Effect of Variable Conditions of Exposure on the Physical and Mechanical Properties of Blockboards
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Design of the Experimental Conditions
2.3. Physical and Mechanical Characterisation
3. Results and Discussion
3.1. Physical Properties
3.2. Dimensional and Shape Stability
3.3. Mechanical Properties
3.4. Surface Soundness
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO—Food and Agricultural Organisation of the United Nations. Global Forest Products. Facts and Figures. 2018. Available online: https://www.fao.org/3/ca7415en/ca7415en.pdf (accessed on 21 November 2021).
- World Record Academy. Largest Blockboard Plant: Holzindustrie Schweighofer BACO in Comanesti. 2019. Available online: https://www.worldrecordacademy.org/technology/largest-blockboard-plant-holzindustrie-schweighofer-baco-in-comanesti-219299 (accessed on 22 November 2021).
- Singh, M.P.; Prakash, V.; Uday, D.N.; Sujatha, D.; Kiran, M.C. Block Board from Melia dubia. Int. J. For. Wood Sci. 2020, 7, 96–100. [Google Scholar]
- Gayda, S.; Kyico, O. The Investigation of Properties of Blockboards made of Post-Consumer Wood. Drewno 2020, 63, 77–102. [Google Scholar]
- Teixeira, D.E.; Firme de Melo, M.P. Effect of battens edge bonding in the properties of blockboards produced with Pinus sp. recycled from construction sites. Asian J. Adv. Agric. Res. 2017, 4, 1–11. [Google Scholar] [CrossRef]
- Rozins, R.; Iejavs, J.; Jakovlevs, V.; Spulle, U. The Properties of Lightweight Stabilised Blockboard Panels. Drewno 2020, 63, 103–119. [Google Scholar]
- Böhm, M.; Salem, M.Z.M.; Srba, J. Formaldehyde emission monitoring from a variety of solid wood, plywood, blockboard and flooring products manufactured for building and furnishing materials. J. Hazard. Mater. 2012, 221–222, 68–79. [Google Scholar] [CrossRef] [PubMed]
- Haixia, Y.; Xuan, M.; Liu, Y.; Chongrong, F.; Manping, X. Classifying low formaldehyde emission from blockboard by gas analysis method and desiccator method. In Proceedings of the International Forum on Energy, Environment Science and Materials (IFEESM 2015), Shenzhen, China, 25–26 September 2015; pp. 496–501. [Google Scholar]
- Belleville, B.; Segovia, C.; Pizzi, A.; Stevanovic, T.; Cloutier, A. Wood Blockboards Fabricated by Rotational Dowel Welding. J. Adhes. Sci. Technol. 2011, 25, 2745–2753. [Google Scholar] [CrossRef]
- Wang, J.; Gao, Z.; Tu, D.; He, Z.; Lin, X.; Sun, J. Dimensional Stability of Board Manufactured with Wood-based Panel Laths. Bioresources 2016, 11, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Pinati, E.; Faria, D.L.; Mendes, R.F.; Mendes, L.M.; Protásio, T.P.; Guimarães Júnior, J.B. Blockboard plywood produced from Pinus oocarpa, Castilla ulei and Acrocarpus fraxinifolius. Ciência Da Madeira 2018, 9, 199–208. [Google Scholar] [CrossRef]
- Haseli, M.; Layeghi, M.; Hosseinabadi, H.Z. Characterization of blockboard and battenboard sandwich panels from date palm waste trunks. Measurement 2018, 124, 329–337. [Google Scholar] [CrossRef]
- Nelis, P.A.; Henke, O.; Mai, C. Comparison of blockboards with core layers made of kiri (Paulownia spp.) and of spruce (Picea abies) regarding mechanical properties. Eur. J. Wood Wood Prod. 2019, 77, 323–326. [Google Scholar] [CrossRef]
- Bowyer, J.L.; Stokke, D. The effect of core block length on strength of face glued blockboard. Wood Fibre Sci. 1982, 14, 60–69. [Google Scholar]
- Nazerian, M.; Moazami, V.; Farokhpayam, S.; Gargari, R.M. Production of blockboard from small athel slats end-glued by different type of joint. Maderas Cienc. Y Tecnol. 2018, 20, 277–286. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Suchsland, O. Effect of moisture on the flexural properties of commercial oriented strandboards. Wood Fiber Sci. 1997, 29, 47–57. [Google Scholar]
- Bekhta, P.; Niemz, P. Effect of relative humidity on some physical and mechanical properties of different types of fibreboard. Eur. J. Wood Wood Prod. 2009, 67, 339–342. [Google Scholar] [CrossRef]
- Ozdemir, T.; Hiziroglu, S.; Malkocoglu, A. Influence of relative humidity on surface quality and adhesion strength of coated medium density fiberboard (MDF) panels. Mater. Des. 2009, 30, 2543–2546. [Google Scholar] [CrossRef]
- Grinins, J.; Biziks, V.; Marais, B.N.; Rizikovs, J.; Militz, H. Weathering Stability and Durability of Birch Plywood Modified with Different Molecular Weight Phenol-Formaldehyde Oligomers. Polymers 2021, 13, 175. [Google Scholar] [CrossRef] [PubMed]
- European Committee for Standardization. EN 326-1: Wood-Based Panels-Sampling, Cutting and Inspection Part 1: Sampling and Cutting of Test Pieces and Expression of Test Results; European Committee for Standardization: Brussels, Belgium, 1996. [Google Scholar]
- European Committee for Standardization. EN 322. Wood-Based Panels—Determination of Moisture Content; European Committee for Standardization: Brussels, Belgium, 1993. [Google Scholar]
- European Committee for Standardization. EN 323. Wood-Based Panels—Determination of Density; British Standards 1993; European Committee for Standardization: Brussels, Belgium, 1993. [Google Scholar]
- European Committee for Standardization. EN 318. Wood-Based Panels—Determination of Dimensional Changes Associated with Changes in Relative Humidity; European Committee for Standardization: Brussels, Belgium, 2002. [Google Scholar]
- European Committee for Standardization. EN 310. Wood-Based Panels. Determination of Modulus of Elasticity in Bending and of Bending Strength; European Committee for Standardization: Brussels, Belgium, 1993. [Google Scholar]
- European Committee for Standardization. EN 311. Wood-Based Panels-Surface Soundness–Test Method.; European Committee for Standardization: Brussels, Belgium, 2002. [Google Scholar]
- Hameury, S. Moisture bufering capacity of heavy timber structures directly exposed to an indoor climate: A numerical study. Build Environ. 2005, 40, 1400–1412. [Google Scholar] [CrossRef]
- Böhm, M.; Kobetičová, K.; Procházka, J.; Černý, R. Moisture sorption and thickness swelling of wood-based materials intended for structural use in humid conditions and bonded with melamine resin. In Proceedings of the XXV International Conference and Meeting of Departments, CONSTRUMAT 2019, IOP Conf. Series: Materials Science and Engineering 549, Zuberec, Slovakia, 29–31 May 2019; pp. 1–8. [Google Scholar]
- Cai, Z.; Dickens, J.R. Wood composite warping: Modeling and simulation. Wood Fiber Sci. 2004, 36, 174–185. [Google Scholar]
- Hrazsky, J.; Kral, P. Analysis of Causes of Warping the Plywood Sheets; Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis: Brno, Czech Republic, 2011; Volume LIX, pp. 59–71. [Google Scholar]
- Tang, J.-L.; Hwang, G.-S.; Chen, S.-S.; Huang, Y.; Lee, M.-C.; Tsou, C.-T.; Shiah, T.-C. Applicability of plantation wood for blockboard and fancy plywood making. Taiwan J. For. Sci. 2001, 16, 237–247. [Google Scholar]
- Laufenberg, T.; Ayrilmis, N.; White, R. Fire and bending properties of blockboard with fire retardant treated veneers. Holz Als Roh- Und Werkst. 2006, 64, 137–143. [Google Scholar] [CrossRef]
- Ganev, S.; Gendron, G.; Cloutier, A.; Beauregard, R. Mechanical properties of MDF as function of density and moisture content. Wood Fiber Sci. 2005, 37, 314–326. [Google Scholar]
- Aydin, I.; Colakoglu, G.; Colak, S.; Demirkir, C. Effects of moisture content on formaldehyde emission and mechanical properties of plywood. Build. Environ. 2006, 41, 1311–1316. [Google Scholar] [CrossRef]
- Cheng, Q.; Zhou, C.; Jiang, W.; Zhao, X.; Via, B.K.; Wan, H. Mechanical and Physical Properties of Oriented Strand Board Exposed to High Temperature and Relative Humidity and Coupled with Near-Infrared Reflectance Modeling. For. Prod. J. 2018, 68, 78–85. [Google Scholar] [CrossRef]
- Sala, C.M.; Robles, E.; Gumowska, A.; Wronka, A.; Kowaluk, G. Influence of moisture content on the mechanical properties of selected wood-based composites. BioResources 2020, 15, 5503–5513. [Google Scholar] [CrossRef]
- Sonae Arauco. Catalogue for Sonae Arauco’s Construction and Furniture Product 2020. Available online: https://www.sonaearauco.com/en/construction-and-furniture-products---osb/osb-3/downloads/file344_gb.pdf (accessed on 11 December 2021).
- Sala, C.M.; Robles, E.; Kowaluk, G. Influence of Adding Offcuts and Trims with a Recycling Approach on the Properties of High-Density Fibrous Composites. Polymers 2020, 12, 1327. [Google Scholar] [CrossRef] [PubMed]
Environment Exposure | Temperature Range, °C | Relative Humidity of Air (RC), % | Test Duration, Months |
---|---|---|---|
Kitchen | 18–25 | 25–64 | 3 |
Bathroom | 18–25 | 43–88 | 3 |
Climatic chamber | 20–25 | 50–90 * | Cyclic test of 5 days, repeated 12 times in 3 months |
Environment Exposure | Kitchen | Bathroom | Climatic Chamber |
---|---|---|---|
V structures | K-V | Ba-V | CC-V |
HDF structures | K-HDF | Ba-HDF | CC-HDF |
K-V | K-HDF | |||||
---|---|---|---|---|---|---|
t, (mm) | w, (g) | MC, (%) | t, (mm) | w, (g) | MC, (%) | |
Before testing | 18.11 (0.09) | 971 (3.5) | 8.07 (0.3) | 17.68 (0.09) | 1293 (2.5) | 6.7 (0.02) |
1 month | 18.13 (0.06) | 986 (1.2) | 8.50 (0.4) | 17.75 (0.11) | 1315 (3.9) | 7.1 (0.4) |
2 month | 18.15 (0.06) | 992 (4.4) | 9.20 (0.4) | 17.70 (0.09) | 1320 (5.3) | 7.7 (0.3) |
3 month | 18.25 (0.09) | 988 (3.9) | 9.6 (0.5) | 17.82 (0.11) | 1342 (6.0) | 9.9 (0.9) |
Ba-V | Ba-HDF | |||||
---|---|---|---|---|---|---|
t, (mm) | w, (g) | MC, (%) | t, (mm) | w, (g) | MC, (%) | |
Before testing | 18.12 (0.05) | 938 (1.6) | 8.35 (0.2) | 17.68 (0.09) | 1305 (2.5) | 6.98 (0.02) |
1 month | 18.21 (0.08) | 959 (2.2) | 8.46 (0.5) | 17.81 (0.11) | 1331 (3.9) | 7.37 (0.4) |
2 month | 18.18 (0.07) | 955 (2.5) | 8.83 (0.3) | 17.80 (0.09) | 1328 (5.3) | 7.9 (0.3) |
3 month | 18.35 (0.09) | 963 (5.7) | 9.95 (0.4) | 17.95 (0.11) | 1321 (6.0) | 10.6 (0.9) |
CC-V | CC-HDF | |||||
---|---|---|---|---|---|---|
t, (mm) | w, (g) | MC, (%) | t, (mm) | w, (g) | MC, (%) | |
Before testing | 18.16 (0.06) | 948 (3.5) | 8.05 (0.5) | 17.72 (0.07) | 1153 (6.5) | 6.54 (0.8) |
15 days | 18.47 (0.09) | 986 (6.4) | 9.23 (0.4) | 18.25 (0.1) | 1211 (8.4) | 8.83 (0.8) |
1 month | 18.49 (0.08) | 994 (8.2) | 10.65 (0.3) | 18.37 (0.15) | 1226 (10.9) | 10.5 (1.0) |
2 months | 18.52 (0.07) | 998 (8.9) | 11.01 (0.9) | 18.40 (0.14) | 1232 (10.9) | 11.06 (1.1) |
3 months | 18.55 (0.09) | 984 (9.2) | 11.37 (0.8) | 18.48 (0.12) | 1211 (8.9) | 11.88 (0.9) |
Kitchen | Bathroom | Climatic Chamber | ||||
---|---|---|---|---|---|---|
Time of Exposure | MOE, [N/mm2] | MOR, [N/mm2] | MOE, [N/mm2] | MOR, [N/mm2] | MOE, [N/mm2] | MOR, [N/mm2] |
Structure 1, with veneer face sheets | ||||||
Before exposure | 6820 | 44.1 | 7120 | 43.6 | 7133 | 48.2 |
(620) | (5.5) | (450) | (2.1) | (550) | (5.4) | |
1 month | 6750 | 42.2 | 6820 | 41.8 | 6830 | 45.6 |
(570) | (4.2) | (660) | (2.7) | (733) | (4.5) | |
2 months | 6440 | 37.4 | 6680 | 38.6 | 6223 | 41.6 |
(540) | (3.9) | (450) | (3.2) | (426) | (5.7) | |
3 months | 6230 | 36.5 | 6470 | 32.1 | 5665 | 32.8 |
(230) | (2.2) | (340) | (4.2) | (399) | (1.9) | |
Structure 2, with HDF face sheets | ||||||
Before exposure | 6380 | 48.3 | 6860 | 49.2 | 6630 | 44.3 |
(510) | (5.3) | (678) | (3.6) | (613) | (3.7) | |
1 month | 5950 | 46.8 | 6530 | 45.5 | 5783 | 40.2 |
(420) | (4.5) | (546) | (1.4) | (733) | (4.3) | |
2 months | 5746 | 43.5 | 6080 | 38.4 | 5365 | 36.4 |
(254) | (5.6) | (453) | (2.7) | (486) | (4.8) | |
3 months | 5480 | 38.2 | 5746 | 34.2 | 4700 | 28.7 |
(240) | (3.6) | (380) | (2.5) | (385) | (2.1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeleniuc, O.; Coșereanu, C. Effect of Variable Conditions of Exposure on the Physical and Mechanical Properties of Blockboards. Appl. Sci. 2022, 12, 609. https://doi.org/10.3390/app12020609
Zeleniuc O, Coșereanu C. Effect of Variable Conditions of Exposure on the Physical and Mechanical Properties of Blockboards. Applied Sciences. 2022; 12(2):609. https://doi.org/10.3390/app12020609
Chicago/Turabian StyleZeleniuc, Octavia, and Camelia Coșereanu. 2022. "Effect of Variable Conditions of Exposure on the Physical and Mechanical Properties of Blockboards" Applied Sciences 12, no. 2: 609. https://doi.org/10.3390/app12020609
APA StyleZeleniuc, O., & Coșereanu, C. (2022). Effect of Variable Conditions of Exposure on the Physical and Mechanical Properties of Blockboards. Applied Sciences, 12(2), 609. https://doi.org/10.3390/app12020609