Anomaly Detection of Metallurgical Energy Data Based on iForest-AE
Abstract
:1. Introduction
2. Related Work
2.1. iForest Algorithm
- Randomly select sub samples from training data as root nodes in trees.
- Arbitrarily select a dimension to generate a cut point in the current node data.
- The cut point separates the current node data space into two subspaces. The data that are less than the cut point are placed in the left subtree of the current node, and the data greater than or equal to the cut point are placed in the right subtree of the current node.
- Perform steps 2 and 3 continuously to generate new sub nodes until the iTree reaches a finite height or there is only one data on the child node.
2.2. Autoencoder Algorithm
2.3. Anomaly Detection Process Based on the iForest-AE Method
2.3.1. Model Training
2.3.2. Data Detection
3. Experiment and Result Analysis
3.1. Experiment Environment
3.2. Data Preparation
3.3. Experimental Procedure and Result Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, W.; An, S.; Wu, C.; Tsai, S.; Yang, K. An empirical study on green environmental system certification affects financing cost of high energy consumption enterprises-taking metallurgical enterprises as an example. J. Clean. Prod. 2020, 244, 118848. [Google Scholar] [CrossRef]
- Chuah, L.F.; Mokhtar, K.; Bakar, A.A.; Othman, M.R.; Osman, N.H.; Bokhari, A.; Mubashir, M.; Abdullah, M.A.; Hasan, M. Marine environment and maritime safety assessment using Port State Control database. Chemosphere 2022, 304, 135245. [Google Scholar] [CrossRef] [PubMed]
- Chuah, L.F.; Mohd Salleh, N.H.; Osnin, N.A.; Alcaide, J.I.; Abdul Majid, M.H.; Abdullah, A.A.; Bokhari, A.A.; Jalil, E.E.; Klemeš, J.J. Profiling Malaysian ship registration and seafarers for streamlining future Malaysian shipping governance. Aust. J. Marit. Ocean Aff. 2021, 13, 225–261. [Google Scholar] [CrossRef]
- Dogo, E.M.; Nwulu, N.I.; Twala, B.; Aigbavboa, C. A survey of machine learning methods applied to anomaly detection on drinking-water quality data. Urban Water J. 2019, 16, 235–248. [Google Scholar] [CrossRef]
- Krawiec, P.; Junge, M.; Hesselbach, J. Comparison and adaptation of two strategies for anomaly detection in load profiles based on methods from the fields of machine learning and statistics. Open J. Energy Effic. 2021, 10, 37–49. [Google Scholar] [CrossRef]
- Batchanaboyina, M.R.; Devarakonda, N. Design and evaluation of outlier detection based on semantic condensed nearest neighbor. J. Intell. Syst. 2019, 29, 1416–1424. [Google Scholar] [CrossRef]
- Yang, Z. An efficient automatic gait anomaly detection method based on semisupervised clustering. Comput. Intell. Neurosci. 2021, 2021, 8840156. [Google Scholar] [CrossRef]
- Li, C.; Guo, L.; Gao, H.; Li, Y. Similarity-measured isolation forest: Anomaly detection method for machine monitoring data. IEEE Trans. Instrum. Meas. 2021, 70, 1–12. [Google Scholar] [CrossRef]
- Wang, B.; Ying, S.; Cheng, G.; Wang, R.; Yang, Z.; Dong, B. Log-based anomaly detection with the improved K-nearest neighbor. Int. J. Softw. Eng. Knowl. Eng. 2020, 30, 239–262. [Google Scholar] [CrossRef]
- Vanem, E.; Brandsæter, A. Unsupervised anomaly detection based on clustering methods and sensor data on a marine diesel engine. J. Mar. Eng. Technol. 2021, 20, 217–234. [Google Scholar] [CrossRef]
- Li, K.X.; Li, J.; Liu, S.J.; Li, Z.; Bo, J.; Liu, B. GA-iForest: An efficient isolated forest framework based on genetic algorithm for numerical data outlier detection. Trans. Nanjing Univ. Aeronaut. Astronaut. 2019, 36, 1026–1038. [Google Scholar]
- Lim, S.S.; Kwon, O.W. Frame augment: A simple data augmentation method for encoder–decoder speech recognition. Appl. Sci. 2022, 12, 7619. [Google Scholar] [CrossRef]
- Xie, S.; Xia, Y.; Wu, L.; Huang, Y.; Fan, Y.; Qin, T. End-to-end entity-aware neural machine translation. Mach. Learn. 2022, 111, 1181–1203. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, H.; Zhao, Y.; Chen, Y.; Ke, C.; Xu, T.; He, Y. A brief review of new data analysis methods of laser-induced breakdown spectroscopy: Machine learning. Appl. Spectrosc. Rev. 2022, 57, 89–111. [Google Scholar] [CrossRef]
- Li, Y.; Xu, Y.; Cao, Y.; Hou, J.; Wang, C.; Guo, W.; Li, X.; Xin, Y.; Liu, Z.; Cui, L. One-class LSTM network for anomalous network traffic detection. Appl. Sci. 2022, 12, 5051. [Google Scholar] [CrossRef]
- Borghesi, A.; Bartolini, A.; Lombardi, M.; Milano, M.; Benini, L. A semisupervised autoencoder-based approach for anomaly detection in high performance computing systems. Eng. Appl. Artif. Intell. 2019, 85, 634–644. [Google Scholar] [CrossRef]
- Chen, Z.; Yeo, C.K.; Lee, B.S.; Lau, C.T. Autoencoder-based network anomaly detection. In Proceedings of the 2018 Wireless Telecommunications Symposium (WTS), Phoenix, AZ, USA, 17–20 April 2018; pp. 1–5. [Google Scholar]
- Liu, F.T.; Ting, K.M.; Zhou, Z.H. Isolation forest. In Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy, 15–19 December 2008; pp. 413–422. [Google Scholar]
- Zhang, W.; Chen, L. Web log anomaly detection based on isolated forest algorithm. In Proceedings of the 2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE), Dalian, China, 14–16 November 2019; pp. 755–759. [Google Scholar]
- Mao, W.; Cao, X.; Zhou, Q.; Yan, T.; Zhang, Y. Anomaly detection for power consumption data based on isolated forest. In Proceedings of the 2018 International Conference on Power System Technology (POWERCON), Guangzhou, China, 6–8 November 2018; pp. 4169–4174. [Google Scholar]
- Ji, Y.; Lu, Z. The theoretical breakthrough of self-supervised learning: Variational autoencoders and its application in big data analysis. J. Phys. Conf. Ser. 2021, 1955, 012062. [Google Scholar] [CrossRef]
- Zabalza, J.; Ren, J.; Zheng, J.; Zhao, H.; Qing, C.; Yang, Z.; Du, P.; Marshall, S. Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging. Neurocomputing 2016, 185, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Patel, H.; Upla, K.P. A shallow network for hyperspectral image classification using an autoencoder with convolutional neural network. Multimed. Tools Appl. 2022, 81, 695–714. [Google Scholar] [CrossRef]
- Li, X.; Feng, S.; Hou, N.; Wang, R.; Li, H.; Gao, M.; Li, S. Surface microseismic data denoising based on sparse autoencoder and Kalman filter. Syst. Sci. Control Eng. 2022, 10, 616–628. [Google Scholar] [CrossRef]
- Wang, H.; Liu, X.; Ma, L.; Zhang, Y. Anomaly detection for hydropower turbine unit based on variational modal decomposition and deep autoencoder. Energy Rep. 2021, 7, 938–946. [Google Scholar] [CrossRef]
- Cheng, Z.; Wang, S.; Zhang, P.; Wang, S.; Liu, X.; Zhu, E. Improved autoencoder for unsupervised anomaly detection. Int. J. Intell. Syst. 2021, 36, 7103–7125. [Google Scholar] [CrossRef]
- Seokheon, Y. Performance analysis of construction cost prediction using neural network for multioutput regression. Appl. Sci. 2022, 12, 9592. [Google Scholar] [CrossRef]
- Zhou, H.; Yu, K.; Zhang, X.; Wu, G.; Yazidi, A. Contrastive autoencoder for anomaly detection in multivariate time series. Inf. Sci. 2022, 610, 266–280. [Google Scholar] [CrossRef]
- Liang, D.; Wang, J.; Gao, X.; Wang, J.; Zhao, X.; Wang, L. Self-supervised Pretraining Isolated Forest for Outlier Detection. In Proceedings of the 2022 International Conference on Big Data, Information and Computer Network (BDICN), Sanya, China, 20–22 January 2020; pp. 306–310. [Google Scholar]
- Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305. [Google Scholar]
Parameter | Value |
---|---|
n_estimators | 100 |
max_features | 1 |
contamination | 0.1 |
max_samples | auto |
n_jobs | None |
Parameter | Values |
---|---|
Batch_size | 128 |
Epoch | 80 |
Loss | Mean square error |
Optimizer | Adam |
Model | Accuracy | Precision | Recall | F1 Score |
---|---|---|---|---|
Autoencoder | 0.989 | 1.000 | 0.799 | 0.888 |
iForest-AE | 0.998 | 1.000 | 0.963 | 0.981 |
Model | Accuracy | Precision | Recall | F1 Score |
---|---|---|---|---|
iForest | 0.975 | 0.789 | 0.723 | 0.755 |
SVM | 0.922 | 1.000 | 0.858 | 0.924 |
iForest-AE | 0.998 | 1.000 | 0.963 | 0.981 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, Z.; Zhu, D.; Liu, D.; He, S.; Zhao, L. Anomaly Detection of Metallurgical Energy Data Based on iForest-AE. Appl. Sci. 2022, 12, 9977. https://doi.org/10.3390/app12199977
Xiong Z, Zhu D, Liu D, He S, Zhao L. Anomaly Detection of Metallurgical Energy Data Based on iForest-AE. Applied Sciences. 2022; 12(19):9977. https://doi.org/10.3390/app12199977
Chicago/Turabian StyleXiong, Zhangming, Daofei Zhu, Dafang Liu, Shujing He, and Luo Zhao. 2022. "Anomaly Detection of Metallurgical Energy Data Based on iForest-AE" Applied Sciences 12, no. 19: 9977. https://doi.org/10.3390/app12199977
APA StyleXiong, Z., Zhu, D., Liu, D., He, S., & Zhao, L. (2022). Anomaly Detection of Metallurgical Energy Data Based on iForest-AE. Applied Sciences, 12(19), 9977. https://doi.org/10.3390/app12199977