Phage Display Preparation of Specific Polypeptides in Atherosclerotic Foam Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Establishment of the Foam Cell Model
2.2.2. Stain
Stain of Adherent Cells
Stain of THP-1
2.3. Detection of ROS in Foam Cells
2.4. Quantitative Real-Time PCR (qRT-PCR)
2.5. Phage Display
2.5.1. Screening of Phages
2.5.2. Amplification and Purification of the Phage
2.5.3. Phage-Specific Attachment Assay
2.5.4. Flow Cytometry Analysis
3. Results
3.1. Foam Cell Model
3.2. Phage Display
3.3. Specific Polypeptides
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stary, H.C.; Chandler, A.B.; Dinsmore, R.E.; Fuster, V.; Glagov, S.; Insull, W., Jr.; Rosenfeld, M.E.; Schwartz, C.J.; Wagner, W.D.; Wissler, R.W. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. Circulation 1995, 92, 1355–1374. [Google Scholar] [CrossRef]
- Liuzzo, G. Atherosclerosis-An inflammatory disease. N. Engl. J. Med. 2001, 4, 221–230. [Google Scholar] [CrossRef]
- Shepherd, J.; Cobbe, S.M.; Ford, I.; Isles, C.G.; Lorimer, A.R.; MacFarlane, P.W.; McKillop, J.H.; Packard, C.J. Prevention of Coronary Heart Disease With Pravastatin in Men With Hypercholesterolemia. N. Eng. J. Med. 1995, 333, 1301–1307. [Google Scholar] [CrossRef]
- Stary, H.C.; Chandler, A.B.; Glagov, S.; Guyton, J.R.; Insull, W., Jr.; Rosenfeld, M.E.; Schaffer, S.A.; Schwartz, C.J.; Wagner, W.D.; Wissler, R.W. A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 1994, 89, 2462–2478. [Google Scholar] [CrossRef] [Green Version]
- de Tena, J.G. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 2005, 353, 429–430. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.-H.; Fu, Y.-C.; Zhang, D.-W.; Yin, K.; Tang, C.-K. Foam cells in atherosclerosis. Clin. Chim. Acta 2013, 424, 245–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collot-Teixeira, S.; Martin, J.F.; McDermott-Roe, C.; McDermott-Roe, C.F.; Poston, R.; Poston, R.F.; McGregor, J.L.; McGregor, J.L. CD36 and macrophages in atherosclerosis. Cardiovasc. Res. 2007, 75, 468–477. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Zhao, B.; Bie, J.; Song, J. Macrophage cholesteryl ester mobilization and atherosclerosis. Vascul. Pharmacol. 2010, 52, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jessup, W.; Gelissen, I.C.; Gaus, K.; Kritharides, L. Roles of ATP binding cassette transporters A1 and G1, scavenger receptor BI and membrane lipid domains in cholesterol export from macrophages. Curr. Opin. Lipidol. 2006, 17, 247–257. [Google Scholar] [CrossRef]
- Ball, R.Y.; Stowers, E.C.; Burton, J.H.; Cary NR, B.; Skepper, J.N.; Mitchinson, M.J. Evidence that the death of macrophage foam cells contributes to the lipid core of atheroma. Atherosclerosis 1995, 114, 45–54. [Google Scholar] [CrossRef]
- Guyton, J.; Klemp, K. Transitional features in human atherosclerosis. Intimal thickening, cholesterol clefts, and cell loss in human aortic fatty streaks. Am. J. Pathol. 1993, 143, 1444–1457. [Google Scholar]
- Hegyi, L.; Skepper, J.F.; Cary, N.R.; Cary, N.F.; Mitchinson, M.J.; Mitchinson, M.J. Foam cell apoptosis and the development of the lipid core of human atherosclerosis. J. Pathol. 1996, 180, 423–429. [Google Scholar] [CrossRef]
- Wu, M.; Liu, M.; Guo, G.; Zhang, W.; Liu, L. Polydatin Inhibits Formation of Macrophage-Derived Foam Cells. Evid. Based Complement Alternat. Med. 2015, 729017. [Google Scholar] [CrossRef] [Green Version]
- Koch, A.L. The dynamics of coliphage plaque formation. I. Macroplaque experiments. Virology 1959, 8, 273–292. [Google Scholar] [CrossRef]
- Hansson, G.K.; Libby, P. The immune response in atherosclerosis: A double-edged sword. Nat. Rev. Immunol. 2006, 6, 508–519. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Yin, Y.; Zhou, Z.; He, M.; Dai, Y. OxLDL-induced IL-1 beta secretion promoting foam cells formation was mainly via CD36 mediated ROS production leading to NLRP3 inflammasome activation. Inflamm. Res. 2014, 63, 33–43. [Google Scholar] [CrossRef]
- Fortuño, A.; San José, G.; Moreno, M.U.; Díez, J.; Zalba, G. Oxidative stress and vascular remodelling. Exp. Physiol. 2005, 90, 457–462. [Google Scholar] [CrossRef]
- Gu, L.; Bai, W.; Li, S.; Zhang, Y.; Han, Y.; Yue, G.; Meng, G.; Xie, L.; Jing, W.; Xiao, Y. Celastrol prevents atherosclerosis via inhibiting LOX-1 and oxidative stress. PLoS ONE 2013, 8, e65477. [Google Scholar] [CrossRef] [Green Version]
- Deguchi, J.; Aikawa, M.; Tung, C.; Aikawa, E.; Kim, D.; Ntziachristos, V.; Weissleder, R.; Libby, P. Inflammation in Atherosclerosis: Visualizing matrix metalloproteinase action in macrophages in vivo. Circulation 2006, 114, 55–62. [Google Scholar] [CrossRef]
- Rastogi, R.P.; Singh, S.P.; Häder, D.-P.; Sinha, R.P. Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2′,7′-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937. Biochem. Biophys. Res. Commun. 2010, 397, 603–607. [Google Scholar] [CrossRef]
- Marquez, V.; Beccaria, A. Application of Oil Red O staining in oleaginous microalgae: Practical uses in screening and lipid quantification of different species. J. Appl. Phycol. 2020, 32, 1755–1761. [Google Scholar] [CrossRef]
- Zhong, S.; Li, L.; Zhang, Y.; Zhang, L.; Lu, J.; Guo, S.; Liang, N.; Ge, J.; Zhu, M.; Tao, Y.; et al. Acetaldehyde dehydrogenase 2 interactions with LDLR and AMPK regulate foam cell formation. J. Clin. Investig. 2019, 129, 252–267. [Google Scholar] [CrossRef] [Green Version]
- Bochem, A.E.; van Wijk, D.F.; Holleboom, A.G.; Duivenvoorden, R.; Motazacker, M.M.; Dallinga-Thie, G.M.; de Groot, E.; Kastelein, J.J.; Nederveen, A.J.; Hovingh, G.K.; et al. ABCA1 mutation carriers with low high-density lipoprotein cholesterol are characterized by a larger atherosclerotic burden. Eur. Heart J. 2013, 34, 286–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Collins, H.L.; Ranalletta, M.; Fuki, I.V.; Billheimer, J.T.; Rothblat, G.H.; Tall, A.R.; Rader, D.J. Macrophage ABCA1 and ABCG1, but not SR-BI, promote macrophage reverse cholesterol transport in vivo. J. Clin. Investig. 2007, 117, 2216–2224. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Silver, D.L.; Costet, P.; Tall, A.R. Specific binding of ApoA-I, enhanced cholesterol efflux, and altered plasma membrane morphology in cells expressing ABC1. J. Biol. Chem. 2000, 275, 33053–33058. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Y.; Peng, Y.; Tang, K.; Wang, Y.Q.; Zhao, Z.Y.; Wei, X.Y.; Xu, X.L. Dihydromyricetin ameliorates foam cell formation via LXRα-ABCA1/ABCG1-dependent cholesterol efflux in macrophages. Biomed Pharmacother. 2018, 101, 543–552. [Google Scholar] [CrossRef]
- Smith, G.P. Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface. Science 1985, 228, 1315–1317. [Google Scholar] [CrossRef]
- Lonberg, N. Fully human antibodies from transgenic mouse and phage display platforms. Curr. Opin. Immunol. 2008, 20, 450–459. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.P.; Petrenko, V.A. Phage Display. Chem. Rev. 1997, 97, 391–410. [Google Scholar] [CrossRef] [PubMed]
- Houk, K.N.; Leach, A.G.; Kim, S.P.; Zhang, X. Binding Affinities of Host-Guest, Protein-Ligand, and Protein-Transition-State Complexes. Angew. Chem. 2003, 42, 4872–4897. [Google Scholar] [CrossRef] [PubMed]
Cycles | Titer | Quantity | Neutralization Titer | Elution Amount |
---|---|---|---|---|
1 | 3.2 × 109/μL | 1011 | 1.08 × 104/μL | 2.16 × 107 |
2 | 1.0 × 1010/μL | 1011 | 2.25 × 105/μL | 4.5 × 108 |
3 | 1.15 × 1010/μL | 1011 | 6 × 105/μL | 1.2 × 109 |
Code Name | Sequence |
---|---|
GAT-T1 | GADTSKPPRFVT |
SLP-T2 | SLLAERQFNSKP |
REP-T3 | REDPPTTAYYSP |
SAH-T4 | SANGETVNPSRH |
NNN-T5 | NNLPTSRTLAGN |
VGR-T6 | VGHTVASDIPPR |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, X.; Liu, D.; Wu, F.; Cen, Y.; Ma, L. Phage Display Preparation of Specific Polypeptides in Atherosclerotic Foam Cells. Appl. Sci. 2022, 12, 562. https://doi.org/10.3390/app12020562
Ji X, Liu D, Wu F, Cen Y, Ma L. Phage Display Preparation of Specific Polypeptides in Atherosclerotic Foam Cells. Applied Sciences. 2022; 12(2):562. https://doi.org/10.3390/app12020562
Chicago/Turabian StyleJi, Xiang, Dan Liu, Feng Wu, Yu Cen, and Lan Ma. 2022. "Phage Display Preparation of Specific Polypeptides in Atherosclerotic Foam Cells" Applied Sciences 12, no. 2: 562. https://doi.org/10.3390/app12020562
APA StyleJi, X., Liu, D., Wu, F., Cen, Y., & Ma, L. (2022). Phage Display Preparation of Specific Polypeptides in Atherosclerotic Foam Cells. Applied Sciences, 12(2), 562. https://doi.org/10.3390/app12020562