Leakage Current Mitigation of Photovoltaic System Using Optimized Predictive Control for Improved Efficiency
Abstract
:1. Introduction
2. Modified Topology and Control Scheme
3. Modelling and Optimization
3.1. Current Tracking
3.2. Capacitor Voltage Balancing
3.3. Leakage Current Minimization
3.4. Weighting Factor and Normalization
4. Simulation Model and Results
4.1. Model Description of the HMLI
4.2. Simulation Results
4.3. Dynamic Behaviour
4.4. Model Description of Grid Connected HMLI
5. Experimental Validation
6. Comparison Results
Comparison in Terms of Leakage Current
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Benner, J.P.; Kazmerski, L. Photovoltaics gaining greater visibility. IEEE Spectr. 1999, 29, 34–42. [Google Scholar] [CrossRef]
- Haeberlin, H. Evolution of inverters for grid connected PV-systems from 1989 to 2000. In Proceedings of the 17th European Photovoltaic Solar Energy Conference, Munich, Germany, 22–26 October 2001; pp. 426–430. [Google Scholar]
- Alsadi, S.; Khatib, T. Photovoltaic Power Systems Optimization Research Status: A Review of Criteria, Constrains, Models, Techniques, and Software Tools. Appl. Sci. 2018, 8, 1761. [Google Scholar] [CrossRef] [Green Version]
- Jayawardena, K.D.G.I.; Rozanski, L.J.; Mills, C.A.; Beliatis, M.J.; Nismy, N.A.; Silva, S.R.P. ‘Inorganics-in-Organics’: Recent developments and outlook for 4G polymer solar cells. Nanoscale 2013, 5, 8411–8427. [Google Scholar] [CrossRef] [Green Version]
- Sampaio, P.G.V.; González, M.O.A. Photovoltaic solar energy: Conceptual framework. Renew. Sustain. Energy Rev. 2017, 74, 590–601. [Google Scholar] [CrossRef]
- Xakalashe, B.S.; Tangstad, M. Silicon processing: From quartz to crystalline silicon solar cells. S. Afr. Pyrometallurgy 2011, 1, 83–100. [Google Scholar]
- Szweda, R. Gallium Arsenide. In A Market and Technology Overview 1999–2004, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2000; ISBN 978-1-85617-364-3. [Google Scholar]
- Izu, M.; Ovshinsky, S.R.; Deng, X.; Krisko, A.; Ovshinsky, H.C.; Narasimhan, K.L.; Young, R. Continuous roll-to-roll amorphous silicon photovoltaic manufacturing technology. AIP Conf. Proc. 1994, 306, 198–218. [Google Scholar]
- Gong, J.; Liang, J.; Sumathy, K. Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials. Renew. Sustain. Energy Rev. 2012, 16, 5848–5860. [Google Scholar] [CrossRef]
- Díez-Pascual, A.M.; Luceño Sanchez, J.A.; Peña Capilla, R.; García Díaz, P. Recent Developments in Graphene/Polymer Nanocomposites for Application in Polymer Solar Cells. Polymers 2018, 10, 217. [Google Scholar] [CrossRef] [Green Version]
- Marinova, N.; Valero, S.; Delgado, J.L. Organic and perovskite solar cells: Working principles, materials and interfaces. J. Colloid Interface Sci. 2017, 488, 373–389. [Google Scholar] [CrossRef]
- Kjaer, S.B.; Pedersen, J.K.; Blaabjerg, F. A review of single-phase grid-connected inverters for photovoltaic modules. IEEE Trans. Ind. Appl. 2005, 41, 1292–1306. [Google Scholar] [CrossRef]
- VDE-AR-N 4105: Power Generation Systems Connected to the Low-Voltage Distribution Network—Technical Minimum Requirements for the Connection to and Parallel Operation with Low-Voltage Distribution Networks. DIN_VDE Normo. August 2011. Available online: https://www.vde-verlag.de/standards/0105029/vde-ar-n-4105-anwendungsregel-2011-08.html (accessed on 1 November 2018).
- Yu, W.; Lai, J.S.; Qian, H.; Hutchens, C. High-efficiency MOSFET inverter with H6-type configuration for photovoltaic non isolated AC module applications. IEEE Trans. Power Electron. 2011, 26, 1253–1260. [Google Scholar] [CrossRef]
- Heribert, S.; Christoph, S.; Jurgen, K. Inverter for Transforming a DC Voltage into an AC Current or an AC Voltage. Europe Patent 1,369,985 (A2), 2 December 2009. [Google Scholar]
- Tan, K.S.F.; Rahim, N.A.; Hew, W.P.; Che, H.S. Modulation techniques to reduce leakage current in three-phase transformerless H7 photovoltaic inverter. IEEE Trans. Ind. Electron. 2015, 62, 322–331. [Google Scholar]
- Rodriguez, J.; Lai, J.S.; Peng, F.Z. Multilevel Inverters: Survey of Topologies, Controls and Applications. IEEE Trans. Ind. Appl. 2002, 49, 724–738. [Google Scholar] [CrossRef] [Green Version]
- Lai, J.S.; Peng, F.Z. Multilevel Converters-A new Breed of Power Converters. IEEE Trans. Ind. Appl. 1996, 32, 509–517. [Google Scholar]
- Nabae, A.; Takahashi, I.; Akagi, H. A New Neutral-point Clamped PWM inverter. IEEE Trans. Ind. Appl. 1981, 17, 518–523. [Google Scholar] [CrossRef]
- Peng, F.Z.; Lai, J.S. Multilevel Cascade Voltage-Source Inverter with Separate DC Source. U.S. Patent 5,642,275, 24 June 1997. [Google Scholar]
- Guerriero, P.; Coppola, M.; Di Napoli, F.; Brando, G.; Dannier, A.; Iannuzzi, D.; Daliento, S. Three-Phase PV CHB Inverter for a Distributed Power Generation System. Appl. Sci. 2016, 6, 287. [Google Scholar] [CrossRef]
- Lai, R.; Maillet, Y.; Wang, F.; Wang, S.; Burgos, R.; Boroyevich, D. An Integrated EMI Choke for Differential-Mode and CommonMode Noise Suppression. IEEE Trans. Power Electron. 2010, 25, 539–544. [Google Scholar]
- Lee, J.S.; Lee, K.B. New modulation techniques for a leakage current reduction and a neutral-point voltage balance in transformer-less photovoltaic systems using a three-level inverter. IEEE Trans. Power Electron. 2014, 29, 1720–1732. [Google Scholar] [CrossRef]
- Kang, D.W.; Lee, Y.H.; Suh, B.S.; Choi, C.H.; Hyun, D.S. An Improved Carrier-based SVPWM Method By the Redistribution of Carrier-wave Using Leg Voltage Redundancies in Generalized Cascaded Multilevel Inverter. J. Power Electron. 2001, 1, 36–47. [Google Scholar]
- Mohan, R.M.; Hiralal, S.M. Multilevel inverter to reduce common mode voltage in AC motor drives using SPWM technique. J. Power Electron. 2011, 11, 21–27. [Google Scholar]
- Holmes, D.G.; Lipo, T. Pulse Width Modulation for Power Converters: Principles and Practice. In Pulse Width Modulation for Power Converters: Principles and Practice; John Wiley & Sons: Hoboken, NJ, USA, 2003; Volume 18. [Google Scholar]
- Baidya, R.; Aguilera, R.; Acuna, P.; Vazquez, S.; Mouton, H.D. Multistep Model Predictive Control for Cascaded H-Bridge Inverters: Formulation and Analysis. IEEE Trans. Power Electron. 2018, 33, 876–886. [Google Scholar] [CrossRef]
- Rodriguez, J.; Kazmierkowski, M.P.; Espinoza, J.R.; Zanchetta, P.; Abu-Rub, H.; Young, H.A.; Rojas, C.A. State of the art of finite control set model predictive control in power electronics. IEEE Trans. Ind. Inform. 2013, 9, 1003–1016. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, Y.; Hu, M.; Fu, C.; Zhai, J. Model Predictive Control of Active Suspension for an Electric Vehicle Considering Influence of Braking Intensity. Appl. Sci. 2021, 11, 52. [Google Scholar] [CrossRef]
- Nagpal, H.; Staino, A.; Basu, B. Application of Predictive Control in Scheduling of Domestic Appliances. Appl. Sci. 2020, 10, 1627. [Google Scholar] [CrossRef]
- Lee, J.H. Model predictive control: Review of the three decades of development. Int. J. Contr. Autom. Syst. 2011, 9, 415–424. [Google Scholar] [CrossRef]
- Kakosimos, P.; Abu-Rub, H. Predictive Control of a Grid-Tied Cascaded Full-Bridge NPC Inverter for Reducing High-Frequency Common-Mode Voltage Components. IEEE Trans. Ind. Electron. 2018, 14, 2385–2394. [Google Scholar] [CrossRef]
Without Voltage Vector Selection | With Voltage Vector Selection |
---|---|
Average | Average |
Parameters | Values |
---|---|
Inductive load | 1.2 mH |
Resistive load | 20 Ω |
DC-Link capacitor | 1000 µF |
Sampling frequency | 10 KHz |
DC voltage | 150 V |
Capacitor voltage | 50 V |
Reference load current (peak) | 6 A |
Parameters | Values |
---|---|
Inductive load | 2 mH |
Resistive load | 15 Ω |
DC-Link capacitor | 1000 µF |
Sampling frequency | 20 kHz |
DC voltage | 100 V |
Grid voltage | 110 V (peak) |
Capacitor voltage | 33.33 V |
Reference load current (peak) | 7 A |
Parameters | Attributes |
---|---|
Voltage sensor | LEM-LV 55 P |
Current sensor | LEM-LA 25 P |
Microprocessor | TI-TMS320F28335 |
Switches | IRFPS40N60K |
Drivers | FOD-3184 |
Parameters | MPC Conventional Scheme | Proposed Control Scheme |
---|---|---|
DSP execution time (µs) | 110.73 | 32.52 |
Reduction rate | - | 71.5% |
Control Technique/Topology | Leakage Current (RMS) | Efficiency % |
---|---|---|
H5 | 45 mA | 97.59 |
HERIC | 48.8 mA | 98.16 |
Hybrid-bridge topology | 80 mA | 96.71 |
Full H- bridge Bipolar modulation | 84.5 mA | 95.73 |
PD-MCPWM | 98 mA | 95.12 |
Full H- bridge unipolar modulation | 2.7 A | 93.7 |
Hybrid topology | 2.6 A | 97 |
Proposed | 20 mA | 98.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Routray, A.; Hur, S.-H. Leakage Current Mitigation of Photovoltaic System Using Optimized Predictive Control for Improved Efficiency. Appl. Sci. 2022, 12, 643. https://doi.org/10.3390/app12020643
Routray A, Hur S-H. Leakage Current Mitigation of Photovoltaic System Using Optimized Predictive Control for Improved Efficiency. Applied Sciences. 2022; 12(2):643. https://doi.org/10.3390/app12020643
Chicago/Turabian StyleRoutray, Abhinandan, and Sung-Ho Hur. 2022. "Leakage Current Mitigation of Photovoltaic System Using Optimized Predictive Control for Improved Efficiency" Applied Sciences 12, no. 2: 643. https://doi.org/10.3390/app12020643
APA StyleRoutray, A., & Hur, S. -H. (2022). Leakage Current Mitigation of Photovoltaic System Using Optimized Predictive Control for Improved Efficiency. Applied Sciences, 12(2), 643. https://doi.org/10.3390/app12020643