Delirium after Spinal Surgery: A Pilot Study of Electroencephalography Signals from a Wearable Device
Abstract
:1. Introduction
2. Materials and Methods
2.1. Evaluation of EEG Signals from a Wearable Device
2.2. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fong, T.G.; Tulebaev, S.R.; Inouye, S.K. Delirium in elderly adults: Diagnosis, prevention and treatment. Nat. Rev. Neurol. 2009, 5, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Song, K.J.; Ko, J.H.; Kwon, T.Y.; Choi, B.W. Etiology and related factors of postoperative delirium in orthopedic surgery. Clin. Orthop. Surg. 2019, 11, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.S.; Park, S.W.; Lee, Y.S.; Chung, C.; Kim, Y.B. Risk factors for delirium after spine surgery in elderly patients. J. Korean Neurosurg. Soc. 2014, 56, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.K.; Park, Y.S. Delirium after spinal surgery in korean population. Spine 2010, 35, 1729–1732. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi, Y.; Kanamori, M.; Ishihara, H.; Abe, Y.; Nobukiyo, M.; Sigeta, T.; Hori, T.; Kimura, T. Postoperative delirium in spine surgery. Spine J. 2006, 6, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Nazemi, A.K.; Gowd, A.K.; Carmouche, J.J.; Kates, S.L.; Albert, T.J.; Behrend, C.J. Prevention and management of postoperative delirium in elderly patients following elective spinal surgery. Clin. Spine Surg. 2017, 30, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Gleason, L.J.; Schmitt, E.M.; Kosar, C.M.; Tabloski, P.; Saczynski, J.S.; Robinson, T.; Cooper, Z.; Rogers, S.O., Jr.; Jones, R.N.; Marcantonio, E.R.; et al. Effect of delirium and other major complications on outcomes after elective surgery in older adults. JAMA Surg. 2015, 150, 1134–1140. [Google Scholar] [CrossRef] [Green Version]
- Kinchin, I.; Mitchell, E.; Agar, M.; Trepel, D. The economic cost of delirium: A systematic review and quality assessment. Alzheimers Dement. 2021, 17, 1026–1041. [Google Scholar] [CrossRef]
- Kang, T.; Park, S.Y.; Lee, J.H.; Lee, S.H.; Park, J.H.; Kim, S.K.; Suh, S.W. Incidence & risk factors of postoperative delirium after spinal surgery in older patients. Sci. Rep. 2020, 10, 9232. [Google Scholar]
- GBD 2019 Demographics Collaborators. Global age-sex-specific fertility, mortality, healthy life expectancy (hale), and population estimates in 204 countries and territories, 1950–2019: A comprehensive demographic analysis for the global burden of disease study 2019. Lancet 2020, 396, 1160–1203. [Google Scholar] [CrossRef]
- Kulkarni, A.G.; Patel, J.Y.; Asati, S.; Mewara, N. “Spine surgery checklist”: A step towards perfection through protocols. Asian Spine J. 2022, 16, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Inoue, T.; Mizutamari, M.; Hatake, K. Surgical invasiveness of single-segment posterior lumbar interbody fusion: Comparing perioperative blood loss in posterior lumbar interbody fusion with traditional pedicle screws, cortical bone trajectory screws, and percutaneous pedicle screws. Asian Spine J. 2021, 15, 856–864. [Google Scholar] [CrossRef]
- Hasegawa, T.; Ushirozako, H.; Yamato, Y.; Yoshida, G.; Yasuda, T.; Banno, T.; Arima, H.; Oe, S.; Yamada, T.; Ide, K.; et al. Impact of spinal correction surgeries with osteotomy and pelvic fixation in patients with kyphosis due to osteoporotic vertebral fractures. Asian Spine J. 2021, 15, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Morino, T.; Hino, M.; Yamaoka, S.; Misaki, H.; Ogata, T.; Imai, H.; Miura, H. Risk factors for delirium after spine surgery: An age-matched analysis. Asian Spine J. 2018, 12, 703–709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inouye, S.K.; van Dyck, C.H.; Alessi, C.A.; Balkin, S.; Siegal, A.P.; Horwitz, R.I. Clarifying confusion: The confusion assessment method. A new method for detection of delirium. Ann. Intern. Med. 1990, 113, 941–948. [Google Scholar] [CrossRef]
- Robinson, T.N.; Raeburn, C.D.; Angles, E.M.; Moss, M. Low tryptophan levels are associated with postoperative delirium in the elderly. Am. J. Surg. 2008, 196, 670–674. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.T.; Park, J.Y. Postoperative delirium. Korean J. Anesthesiol. 2019, 72, 4–12. [Google Scholar] [CrossRef]
- Van der Kooi, A.W.; Zaal, I.J.; Klijn, F.A.; Koek, H.L.; Meijer, R.C.; Leijten, F.S.; Slooter, A.J. Delirium detection using eeg: What and how to measure. Chest 2015, 147, 94–101. [Google Scholar] [CrossRef]
- Tatum, W.O.t.; Husain, A.M.; Benbadis, S.R.; Kaplan, P.W. Normal adult eeg and patterns of uncertain significance. J. Clin. Neurophysiol. 2006, 23, 194–207. [Google Scholar] [CrossRef]
- Cahn, B.R.; Polich, J. Meditation states and traits: Eeg, erp, and neuroimaging studies. Psychol. Bull. 2006, 132, 180–211. [Google Scholar] [CrossRef]
- Kirmizi-Alsan, E.; Bayraktaroglu, Z.; Gurvit, H.; Keskin, Y.H.; Emre, M.; Demiralp, T. Comparative analysis of event-related potentials during go/nogo and cpt: Decomposition of electrophysiological markers of response inhibition and sustained attention. Brain Res. 2006, 1104, 114–128. [Google Scholar] [CrossRef] [PubMed]
- Pfurtscheller, G.; Lopes da Silva, F.H. Event-related eeg/meg synchronization and desynchronization: Basic principles. Clin. Neurophysiol. 1999, 110, 1842–1857. [Google Scholar] [CrossRef]
- Herrmann, C.S.; Demiralp, T. Human eeg gamma oscillations in neuropsychiatric disorders. Clin. Neurophysiol. 2005, 116, 2719–2733. [Google Scholar] [CrossRef]
- Minguillon, J.; Lopez-Gordo, M.A.; Pelayo, F. Stress assessment by prefrontal relative gamma. Front. Comput. Neurosci. 2016, 10, 101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- SOSO H&C. Available online: http://www.soso-g.co.kr/ (accessed on 23 September 2022).
- Kwon, J.W.; Lee, S.B.; Sung, S.; Park, Y.; Ha, J.W.; Kim, G.; Suk, K.S.; Kim, H.S.; Lee, H.M.; Moon, S.H.; et al. Which factors affect the stress of intraoperative orthopedic surgeons by using electroencephalography signals and heart rate variability? Sensors 2021, 21, 4016. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.W.; Sung, S.; Lee, S.B.; Lee, H.M.; Moon, S.H.; Lee, B.H. Intraoperative real-time stress in degenerative lumbar spine surgery: Simultaneous analysis of electroencephalography signals and heart rate variability: A pilot study. Spine J. 2020, 20, 1203–1210. [Google Scholar] [CrossRef] [PubMed]
- Sung, S.; Kwon, J.-W.; Kim, J.-E.; Lee, Y.-J.; Lee, S.-B.; Lee, S.-K.; Moon, S.-H.; Lee, B.H. Real-time stress analysis affecting nurse during elective spinal surgery using a wearable device. Brain Sci. 2022, 12, 909. [Google Scholar] [CrossRef]
- Klem, G.H.; Luders, H.O.; Jasper, H.H.; Elger, C. The ten-twenty electrode system of the international federation. The international federation of clinical neurophysiology. Electroencephalogr. Clin. Neurophysiol. Suppl. 1999, 52, 3–6. [Google Scholar]
- Abhang, P.A.; Gawali, B.W.; Mehrotra, S.C. Technical aspects of brain rhythms and speech parameters. In Introduction to Eeg and Speech-Based Emotion Recognition; Academic Press: Cambridge, MA, USA, 2016; pp. 51–79. [Google Scholar]
- Xu, R.; Zhang, C.; He, F.; Zhao, X.; Qi, H.; Zhou, P.; Zhang, L.; Ming, D. How physical activities affect mental fatigue based on eeg energy, connectivity, and complexity. Front. Neurol. 2018, 9, 915. [Google Scholar] [CrossRef]
- Deksnyte, A.; Aranauskas, R.; Budrys, V.; Kasiulevicius, V.; Sapoka, V. Delirium: Its historical evolution and current interpretation. Eur. J. Intern. Med. 2012, 23, 483–486. [Google Scholar] [CrossRef]
- Davoudi, A.; Manini, T.M.; Bihorac, A.; Rashidi, P. Role of wearable accelerometer devices in delirium studies: A systematic review. Crit. Care Explor. 2019, 1, e0027. [Google Scholar] [CrossRef] [PubMed]
- Cerejeira, J.; Batista, P.; Nogueira, V.; Vaz-Serra, A.; Mukaetova-Ladinska, E.B. The stress response to surgery and postoperative delirium: Evidence of hypothalamic-pituitary-adrenal axis hyperresponsiveness and decreased suppression of the gh/igf-1 axis. J. Geriatr. Psychiatry Neurol. 2013, 26, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Osse, R.J.; Tulen, J.H.; Hengeveld, M.W.; Bogers, A.J. Screening methods for delirium: Early diagnosis by means of objective quantification of motor activity patterns using wrist-actigraphy. Interact. Cardiovasc. Thorac. Surg. 2009, 8, 344–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, E.S.; Fong, T.G.; Hshieh, T.T.; Inouye, S.K. Delirium in older persons: Advances in diagnosis and treatment. JAMA 2017, 318, 1161–1174. [Google Scholar] [CrossRef] [PubMed]
- Tu, T.M.; Loh, N.K.; Tan, N.C. Clinical risk factors for non-convulsive status epilepticus during emergent electroencephalogram. Seizure 2013, 22, 794–797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitlock, E.L.; Torres, B.A.; Lin, N.; Helsten, D.L.; Nadelson, M.R.; Mashour, G.A.; Avidan, M.S. Postoperative delirium in a substudy of cardiothoracic surgical patients in the bag-recall clinical trial. Anesth. Analg. 2014, 118, 809–817. [Google Scholar] [CrossRef] [Green Version]
- Chan, M.T.; Cheng, B.C.; Lee, T.M.; Gin, T.; Group, C.T. Bis-guided anesthesia decreases postoperative delirium and cognitive decline. J. Neurosurg. Anesthesiol. 2013, 25, 33–42. [Google Scholar] [CrossRef]
- Koponen, H.; Partanen, J.; Paakkonen, A.; Mattila, E.; Riekkinen, P.J. Eeg spectral analysis in delirium. J. Neurol. Neurosurg. Psychiatry 1989, 52, 980–985. [Google Scholar] [CrossRef] [Green Version]
- Urdanibia-Centelles, O.; Nielsen, R.M.; Rostrup, E.; Vedel-Larsen, E.; Thomsen, K.; Nikolic, M.; Johnsen, B.; Moller, K.; Lauritzen, M.; Benedek, K. Automatic continuous eeg signal analysis for diagnosis of delirium in patients with sepsis. Clin. Neurophysiol. 2021, 132, 2075–2082. [Google Scholar] [CrossRef]
- Hunter, A.; Crouch, B.; Webster, N.; Platt, B. Delirium screening in the intensive care unit using emerging qeeg techniques: A pilot study. AIMS Neurosci. 2020, 7, 1–16. [Google Scholar] [CrossRef]
- la Cour, K.N.; Andersen-Ranberg, N.C.; Weihe, S.; Poulsen, L.M.; Mortensen, C.B.; Kjer, C.K.W.; Collet, M.O.; Estrup, S.; Mathiesen, O. Distribution of delirium motor subtypes in the intensive care unit: A systematic scoping review. Crit. Care 2022, 26, 53. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, T.; Okamoto, E.; Nishimura, H.; Mizuno-Matsumoto, Y.; Ishii, R.; Ukai, S. Beta activities in eeg associated with emotional stress. Int. J. Intell. Comput. Med. Sci. Image Process. 2009, 3, 57–68. [Google Scholar] [CrossRef]
- Díaz, M.H.; Cid, F.M.; Otárola, J.; Rojas, R.; Alarcón, O.; Cañete, L. Eeg beta band frequency domain evaluation for assessing stress and anxiety in resting, eyes closed, basal conditions. Procedia Comput. Sci. 2019, 162, 974–981. [Google Scholar] [CrossRef]
- Hays, R.D.; Morales, L.S. The rand-36 measure of health-related quality of life. Ann. Med. 2001, 33, 350–357. [Google Scholar] [CrossRef] [PubMed]
Delirium (n = 6) | Non-Delirium (n = 31) | p-Value | |
---|---|---|---|
Age (years) | 72.7 ± 3.0 (71–78) | 70.1 ± 6.4 (60–84) | 0.353 |
Gender | 0.680 | ||
Female | 4 (67) | 17 (55) | |
Male | 2 (33) | 14 (45) | |
ASA class | >0.999 | ||
I | 0 | 1 (3) | |
II | 3 (50) | 13 (42) | |
III | 3 (50) | 17 (55) | |
History of dementia | 1 (17) | 1 (3) | 0.302 |
SF-36 | |||
PCS | 27 ± 12 | 33 ± 14 | 0.313 |
MCS | 40 ± 19 | 53 ± 16 | 0.061 |
Surgical site | >0.999 | ||
Cervical | 1 (17) | 6 (19) | |
Thoracolumbar | 5 (83) | 25 (81) | |
Surgical duration (min) | 198 ± 52 | 201 ± 56 | 0.934 |
Intraoperative blood loss (mL) | 317 ± 177 | 465 ± 258 | 0.178 |
Total units of transfused packed RBCs | 0.3 ± 0.7 | 1.0 ± 1.6 | 0.308 |
Percentage Change from Baseline to within 1 Week after Surgery (%) | Percentage Change from Baseline to 3 Months after Surgery (%) | |||||
---|---|---|---|---|---|---|
Delirium | Non-Delirium | p-Value | Delirium | Non-Delirium | p-Value | |
Delta waves | −26.2 ± 33.0 | 31.5 ± 71.7 | 0.082 | −20.2 ± 52.6 | 30.7 ± 78.0 | 0.169 |
Theta waves | −23.2 ± 18.0 | 5.9 ± 25.0 | 0.016 | −14.0 ± 30.5 | 5.5 ± 26.1 | 0.144 |
Alpha waves | −6.2 ± 10.9 | 0.4 ± 9.4 | 0.126 | 1.6 ± 13.1 | 2.1 ± 15.9 | 0.932 |
SMR waves | 15.5 ± 19.6 | 0.1 ± 10.8 | 0.155 | 19.5 ± 24.1 | −0.9 ± 14.9 | 0.134 |
M-beta waves | 19.1 ± 21.4 | −1.3 ± 12.3 | 0.097 | 20.4 ± 24.7 | −0.1 ± 15.7 | 0.017 |
H-beta waves | 19.3 ± 14.6 | −1.6 ± 13.5 | 0.003 | 14.7 ± 22.8 | −0.6 ± 15.5 | 0.064 |
Gamma waves | 18.8 ± 20.0 | −2.4 ± 14.3 | 0.006 | 12.8 ± 24.1 | −1.7 ± 16.4 | 0.099 |
Tension index | 7.8 ± 7.2 | −0.8 ± 6.9 | 0.011 | 3.3 ± 10.8 | −0.9 ± 8.8 | 0.334 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-B.; Kwon, J.-W.; Sung, S.; Moon, S.-H.; Lee, B.H. Delirium after Spinal Surgery: A Pilot Study of Electroencephalography Signals from a Wearable Device. Appl. Sci. 2022, 12, 9899. https://doi.org/10.3390/app12199899
Lee S-B, Kwon J-W, Sung S, Moon S-H, Lee BH. Delirium after Spinal Surgery: A Pilot Study of Electroencephalography Signals from a Wearable Device. Applied Sciences. 2022; 12(19):9899. https://doi.org/10.3390/app12199899
Chicago/Turabian StyleLee, Soo-Bin, Ji-Won Kwon, Sahyun Sung, Seong-Hwan Moon, and Byung Ho Lee. 2022. "Delirium after Spinal Surgery: A Pilot Study of Electroencephalography Signals from a Wearable Device" Applied Sciences 12, no. 19: 9899. https://doi.org/10.3390/app12199899
APA StyleLee, S.-B., Kwon, J.-W., Sung, S., Moon, S.-H., & Lee, B. H. (2022). Delirium after Spinal Surgery: A Pilot Study of Electroencephalography Signals from a Wearable Device. Applied Sciences, 12(19), 9899. https://doi.org/10.3390/app12199899