Analytical Method for the Bending Resistance of Slim Floor Beams with Asymmetric Double-T Steel Section under ISO Fire
Abstract
:Featured Application
Abstract
1. Introduction
2. Validation of the Numerical Model
2.1. Experimental Tests
2.2. Validated Model
3. Validation of the Simplified Design Method
3.1. Presentation of the Simplified Design Method
- zi, zj is the distance from the plastic neutral axis to the centroid of the area Ai or Aj
- fy,i is the nominal yield strength;
- fy, for the steel area Ai, (structural steel or reinforcement) taken as positive on the compression side of the plastic neutral axis and negative on the tension side—the reinforcement can be considered only in tension;
- fc,j is the design strength of the concrete area Aj at 20 °C;
- ky,θ,i and kc, θ,j are defined in Tables 3.2 and 3.3 of EN 1994-1-2 [27];
- αslab is the coefficient considering the assumption of the rectangular stress block when designing slabs and shallow composite floor beams—αslab = 0.85.
- kh = 0.85 for cz/h > 0.4
- kh = 1.0 for all other cases
- kc = 0.5 for a solid slab that covers 100% of the upper surface of the welded plate
- kc = 1.0 for all other cases
3.2. Parametric Study on Asymmetric Double-T Cross-Section
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Beall, C. Masonry Design and Detailing, 5th ed.; McGraw-Hill Professional: New York, NY, USA, 2004. [Google Scholar]
- Zahrai, S.M. Experimental study of typical and retrofitted jack arch slabs in a single story 3D steel building. Int. J. Civ. Eng. 2015, 13, 278–288. [Google Scholar]
- Maheri, M.R.; Rahmani, H. Static and seismic design of one-way and two-way jack arch masonry slabs. Eng. Struct. 2003, 25, 1639–1654. [Google Scholar] [CrossRef]
- Ahmed, I.M.; Tsavdaridis, K.D. The evolution of composite flooring systems: Applications, testing, modelling and eurocode design approaches. J. Constr. Steel Res. 2019, 155, 286–300. [Google Scholar] [CrossRef]
- PEIKKO GROUP. DELTABEAM® Composite Beams Slim Floor Structure with Integrated Fireproofing. Tech. Man. 2021. Available online: https://www.peikko.com/products/product/deltabeam-product-information/ (accessed on 1 November 2021).
- Peltonen, S.; Leskela, M. Connection Behaviour of a Concrete Dowel in a Circular Web Hole of a Steel Beam. In Composite Construction in Steel and Concrete V; ASCE: Reston, VA, USA, 2006; pp. 544–552. [Google Scholar]
- ArcelorMittal Commercial Sections. Slim Floor, an Innovative Concept for Floors; Long Carbon Europe Sections and Merchant Bars: Esch-sur-Alzette, Luxembourg, 2008; Available online: https://sections.arcelormittal.com/repository2/Sections/5_5_1_SlimFloor.pdf (accessed on 1 November 2021).
- Huo, B.Y.; D’Mello, C.A. Push-out tests and analytical study of shear transfer mechanisms in composite shallow cellular floor beams. J. Constr. Steel Res. 2013, 88, 191–205. [Google Scholar] [CrossRef]
- Ju, Y.K.; Chun, S.C.; Kim, D.Y.; Kim, D.H.; Kim, S.D.; Chung, K.R. Structural performance of I-TECH composite beam steel with web openings. CIB-CTBUH Int. Conf. Tall Build. CIB Rep. 2003, 411–418. [Google Scholar]
- Ju, Y.K.; Chun, S.C.; Kim, S.D. Flexural test of a composite beam using asymmetric steel section with web openings. J. Struct. Eng. 2009, 135, 448–458. [Google Scholar] [CrossRef]
- Ju, Y.K.; Kim, D.H.; Kim, S.D. Experimental assessment of the shear strength of an asymmetric steel composite beam with web openings. Can. J. Civ. Eng. 2005, 32, 314–328. [Google Scholar] [CrossRef]
- BritishSteel Sections—Asymmetric Beams. Available online: https://britishsteel.co.uk/media/365485/british-steel-asymmetric-beams-datasheet.pdf (accessed on 20 September 2021).
- The Steel Construction Institute (SCI). Slimflor Compendium; SCI: Berkshire, UK, 2008. [Google Scholar]
- Fontana, M.; Borgogno, W. Slim Floor slabs: Fire resistance and system behaviour of hollow core slabs on flexible beams. In Proceedings of the Composite Construction in Steel and Concrete, Engineering Foundation Conference; ASCE: Irsee, Germany, 1996. [Google Scholar]
- Zaharia, R.; Franssen, J.M. Simple equations for the calculation of the temperature within the cross-section of slim floor beams under ISO Fire. Steel Compos. Struct. 2012, 13, 171–185. [Google Scholar] [CrossRef]
- Hanus, F.; Zaganelli, D.; Cajot, L.-G.; Braun, M. Analytical methods for the prediction of fire resistance of “reinforced” slimfloor beams. In Proceedings of the 8th European Conference on Steel and Composite Structures, Copenhagen, Denmark, 13–15 September 2017. [Google Scholar]
- CEN European Committee for Standardization: EN 1992-1-2: Eurocode 2—Design of Concrete Structures. Part 1-2. General Rules—Structural Fire Design, CEN, Brussels. 2005. Available online: https://www.phd.eng.br/wp-content/uploads/2015/12/en.1992.1.2.2004.pdf (accessed on 1 November 2021).
- Cajot, L.-G. Simplified design methods for slim floor beams exposed to fire. In Proceedings of the 12th NordicSteel Construction Conference, Oslo, Norway, 5–7 September 2012. [Google Scholar]
- Romero, M.; Cajot, L.-G.; Conan, Y.; Braun, M. Fire design methods for slim-floor structures. Steel Constr. 2015, 8, 102–109. [Google Scholar] [CrossRef]
- Romero, M.L.; Albero, V.; Espinós, A.; Hospitaler, A. Fire design of slim-floor beams. Stahlbau 2019, 88, 665–674. [Google Scholar] [CrossRef]
- Zanon, R.; Yildiz, S.; Obiala, R.; Braun, M. Shallow composite floor beams—Proposal of a simplified analytical method for standard fire rating. ce/papers 2021, 4, 1325–1334. [Google Scholar] [CrossRef]
- Franssen, J.M. Safir—A thermal/structural program modelling structures under fire. Eng. J. 2005, 42, 143–158. [Google Scholar]
- Wainman, D.E. BS 476: Part 21 Fire Resistance Tests Summary of Data Obtained during a Test on a Composite Slim Floor Beam 7 April 1996; Test Number WFRC 44174, Technical Note; British Steel Pic—Swinden Technology Centre: Rotherham, UK, 1996. [Google Scholar]
- Wainman, D.E. Preliminary Assessment of the Data Arising from a Standard Fire Resistance Test Performed on a Slimflor Beam at the Warrington Fore Research Centre on 14 February 1996; Test Number WFRC 66162, Technical Note; British Steel Pic—Swinden Technology Centre: Rotherham, UK, 1996. [Google Scholar]
- CEN European Committee for Standardization: EN 1993-1-2, Eurocode 3: Design of Steel Structures—Part 1-2: General Rules—Structural Fire Design, Brussels. 2005. Available online: https://www.gaprojekt.com/sites/default/files/legislation/Eurocode%203%20-Design%20of%20steel%20structures%20-%20Part%201-2%20-%20en.1993.1.2.2005.pdf (accessed on 1 November 2021).
- CEN European Committee for Standardization: EN 1991-1-2, Eurocode 1: Actions on Structures—Part 1-2: General Actions—Actions on Structures Exposed to Fire, Brussels. 2004. Available online: https://www.phd.eng.br/wp-content/uploads/2015/12/en.1991.1.2.2002.pdf (accessed on 1 November 2021).
- CEN European Committee for Standardization: EN 1994-1-2, Eurocode 4: Design of Composite Steel and Concrete Structures—Part 1-2: General Rules—Structural Fire Design, Brussels. 2005. Available online: https://www.phd.eng.br/wp-content/uploads/2015/12/en.1994.1.2.2005.pdf (accessed on 1 November 2021).
- Duma, D.; Zaharia, R.; Pintea, D.; Both, I. Numerical model validation of non-composite slim floor beam subjected to fire. In Proceedings of the International Scientific Conference CIBv-Civil Engineering and Building Services, Brasov, Romania, 4–5 November 2021. [Google Scholar]
Criteria | Range |
---|---|
Maximum span | 12 m |
Cross-section class | 1 and 2 |
Slab type | Composite slab with steel sheeting Solid concrete slab Prefabricated slab with in-situ concrete |
Steel grade | S235 to S460 |
Concrete class | C20/25 to C50/60 |
Reinforcement bars | Diameter 6 to 32 mm B500B/C |
Steel Profile | Concrete Slab | Reinforcement |
---|---|---|
10 ≤ ep ≤ 40 | 30 ≤ cz ≤ 150 | ur ≥ 30 |
8 ≤ ef ≤ 40 | hc.1 ≥ 20 | uc ≥ 40 |
0.7 ≤ ep/ef ≤ 2 | la ≥ 40 | uw ≥ 40 |
6 ≤ ew ≤ 30 | bf + 60 ≤ bw | hs ≤ hw−2 × ur |
160 ≤ h ≤ 450 | As ≤ 0.5 bp × ep | |
160 ≤ bf ≤ 450 | As ≤ 5% × bw × (h + cz) | |
160 ≤ bp-bf ≤ 250 | As ≤ 2 × beff × cz × (fck/fsk) |
Steel Profile | Concrete Slab | Reinforcement |
---|---|---|
12 ≤ efb ≤ 40 | 30 ≤ cz ≤ 150 | ur ≥ 25 |
10 ≤ eft ≤ 40 | hc.1 ≥ 20 | uc ≥ 30 |
0.7 ≤ efb/ef ≤ 2.4 | la ≥ 40 | uw ≥ 30 |
6 ≤ ew ≤ 30 | bf + 60 ≤ bw | hs ≤ hw−2 × ur |
135 ≤ h ≤ 450 | As ≤ 0.5 bfb × efb | |
160 ≤ bfb ≤ 500 | As ≤ 5% × bw × (h + cz) | |
110 ≤ bfb-bft ≤ 250 | As ≤ 2 × beff × cz × (fck/fsk) |
Coefficient | R30 | R60 | R90 | R120 |
---|---|---|---|---|
Ai | 0.113 | 0.130 | 0 | 0 |
Bi | −12.80 | −11.80 | −2.60 | −1.25 |
Ci | 760 | 980 | 990 | 1025 |
Aw | −140.70 | −103.80 | −108.60 | −70.44 |
Bw | 832.42 | 968.60 | 1146.70 | 1124.40 |
Cw | 0.0317 | 0.0232 | 0.0198 | 0.0158 |
Dw | −0.230 | −0.182 | −0.154 | −0.134 |
Ar | 0 | 0.0954 | 0.0548 | 0.0381 |
Br | 0 | −19.254 | −15.130 | −12.797 |
Cr | 300 | 1105.4 | 1135.9 | 1138.1 |
Steel Profile Type | Slab Type 1 | h [mm] | bfb [mm] | bft [mm] | efb [mm] | eft [mm] | ew [mm] | cz [mm] | L [m] | l [m] | Steel | Concrete | Reinforcement | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No of Bars | Φ [mm] | uw [mm] | ur [mm] | |||||||||||||
ASB | 2 | 258 | 285 | 175 | 14 | 14 | 10 | 60 | 9 | 1.5 | S355 | C50/60 | 4 | 25 | 37.5 | 32.5 |
ASB | 2 | 258 | 285 | 175 | 14 | 14 | 10 | 90 | 9 | 1.5 | S460 | C30/37 | 4 | 25 | 37.5 | 42.5 |
ASB | 2 | 258 | 285 | 175 | 14 | 14 | 10 | 60 | 9 | 1.5 | S235 | C25/30 | 0 | - | - | - |
ASB | 2 | 258 | 285 | 175 | 14 | 14 | 10 | 120 | 9 | 1.5 | S355 | C50/60 | 4 | 16 | 42 | 32 |
ASB | 2 | 258 | 285 | 175 | 14 | 14 | 10 | 60 | 9 | 1.5 | S235 | C50/60 | 2 | 20 | 50 | 30 |
ASB | 1 | 258 | 285 | 175 | 14 | 14 | 10 | 90 | 9 | 1.5 | S460 | C30/37 | 4 | 25 | 37.5 | 42.5 |
ASB | 1 | 258 | 285 | 175 | 14 | 14 | 10 | 60 | 9 | 1.5 | S355 | C50/60 | 2 | 25 | 47.5 | 32.5 |
ASB | 1 | 258 | 285 | 175 | 14 | 14 | 10 | 60 | 9 | 1.5 | S460 | C40/50 | 0 | - | - | - |
ASB | 2 | 266 | 300 | 190 | 22 | 22 | 25 | 40 | 8 | 2 | S275 | C30/37 | 0 | - | - | - |
ASB | 2 | 266 | 300 | 190 | 22 | 22 | 25 | 120 | 8 | 2 | S235 | C50/60 | 0 | - | - | - |
ASB | 2 | 266 | 300 | 190 | 22 | 22 | 25 | 60 | 8 | 2 | S355 | C30/37 | 2 | 25 | 37.5 | 32.5 |
ASB | 2 | 266 | 300 | 190 | 22 | 22 | 25 | 120 | 8 | 2 | S460 | C25/30 | 0 | - | - | - |
ASB | 2 | 266 | 300 | 190 | 22 | 22 | 25 | 40 | 8 | 2 | S275 | C50/60 | 2 | 20 | 40 | 30 |
ASB | 1 | 266 | 300 | 190 | 22 | 22 | 25 | 120 | 8 | 2 | S235 | C50/60 | 0 | - | - | - |
ASB | 1 | 266 | 300 | 190 | 22 | 22 | 25 | 120 | 8 | 2 | S275 | C30/37 | 2 | 25 | 37.5 | 37.5 |
ASB | 1 | 266 | 300 | 190 | 22 | 22 | 25 | 120 | 8 | 2 | S460 | C35/45 | 0 | - | - | - |
ASB | 1 | 266 | 300 | 190 | 22 | 22 | 25 | 90 | 8 | 2 | S235 | C25/30 | 2 | 25 | 22.5 | 37.5 |
ASB | 1 | 302 | 293 | 183 | 40 | 40 | 20 | 40 | 9 | 2 | S355 | C30/37 | 2 | 25 | 47.5 | 27.5 |
ASB | 1 | 302 | 293 | 183 | 40 | 40 | 20 | 60 | 9 | 2 | S235 | C50/60 | 2 | 25 | 47.5 | 27.5 |
ASB | 1 | 302 | 293 | 183 | 40 | 40 | 20 | 40 | 9 | 2 | S235 | C30/37 | 4 | 32 | 29 | 34 |
ASB | 1 | 302 | 293 | 183 | 40 | 40 | 20 | 40 | 9 | 1.5 | S460 | C30/37 | 0 | - | - | - |
ASB | 2 | 302 | 293 | 183 | 40 | 40 | 20 | 40 | 9 | 2 | S355 | C50/60 | 4 | 25 | 32.5 | 32.5 |
ASB | 2 | 302 | 293 | 183 | 40 | 40 | 20 | 40 | 9 | 2 | S235 | C25/30 | 2 | 16 | 52 | 32 |
ASB | 2 | 302 | 293 | 183 | 40 | 40 | 20 | 40 | 9 | 2 | S460 | C40/50 | 2 | 25 | 47.5 | 32.5 |
ASB | 2 | 302 | 293 | 183 | 40 | 40 | 20 | 120 | 9 | 2 | S235 | C30/37 | 2 | 25 | 47.5 | 42.5 |
Welded | 1 | 220 | 500 | 280 | 20 | 20 | 10 | 80 | 10 | 2.25 | S235 | C25/30 | 4 | 20 | 35 | 30 |
Welded | 1 | 220 | 500 | 280 | 20 | 20 | 10 | 80 | 10 | 2.25 | S460 | C30/37 | 4 | 25 | 32.5 | 27.5 |
Welded | 1 | 220 | 500 | 280 | 20 | 20 | 10 | 40 | 10 | 2.25 | S355 | C40/50 | 4 | 20 | 35 | 30 |
Welded | 1 | 220 | 500 | 280 | 20 | 20 | 10 | 120 | 10 | 2.25 | S275 | C25/30 | 4 | 20 | 35 | 30 |
Welded | 1 | 220 | 500 | 280 | 20 | 20 | 10 | 40 | 10 | 2.25 | S235 | C25/30 | 0 | - | - | - |
Welded | 2 | 220 | 500 | 280 | 16 | 16 | 10 | 80 | 10 | 2.25 | S355 | C25/30 | 4 | 20 | 35 | 30 |
Welded | 2 | 220 | 500 | 280 | 20 | 20 | 10 | 80 | 10 | 2.25 | S235 | C40/50 | 4 | 20 | 35 | 40 |
Welded | 2 | 220 | 500 | 280 | 20 | 20 | 10 | 80 | 10 | 2.25 | S460 | C35/45 | 4 | 25 | 32.5 | 27.5 |
Welded | 2 | 220 | 500 | 280 | 20 | 20 | 10 | 80 | 10 | 2.25 | S275 | C30/37 | 4 | 20 | 35 | 35 |
Welded | 2 | 220 | 500 | 280 | 20 | 20 | 20 | 80 | 10 | 2.25 | S235 | C35/45 | 4 | 25 | 32.5 | 27.5 |
IFB | 2 | 135 | 270 | 135 | 10.2 | 15 | 6.6 | 125 | 6 | 1.5 | S355 | C30/37 | 4 | 20 | 30 | 25 |
IFB | 2 | 135 | 270 | 135 | 10.2 | 20 | 6.6 | 125 | 6 | 1.5 | S235 | C30/37 | 2 | 20 | 30 | 25 |
IFB | 2 | 135 | 270 | 135 | 10.2 | 12 | 6.6 | 125 | 6 | 1.5 | S460 | C50/60 | 4 | 20 | 30 | 25 |
IFB | 2 | 135 | 270 | 135 | 10.2 | 15 | 6.6 | 40 | 6 | 1.5 | S355 | C30/37 | 4 | 20 | 30 | 25 |
IFB | 2 | 135 | 270 | 135 | 10.2 | 20 | 6.6 | 40 | 6 | 1.5 | S355 | C50/60 | 4 | 20 | 30 | 25 |
IFB | 2 | 135 | 270 | 135 | 10.2 | 12 | 6.6 | 40 | 6 | 1.5 | S235 | C30/37 | 2 | 20 | 30 | 25 |
IFB | 2 | 135 | 270 | 135 | 10.2 | 20 | 6.6 | 40 | 6 | 1.5 | S460 | C25/30 | 4 | 20 | 30 | 25 |
IFB | 1 | 225 | 400 | 190 | 14.6 | 25 | 9.4 | 60 | 11 | 2.5 | S460 | C35/45 | 4 | 25 | 37.5 | 32.5 |
IFB | 1 | 225 | 400 | 190 | 14.6 | 15 | 9.4 | 60 | 11 | 2.5 | S460 | C50/60 | 2 | 25 | 37.5 | 42.5 |
IFB | 1 | 225 | 400 | 190 | 14.6 | 25 | 9.4 | 60 | 11 | 2.5 | S355 | C25/30 | 4 | 25 | 37.5 | 32.5 |
IFB | 1 | 225 | 400 | 190 | 14.6 | 35 | 9.4 | 120 | 11 | 2.5 | S275 | C35/45 | 4 | 16 | 42 | 52 |
IFB | 1 | 225 | 400 | 190 | 14.6 | 25 | 9.4 | 120 | 11 | 2.5 | S235 | C35/45 | 4 | 32 | 34 | 29 |
IFB | 1 | 225 | 400 | 190 | 14.6 | 25 | 9.4 | 100 | 11 | 2.5 | S460 | C25/30 | 2 | 25 | 37.5 | 32.5 |
IFB | 1 | 225 | 400 | 190 | 14.6 | 15 | 9.4 | 40 | 11 | 2.5 | S355 | C50/60 | 4 | 20 | 40 | 35 |
IFB | 2 | 225 | 400 | 190 | 14.6 | 35 | 9.4 | 60 | 11 | 2.5 | S235 | C35/45 | 2 | 25 | 37.5 | 32.5 |
IFB | 2 | 225 | 400 | 190 | 14.6 | 15 | 9.4 | 60 | 11 | 2.5 | S355 | C25/30 | 4 | 16 | 42 | 47 |
IFB | 2 | 225 | 400 | 190 | 14.6 | 25 | 9.4 | 100 | 11 | 2.5 | S235 | C50/60 | 4 | 32 | 34 | 39 |
IFB | 2 | 225 | 400 | 190 | 14.6 | 25 | 9.4 | 40 | 11 | 2.5 | S355 | C35/45 | 4 | 25 | 37.5 | 32.5 |
IFB | 2 | 180 | 320 | 170 | 12.7 | 20 | 8 | 40 | 8 | 2 | S275 | C50/60 | 2 | 25 | 37.5 | 37.5 |
IFB | 2 | 180 | 320 | 170 | 12.7 | 20 | 8 | 120 | 8 | 2 | S235 | C30/37 | 2 | 25 | 37.5 | 42.5 |
IFB | 2 | 180 | 400 | 170 | 12.7 | 15 | 8 | 60 | 8 | 2 | S355 | C25/3 | 4 | 25 | 37.5 | 37.5 |
IFB | 2 | 180 | 320 | 170 | 12.7 | 20 | 8 | 120 | 8 | 2 | S460 | C50/60 | 4 | 20 | 40 | 45 |
IFB | 2 | 180 | 320 | 170 | 12.7 | 25 | 8 | 40 | 8 | 2 | S275 | C50/60 | 2 | 32 | 34 | 34 |
IFB | 1 | 180 | 400 | 170 | 12.7 | 20 | 8 | 120 | 8 | 2 | S235 | C30/37 | 4 | 16 | 42 | 32 |
IFB | 1 | 180 | 320 | 170 | 12.7 | 30 | 8 | 120 | 8 | 2 | S275 | C50/60 | 2 | 25 | 37.5 | 37.5 |
IFB | 1 | 180 | 320 | 170 | 12.7 | 20 | 8 | 120 | 8 | 2 | S460 | C40/50 | 2 | 25 | 37.5 | 37.5 |
IFB | 1 | 180 | 400 | 170 | 12.7 | 20 | 8 | 90 | 8 | 2 | S460 | C50/60 | 4 | 20 | 40 | 40 |
IFB | 1 | 180 | 400 | 170 | 12.7 | 20 | 8 | 90 | 8 | 2 | S235 | C50/60 | 4 | 14 | 42 | 37 |
SB | 2 | 376 | 300 | 180 | 24 | 24 | 13.5 | 40 | 12 | 3 | S460 | C40/50 | 4 | 25 | 37.5 | 47.5 |
SB | 2 | 376 | 300 | 180 | 24 | 24 | 13.5 | 40 | 12 | 3 | S355 | C25/30 | 0 | - | - | - |
SB | 2 | 376 | 300 | 180 | 24 | 24 | 13.5 | 80 | 12 | 3 | S460 | C50/60 | 4 | 32 | 34 | 44 |
SB | 2 | 376 | 300 | 180 | 24 | 24 | 13.5 | 120 | 12 | 3 | S275 | C30/37 | 4 | 25 | 37.5 | 47.5 |
SB | 2 | 376 | 300 | 180 | 24 | 24 | 13.5 | 40 | 12 | 3 | S355 | C40/50 | 4 | 20 | 40 | 40 |
SB | 1 | 376 | 300 | 180 | 24 | 24 | 13.5 | 80 | 12 | 3 | S460 | C25/30 | 2 | 32 | 34 | 44 |
SB | 1 | 376 | 300 | 180 | 24 | 24 | 13.5 | 40 | 12 | 3 | S235 | C50/60 | 2 | 25 | 37.5 | 47.5 |
SB | 1 | 376 | 300 | 180 | 24 | 24 | 13.5 | 150 | 12 | 3 | S355 | C30/37 | 2 | 20 | 40 | 50 |
SB | 2 | 301 | 310 | 200 | 39 | 39 | 21 | 40 | 8 | 1.5 | S355 | C50/60 | 4 | 25 | 37.5 | 37.5 |
SB | 2 | 301 | 310 | 200 | 39 | 39 | 21 | 40 | 8 | 1.5 | S275 | C25/30 | 2 | 25 | 37.5 | 37.5 |
SB | 2 | 301 | 310 | 200 | 39 | 39 | 21 | 40 | 8 | 1.5 | S235 | C50/60 | 4 | 32 | 34 | 39 |
SB | 2 | 301 | 310 | 200 | 39 | 39 | 21 | 60 | 8 | 1.5 | S355 | C30/37 | 2 | 16 | 42 | 42 |
SB | 2 | 301 | 310 | 200 | 39 | 39 | 21 | 40 | 8 | 1.5 | S355 | C40/50 | 4 | 25 | 37.5 | 32.5 |
SB | 2 | 301 | 310 | 200 | 39 | 39 | 21 | 80 | 8 | 1.5 | S460 | C50/60 | 4 | 25 | 37.5 | 37.5 |
SB | 1 | 301 | 310 | 200 | 39 | 39 | 21 | 70 | 8 | 1.5 | S235 | C50/60 | 2 | 32 | 34 | 34 |
SB | 1 | 301 | 310 | 200 | 39 | 39 | 21 | 100 | 8 | 1.5 | S460 | C40/50 | 4 | 20 | 40 | 40 |
SB | 1 | 301 | 310 | 200 | 39 | 39 | 21 | 40 | 8 | 1.5 | S355 | C25/30 | 2 | 25 | 37.5 | 37.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duma, D.; Zaharia, R.; Pintea, D.; Both, I.; Hanus, F. Analytical Method for the Bending Resistance of Slim Floor Beams with Asymmetric Double-T Steel Section under ISO Fire. Appl. Sci. 2022, 12, 574. https://doi.org/10.3390/app12020574
Duma D, Zaharia R, Pintea D, Both I, Hanus F. Analytical Method for the Bending Resistance of Slim Floor Beams with Asymmetric Double-T Steel Section under ISO Fire. Applied Sciences. 2022; 12(2):574. https://doi.org/10.3390/app12020574
Chicago/Turabian StyleDuma, Diana, Raul Zaharia, Dan Pintea, Ioan Both, and Francois Hanus. 2022. "Analytical Method for the Bending Resistance of Slim Floor Beams with Asymmetric Double-T Steel Section under ISO Fire" Applied Sciences 12, no. 2: 574. https://doi.org/10.3390/app12020574
APA StyleDuma, D., Zaharia, R., Pintea, D., Both, I., & Hanus, F. (2022). Analytical Method for the Bending Resistance of Slim Floor Beams with Asymmetric Double-T Steel Section under ISO Fire. Applied Sciences, 12(2), 574. https://doi.org/10.3390/app12020574