.; Ahlgren, T.; Aho-Mantila, L.; et al. Overview of JET results for optimizing ITER operation. Nucl. Fusion 2022, 62, 042026. [Google Scholar] [CrossRef]
- Roth, J.; Tsitrone, E.; Loarer, T.; Philipps, V.; Brezinsek, S.; Loarte, A.; Counsell, G.F.; Doerner, R.P.; Schmid, K.; Ogorodnikova, O.V.; et al. Tritium inventory in ITER plasma-facing materials and tritium removal procedures. Plasma Phys. Control. Fusion 2008, 50, 103001. [Google Scholar] [CrossRef]
- Drenik, A.; Alegre, D.; Brezinsek, S.; de Castro, A.; Kruezi, U.; Oberkofler, M.; Panjan, M.; Primc, G.; Reichbauer, T.; Resnik, M.; et al. Evaluation of the plasma hydrogen isotope content by residual gas analysis at JET and AUG. Phys. Scr. 2017, 2017, 014021. [Google Scholar] [CrossRef]
- Klepper, C.C.; Hillis, D.L.; Bucalossi, J.; Douai, D.; Oddon, P.; Vartanian, S.; Colas, L.; Manenc, L.; Pégourié, B. Residual gas analysis for long-pulse, advanced tokamak operation. Rev. Sci. Instrum. 2010, 81, 10E104. [Google Scholar] [CrossRef]
- Kubo, H.; Takenaga, H.; Sugie, T.; Higashijima, S.; Suzuki, S.; Sakasai, A.; Hosogane, N. The spectral profile of the Hα line emitted from the divertor region of JT-60U. Plasma Phys. Control Fusion 2014, 56, 025010. [Google Scholar]
- Koubiti, M.; Marandet, Y.; Escarguel, A.; Capes, H.; Godbert-Mouret, L.; Stamm, R.; De Michelis, C.; Guirlet, R.; Mattioli, M. Analysis of asymmetric Dα spectra emitted in front of a neutralizer plate of the Tore-Supra ergodic divertor. Plasma Phys. Control Fusion 2002, 44, 261. [Google Scholar] [CrossRef]
- Hey, J.; Chu, C.C.; Mertens, P.; Brezinsek, S.; Unterberg, B. Atomic collision processes with ions at the edge of magnetically confined fusion plasmas. J. Phys. B 2004, 37, 2543. [Google Scholar] [CrossRef]
- Koubiti, M.; Sheeba, R.S. Spectral modeling of hydrogen radiation emission in magnetic fusion devices. Atoms 2019, 7, 23. [Google Scholar] [CrossRef]
- Neverov, V.S.; Kukushkin, A.B.; Stamp, M.F.; Alkseev, A.G.; Brezinsek, S.; von Hellermann, M.; JET Contributors. Determination of diverter stray light in high-resolution main chamber Hα spectroscopy on JET-ILW. Nucl. Fusion 2017, 57, 016031. [Google Scholar] [CrossRef]
- Neverov, V.S.; Kukushkin, A.B.; Kruezi, U.; Stamp, M.F.; Weisen, H.; JET Contributors. Determination of isotope ratio in the divertor of JET-ILW by high-resolution Hα spectroscopy: H-D experiment and implications for D-T experiment. Nucl. Fusion 2019, 59, 04601. [Google Scholar] [CrossRef]
- Kajita, S.; Nishijima, D.; Fujii, K.; Akkermans, G.; van der Maiden, H. Application of multiple regression for sensitivity analysis of helium line emissions to the electron density and temperature in Magnum-PSI. Plasma Phys. Control Fusion 2021, 63, 055018. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Sickit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825. [Google Scholar]
- Kajita, S.; Akkermans, G.; Fujii, K.; van der Maiden, H.; van de Sanden, M.C.M. Emission spectroscopy of He lines in high-density plasmas in Magnum-PSI. AIP Adv. 2020, 10, 025225. [Google Scholar] [CrossRef]
- Nishijima, D.; Kajita, S.; Tynan, G.R. Machine learning predictions of electron density and temperature from He I line ratios. Rev. Sci. Instrum. 2021, 92, 023505. [Google Scholar] [CrossRef]
- Gurung-López, S.; Gronke, M.; Saito, S.; Bonoli, S.; Orsi, A.A. zELDA: Fitting Lyman alpha line profiles using deep learning. Mon. Not. R. Astron. Soc. 2022, 510, 4525. [Google Scholar] [CrossRef]
- Cianciosa, M.; Law, K.J.H.; Martin, E.H.; Green, D.L. Machine learning for analysis of atomic spectral data. J. Quant. Spectrosc. Radiat. Transf. 2020, 240, 106671. [Google Scholar] [CrossRef]
- MacBride, C.D.; Jess, D.B.; Grant, S.D.T.; Khomenko, E.; Keys, P.H.; Stangalini, M. Accurately constraining velocity information from spectral imaging observations using machine learning techniques. Phil. Trans. R. Soc. A. 2021, 379, 20200171. [Google Scholar] [CrossRef]
- Ren, T.; Modest, M.F.; Fateev, A.; Sutton, G.; Zhao, W.; Rusu, F. Machine learning applied to retrieval of temperature and concentration distributions from infrared emission measurements. Appl. Energy 2019, 252, 113448. [Google Scholar] [CrossRef]
- Samuell, C.M.; Mclean, A.G.; Johnson, C.A.; Glass, F.; Jaervinen, A.E. Measuring the electron temperature and identifying plasma detachment using machine learning and spectroscopy. Rev. Sci. Instrum. 2021, 92, 043520. [Google Scholar] [CrossRef] [PubMed]
- Skinner, C.H.; Ramsey, A.T.; Johnson, D.W.; Diesso, M. Tritium Diagnostics by Balmer-Alpha Emission; Princeton University: Princeton, NJ, USA, 1993; PPPL Report PPPL-2878. Available online: https://www.osti.gov/servlets/purl/6748245 (accessed on 15 August 2022). [CrossRef][Green Version]
- Skinner, C.H.; Stotler, D.P.; Adler, H.; Ramsey, A.T. Spectroscopic diagnostics of tritium recycling in TFTR. Rev. Sci. Instrum. 1995, 66, 646. [Google Scholar] [CrossRef]
- TensorFlow. Available online: https://www.tensorflow.org/guide (accessed on 15 August 2022).
- Keras Optimizers (ADAM optimizer). Available online: https://keras.io/api/optimizers/adam/ (accessed on 15 August 2022).
- Keras Python API for Machine-Learning Platform TensorFlow. Available online: https://keras.io/ (accessed on 15 August 2022).
- Sickit-Learn. Available online: https://scikit-learn.org/stable/ (accessed on 15 August 2022).
Parameters | Known Values | Inferred Values | Errors |
---|---|---|---|
2 eV; 55% | 2.015 eV; 54.998% | 0.744%; 0.0042% | |
15 eV; 45% | 15.111 eV; 45.002% | 0.742%; 0.0051% | |
B | 2 T | 2.091 T | 4.56% |
5% | 5.0007% | 0.01308% | |
95% | 94.9993% | 0.00068% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koubiti, M.; Kerebel, M. Application of Deep Learning to Spectroscopic Features of the Balmer-Alpha Line for Hydrogen Isotopic Ratio Determination in Tokamaks. Appl. Sci. 2022, 12, 9891. https://doi.org/10.3390/app12199891
Koubiti M, Kerebel M. Application of Deep Learning to Spectroscopic Features of the Balmer-Alpha Line for Hydrogen Isotopic Ratio Determination in Tokamaks. Applied Sciences. 2022; 12(19):9891. https://doi.org/10.3390/app12199891
Chicago/Turabian StyleKoubiti, Mohammed, and Malo Kerebel. 2022. "Application of Deep Learning to Spectroscopic Features of the Balmer-Alpha Line for Hydrogen Isotopic Ratio Determination in Tokamaks" Applied Sciences 12, no. 19: 9891. https://doi.org/10.3390/app12199891
APA StyleKoubiti, M., & Kerebel, M. (2022). Application of Deep Learning to Spectroscopic Features of the Balmer-Alpha Line for Hydrogen Isotopic Ratio Determination in Tokamaks. Applied Sciences, 12(19), 9891. https://doi.org/10.3390/app12199891