Factors Influencing Changes of the Initial Stable Water Isotopes Composition in the Seasonal Snowpack of the South of Western Siberia, Russia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling
- (1)
- Samples of snow event-based precipitation during the cold period were collected immediately after their fallout on experimental site III, located on the roof of the building of the Institute for Water and Environmental Problems of the Siberian Branch of the Russian Academy of Sciences (IWEP SB RAS) at the height of 25 m from the earth’s surface (Figure 1c). Snowfalls were collected in internal removable high-density polyethylene bags attached inside the barrel, equipped with blowing protection (Supplementary, Figure S1a). A total of 97 event-based snowfalls samples were collected during two cold periods.
- (2)
- The bulk snowpack samples were taken during the period of maximum snow accumulation (at the beginning of March) at the sites of the network (Figure 1b). All sites were located in a field on a flat territory free from trees and bushes. Sampling was performed using the envelope method (10 × 10 m). The composite sample consisted of 5 snowpits collected with a plastic pipe (4.5 cm inner diameter). In March 2020, the bottom layers of snowpack samples (thickness ~5–7 cm) were taken in addition to the bulk ones. In total, 111 snow samples were taken and analyzed.
- (3)
- The following experiments were carried out on three experimental sites (Figure 1c, sites I, II, III) in 2019–2021:
2.3. Analytical Methods
3. Results
3.1. Isotopic Composition of Water in the Initial Event-Based Snow Precipitation
3.2. Water Isotopic Composition of Snowpack
3.3. Layer-by-Layer Analysis of Snowpack, Data of Experiments
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegenthaler, U.; Oeschger, H. Correlation of O-18 in precipitation with temperature and altitude. Nature 1980, 285, 314–317. [Google Scholar] [CrossRef]
- Holdworth, G.; Fogarasi, S.; Krouse, H.R. Variation of the stable isotopes of water with altitude in the Saint Elias Mountains of Canada. J. Geophys. Res. 1991, 96, 7483–7494. [Google Scholar] [CrossRef]
- Ciais, P.; Jouzel, J. Deuterium and oxygen-18 in precipitation: Isotopic model, including mixed cloud processes. J. Geophys. Res. 1994, 99, 6793–16803. [Google Scholar] [CrossRef]
- Clark, I.D.; Fritz, P. Environmental Isotopes in Hydrogeology; CRC Press/Lewis Publishers: Boca Raton, NY, USA, 1997. [Google Scholar] [CrossRef]
- Schotterer, U.; Gäggeler, H.W.; Fröhlich, K.; Sandjordj, S.; Stichler, W. Isotope records from Mongolian and alpine ice cores as climate indicator. Clim. Chang. 1997, 36, 519–530. [Google Scholar] [CrossRef]
- Poage, M.A.; Chamberlain, C.P. Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters: Considerations for studies of paleoelevation change. Am. J. Sci. 2001, 31, 1–15. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Pang, H.; Theakstone, W.H.; Zhang, D.; Lu, A.; Song, B.; Yuan, L.; Ning, B. Spatial and temporal variation of oxygen isotopes in snowpacks and glacial runoff in different types of glacial area in western China. Ann. Glaciol. 2006, 43, 269–274. [Google Scholar] [CrossRef] [Green Version]
- Koeniger, P.; Hubbart, J.A.; Link, T.; Marshall, J.D. Isotopic variation of snow cover and streamflow in response to changes in canopy structure in a snow-dominated mountain catchment. Hydrol. Process. 2008, 22, 557–566. [Google Scholar] [CrossRef]
- Berghuijs, W.R.; Woods, R.A.; Hrachowitz, M. A precipitation shift from snow towards rain leads to a decrease in streamflow. Nat. Clim. Chang. 2014, 4, 583–586. [Google Scholar] [CrossRef] [Green Version]
- Bowen, G.J.; Good, S.P. Incorporating water isoscapes in hydrological and water resource investigations. Wiley Interdiscip. Rev. Water 2015, 2, 107–119. [Google Scholar] [CrossRef]
- Kozachek, A.; Mikhalenko, V.; Masson-Delmotte, V.; Ekaykin, A.; Ginot, P.; Kutuzov, S.; Legrand, M.; Lipenkov, V.; Preunkert, S. Large-scale drivers of Caucasus climate variability in meteorological records and Mt Elbrus ice cores. Clim. Past 2017, 13, 473–489. [Google Scholar] [CrossRef] [Green Version]
- Allen, S.T.; Keim, R.F.; Barnard, H.R.; McDonnell, J.J.; Brooks, J.R. The role of stable isotopes in understanding rainfall interception processes: A review. Wiley Interdiscip. Rev. Water 2017, 4, e1187. [Google Scholar] [CrossRef]
- Delavau, C.J.; Stadnyk, T.; Holmes, T. Examining the impacts of precipitation isotope input (δ18Oppt) on distributed, tracer-aided hydrological modelling. Hydrol. Earth Syst. Sci. 2017, 21, 2595–2614. [Google Scholar] [CrossRef] [Green Version]
- Vasil’chuk, Y.; Chizhova, J.; Frolova, N.; Budantseva, N.; Kireeva, M.; Oleynikov, A.; Tokarev, I.; Rets, E.; Vasil’chuk, A. A variation of stable isotope composition of snow with altitude on the Elbrus mountain, Central Caucasus. Geogr. Environ. Sustain. 2020, 13, 172–182. [Google Scholar] [CrossRef]
- Bender, E.; Lehning, M.; Fiddes, J. Changes in Climatology, Snow Cover, and Ground Temperatures at High Alpine Locations. Front. Earth Sci. 2020, 8, 100. [Google Scholar] [CrossRef]
- Craig, H. Isotopic Variations in Meteoric Waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef] [PubMed]
- Welker, J.M. Isotopic (δ 18O) characteristics of weekly precipitation collected across the USA: An initial analysis with application to water source studies. Hydrol. Processes 2000, 14, 1449–1464. [Google Scholar] [CrossRef]
- Froehlich, K.; Gibson, J.J.; Aggarwal, P.K. Deuterium Excess in Precipitation and Its Climatological Significance; IAEA: Vienna, Austria, 2002; Volume 34, pp. 54–66. [Google Scholar]
- Liu, Z.; Tian, L.; Yao, T.; Yu, W. Seasonal deuterium excess in Nagqu precipitation: Influence of moisture transport and recycling in the middle of Tibetan Plateau. Environ. Geol. 2008, 55, 1501–1506. [Google Scholar] [CrossRef]
- Ma, Q.; Zhang, M.; Wang, S.; Wang, Q.; Liu, W.; Li, F.; Chen, F. An investigation of moisture sources and secondary evaporation in Lanzhou, Northwest China. Environ. Earth Sci. 2014, 71, 3375–3385. [Google Scholar] [CrossRef]
- Araguas-Araguas, L.; Froehlich, K.; Rozanski, K. Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture. Hydrol. Processes 2000, 14, 1341–1355. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, X.; Li, X.; Li, G.; Huang, Y. Seasonal variations of deuterium and oxygen-18 isotopes and their response to moisture source for precipitation events in the subtropical monsoon region. Hydrol. Processes 2015, 29, 90–102. [Google Scholar] [CrossRef]
- Papina, T.S.; Malygina, N.S.; Eirikh, A.N.; Galanin, A.A.; Zheleznyak, M.N. Isotopic composition and sources of atmospheric precipitation in Central Yakutia. Earth’s Cryosphere 2017, 2, 60–69. [Google Scholar] [CrossRef] [Green Version]
- Malygina, N.S.; Eyrikh, A.N.; Agbalyan, E.V.; Papina, T.S. Isotopic composition and source regions of winter precipitation in the Nadym Lowland Led i Sneg. Ice Snow 2020, 60, 98–108. (In Russian) [Google Scholar] [CrossRef]
- Papina, T.S.; Eirikh, A.N.; Malygina, N.S.; Eyrikh, S.S.; Ostanin, O.V.; Yashina, T.V. Microelement and stable isotopic composition of snowpack in the Katunsky Biosphere Reserve (Altai Republic). Led i Sneg. Ice Snow 2018, 58, 41–55. (In Russian) [Google Scholar] [CrossRef] [Green Version]
- Colbeck, S.C. An overview of seasonal snow metamorphism. Rev. Geophys. 1982, 20, 45–61. [Google Scholar] [CrossRef]
- Friedman, I.; Benson, C.; Gleason, J. Isotopic changes during snow metamorphism. In Stable Isotope Geochemistry: A Tribute to Samuel Epstein; Taylor, H.P., O’Neil, J.R., Kaplan, I.R., Eds.; The Geochemical Society: San Antonio, TX, USA, 1991; pp. 211–221. [Google Scholar]
- Taylor, S.; Feng, X.; Kirchner, J.W.; Osterhuber, R.; Klaue, B.; Renshaw, C.E. Isotopic evolution of a seasonal snowpack and its melt. Water Resour. Res. 2001, 37, 759–769. [Google Scholar] [CrossRef] [Green Version]
- Earman, S.; Campbell, A.R.; Phillips, F.M.; Newman, B.D. Isotopic exchange between snow and atmospheric water vapor: Estimation of the snowmelt component of groundwater recharge in the southwestern United States. J. Geophys. Res. Atmos. 2006, 111, D09302. [Google Scholar] [CrossRef]
- Sokratov, S.A.; Golubev, V.N. Snow isotopic content change by sublimation. J. Glaciol. 2009, 55, 823–828. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Feng, X.; Faiia, A.M.; Posmentier, E.S.; Kirchner, J.W.; Osterhuber, R.; Taylor, S. Isotopic evolution of a seasonal snow cover and its melt by isotopic exchange between liquid water and ice. Chem. Geol. 2010, 270, 126–134. [Google Scholar] [CrossRef]
- Golubev, V.N.; Konishchev, V.N.; Sokratov, S.A.; Grebennikov, P.B. Influence of sublimation in a seasonal snow cover on formation of an isotopic content of wedge ice. Kriosf. Zemli. Earth’s Cryosphere 2001, 3, 71–77. (In Russian) [Google Scholar]
- Beria, H.; Larsen, J.R.; Ceperley, N.C.; Michelon, A.; Vennemann, T.; Schaefli, B. Understanding snow hydrological processes through the lens of stable water isotopes. Wiley Interdiscip. Rev. Water 2018, 5, e1311. [Google Scholar] [CrossRef] [Green Version]
- Chizhova, Y.N.; Vasilchuk, J.Y.; Yoshikava, K.; Budantseva, N.A.; Golovanov, D.L.; Sorokina, O.I.; Stanilovskaya, Y.V.; Vasilchuk, Y.K. Isotopic composition of the snow cover of the Baikal region. Ice Snow 2015, 3, 55–66. [Google Scholar] [CrossRef] [Green Version]
- Vasilchuk, Y.K.; Shevchenko, V.P.; Lisitsyn, A.P.; Budantseva, N.A.; Vorobiev, S.N.; Kirpotin, S.N.; Kritskov, I.V.; Manasypov, R.M.; Pokrovsky, O.S.; Chizhova, J.N. Oxygen-isotope and deuterium composition of the snow cover of Western Siberia on the profile from Tomsk to the Gulf of Ob. Dokl. Akad. Nauk. 2016, 471, 1284–1287. (In Russian) [Google Scholar] [CrossRef]
- Wever, N.; Comola, F.; Bavay, M.; Lehning, M. Simulating the influence of snow surface processes on soil moisture dynamics and streamflow generation in an alpine catchment. Hydrol. Earth Syst. Sci. 2017, 21, 4053–4071. [Google Scholar] [CrossRef] [Green Version]
- Ren, W.; Yao, T.; Yang, X.; Joswiak, D.R. Implications of variations in δ18O and δD in precipitation at Madoi in the eastern Tibetan Plateau. Quat. Int. 2013, 313, 56–61. [Google Scholar] [CrossRef]
- Motoyama, H.; Hirasawa, N.; Satow, K.; Watanabe, O. Seasonal variations in oxygen isotope ratios of daily collected precipitation and wind drift samples and in the final snow cover at Dome Fuji Station, Antarctica. J. Geophys. Res. Atmos. 2005, 110, D11106. [Google Scholar] [CrossRef] [Green Version]
- Eiriksson, D.; Whitson, M.; Luce, C.H.; Marshall, H.P.; Bradford, J.; Benner, S.G.; McNamara, J.P. An evaluation of the hydrologic relevance of lateral flow in snow at hillslope and catchment scales. Hydrol. Processes 2013, 27, 640–654. [Google Scholar] [CrossRef]
- Evans, S.L.; Flores, A.N.; Heilig, A.; Kohn, M.J.; Marshall, H.-P.; McNamara, J.P. Isotopic evidence for lateral flow and diffusive transport, but not sublimation, in a sloped seasonal snowpack, Idaho, USA. Geophys. Res. Lett. 2016, 43, 3298–3306. [Google Scholar] [CrossRef] [Green Version]
- Biederman, J.A.; Brooks, P.D.; Harpold, A.A.; Gochis, D.J.; Gutmann, E.; Reed, D.E.; Pendall, E.; Ewers, B.E. Multiscale observations of snow accumulation and peak snowpack following widespread, insect-induced lodgepole pine mortality. Ecohydrology 2014, 7, 150–162. [Google Scholar] [CrossRef]
- Biederman, J.A.; Harpold, A.A.; Gochis, D.J.; Ewers, B.E.; Reed, D.E.; Papuga, S.A.; Brooks, P.D. Increased evaporation following widespread tree mortality limits streamflow response. Water Resour. Res. 2014, 50, 5395–5409. [Google Scholar] [CrossRef]
- Gustafson, J.R.; Brooks, P.D.; Molotch, N.P.; Veatch, W.C. Estimating snow sublimation using natural chemical and isotopic tracers across a gradient of solar radiation. Water Resour. Res. 2010, 46, W12511. [Google Scholar] [CrossRef]
- Mott, R.; Schirmer, M.; Bavay, M.; Grünewald, T.; Lehning, M. Understanding snow-transport processes shaping the mountain snow-cover. Cryosphere 2010, 4, 545–559. [Google Scholar] [CrossRef] [Green Version]
- Comola, F.; Kok, J.F.; Gaume, J.; Paterna, E.; Lehning, M. Fragmentation of wind-blown snow crystals. Geophys. Res. Lett. 2017, 44, 4195–4203. [Google Scholar] [CrossRef] [Green Version]
- Essery, R.; Li, L.; Pomeroy, J. A distributed model of blowing snow over complex terrain. Hydrol. Processes 1999, 13, 2423–2438. [Google Scholar] [CrossRef]
- State Report. On the State and Environmental Protection in the Altai Territory in 2019; Cyberleninka: Barnaul, Russia, 2020; p. 200. (In Russian) [Google Scholar]
- Kharlamova, N.; Kazartseva, O. Distribution of snow storage in the Altai territory. Bull. Sci. Pract. 2017, 4, 162–169. (In Russian) [Google Scholar]
- Belyaev, V.I.; Sokolova, L.V. The evaluation of the agroclimatic potential of the Altai region. Vestn. Altayskogo Gos. Agrar. Univ. 2020, 12, 59–64. [Google Scholar]
- Gefke, I.V.; Aleshina, N.I. Physical and geographical characteristics upper Obi basin. Int. J. Humanit. Nat. Sci. 2019, 11–12, 61–63. [Google Scholar] [CrossRef]
- Nikolchenko, Y.N.; Sukhova, M.G. Wind energy potential of Altai territory as component of sustainable development in region. Bull. Tambov Univ. 2013, 18, 663–667. [Google Scholar]
- Kharlamova, N.F.; Kozlova, D.S. Statistical Characteristics of Atmospheric Precipitation Regime in the Altai Region. Izvestiya AltGU—News Altai State Univ. 2014, 83, 145–150. (In Russian) [Google Scholar] [CrossRef]
- Filimonov, V.Y.; Baldakov, N.A.; Kudishin, A.V.; Lovtskaya, O.V. The correlation analysis of seasonal runoff and snow reserves in large tributaries of the upper Ob. Interexpo Geo-Siberia 2018, 1, 284–294. (In Russian) [Google Scholar]
- Sturm, M.; Holmgren, J.; Liston, G.E. A seasonal snow cover classification-system for local to global applications. J. Clim. 1995, 8, 1261–1283. [Google Scholar] [CrossRef] [Green Version]
- Maksimova, N.B.; Arnaut, D.V.; Morkovkin, G.G. The dynamics of moisture availability in the agro-climatic areas of the Altai region. Bull. Altai State Agrar. Univ. 2016, 5, 77–81. (In Russian) [Google Scholar]
- Report. On the State and Environmental Protection of the City District—The City of Barnaul in the Altai Territory in 2018; Cyberleninka: Barnaul, Russia, 2019; p. 141. (In Russian) [Google Scholar]
- Dansgaard, W. Stable isotopes in precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- Taylor Jonh, R. An Introduction to Error Analysis, 2nd ed.; University Science Books: Sausalito, CA, USA, 1997; p. 349. [Google Scholar]
- Winograd, I.J.; Riggs, A.C.; Coplen, T.B. The relative contributions of summer and cool-season precipitation to groundwater recharge, Spring Mountains, Nevada, USA. Hydrogeol. J. 1998, 6, 77–93. [Google Scholar] [CrossRef]
- Unnikrishna, P.V.; McDonnell, J.J.; Kendall, C. Isotope variations in a Sierra Nevada snowpack and their relation to meltwater. J. Hydrol. 2002, 260, 38–57. [Google Scholar] [CrossRef]
- Stichler, W.; Schotterer, U.; Fröhlich, K.; Ginot, P.; Kull, C.; Gäggeler, H.; Pouyaud, B. Influence of sublimation on stable isotope records recovered from high-altitude glaciers in the tropical Andes. J. Geophys. Res.—Atmos. 2001, 106, 22613–22620. [Google Scholar] [CrossRef]
- Schlaepfer, D.R.; Ewers, B.E.; Shuman, B.N.; Williams, D.G.; Frank, J.M.; Massman, W.J.; Lauenroth, W.K. Terrestrial water fluxes dominated by transpiration: Comment. Ecosphere 2014, 5, 61. [Google Scholar] [CrossRef]
δ18O, ‰ | δD, ‰ | D-Excess, ‰ | ||||
---|---|---|---|---|---|---|
1 | 2 | 1 | 2 | 1 | 2 | |
Snowpack, n = 14 (sampling points 1–14, Figure 1b) | ||||||
max | −18.6 | −18.7 | −144.6 | −141.5 | 6.4 | 8.4 |
min | −21.9 | −23.2 | −170.3 | −179.7 | 2.2 | 4.2 |
mean 1 | −20.0 | −20.4 | −155 | −157 | 4.7 | 6.4 |
SDOM 2 | 0.6 | 0.7 | 4.3 | 5.6 | 0.6 | 0.8 |
Atmospheric precipitation (n = 47 for 2019–2020; n = 50 for 2020–2021) | ||||||
max | −12.0 | −11.6 | −90.7 | −79.8 | 11.3 | 17.2 |
min | −30.3 | −35.6 | −235.4 | −277.3 | −6.1 | −9.5 |
mean 3 | −19.2 | −21.5 | −147.4 | −166.6 | 5.9 | 5.7 |
SDOM 2 | 0.1 | 0.1 | 0.4 | 0.4 | 0.8 | 0.8 |
Depth, mm w. Eq. | δ18O, ‰ | δD, ‰ | D-Excess, ‰ | |||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | |
Frozen soil (n = 8): sampling points 1 2, 4, 5, 6, 7, 9, 10, 13 | ||||||||
max | 155 | 20 | −19.1 | −17.7 | −147.2 | −134.6 | 6.4 | 9.8 |
min | 78 | 14 | −21.9 | −20.8 | −170.3 | −158.0 | 2.4 | 4.4 |
mean 2 | 129 | 18 | −20.3 | −19.5 | −158 | −149 | 5 | 7 |
SDOM 3 | 0.6 | 0.7 | 4.3 | 5.9 | 1.0 | 1.1 | ||
No soil freezing (n = 6): sampling points 1 1, 3, 8, 11, 12, 14 | ||||||||
max | 180 | 23 | −18.6 | −14.1 | −144.6 | −113.0 | 5.8 | 3.5 |
min | 134 | 17 | −21.7 | −16.6 | −168.5 | −130.3 | 3.4 | -1.9 |
mean 2 | 162 | 21 | −20.0 | −15.5 | −155 | −122 | 5 | 1 |
SDOM 3 | 0.8 | 0.9 | 7.0 | 5.3 | 0.7 | 1.6 | ||
Atmospheric precipitation (snow n = 47; rain n = 12) | ||||||||
snow 4 | 150 | 33 | −19.2 | −17.8 | −147.4 | −133.5 | 6 | 9 |
rain 5 | 48 | −10.9 | −88.9 | −2.1 | ||||
SDOM 3 | 0.1 | 0.1 | 0.4 | 0.4 | 0.8 | 0.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papina, T.; Eirikh, A.; Noskova, T. Factors Influencing Changes of the Initial Stable Water Isotopes Composition in the Seasonal Snowpack of the South of Western Siberia, Russia. Appl. Sci. 2022, 12, 625. https://doi.org/10.3390/app12020625
Papina T, Eirikh A, Noskova T. Factors Influencing Changes of the Initial Stable Water Isotopes Composition in the Seasonal Snowpack of the South of Western Siberia, Russia. Applied Sciences. 2022; 12(2):625. https://doi.org/10.3390/app12020625
Chicago/Turabian StylePapina, Tatyana, Alla Eirikh, and Tatiana Noskova. 2022. "Factors Influencing Changes of the Initial Stable Water Isotopes Composition in the Seasonal Snowpack of the South of Western Siberia, Russia" Applied Sciences 12, no. 2: 625. https://doi.org/10.3390/app12020625
APA StylePapina, T., Eirikh, A., & Noskova, T. (2022). Factors Influencing Changes of the Initial Stable Water Isotopes Composition in the Seasonal Snowpack of the South of Western Siberia, Russia. Applied Sciences, 12(2), 625. https://doi.org/10.3390/app12020625