A Simple and Efficient Mechanical Cell Disruption Method Using Glass Beads to Extract β-Glucans from Spent Brewer’s Yeast
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Yeast Pretreatment and Preparation of Cell Suspension
2.2.2. Cell Lysis Procedure
2.2.3. Determination of Cell Rupture
2.3. Extraction and Analysis of β-Glucan from Optimal Sample
2.3.1. β-Glucan Determination
2.3.2. β-Glucan FT-IR Spectra
2.4. Statistics, Experimental Design, and Optimization of Factors
3. Results and Discussion
3.1. Effect of Parameters and Optimization of Cell Lysis
3.2. Degree of Cell Rupture
3.3. β-Glucan Content
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rakowska, R.; Sadowska, A.; Dybkowska, E.; Świderski, F. Spent yeasts as natural source of functional food additives. Rocz. Panstw. Zakl. Hig. 2017, 68, 115–121. [Google Scholar] [PubMed]
- Zhang, T.; Lei, J.; Yang, H.; Xu, K.; Wang, R.; Zhang, Z. An improved method for whole protein extraction from yeast Saccharomyces cerevisiae. Yeast 2011, 28, 795–798. [Google Scholar] [CrossRef]
- Schneiter, R.; Daum, G. Extraction of yeast lipids. In Yeast Protocol; Springer: Berlin/Heidelberg, Germany, 2006; pp. 41–45. [Google Scholar]
- Zheng, Z.; Huang, Q.; Luo, X.; Xiao, Y.; Cai, W.; Ma, H. Effects and mechanisms of ultrasound- and alkali-assisted enzymolysis on production of water-soluble yeast Β-glucan. Bioresour. Technol. 2019, 273, 394–403. [Google Scholar] [CrossRef]
- Kim, K.S.; Yun, H.S. Production of soluble β-glucan from the cell wall of Saccharomyces cerevisiae. Enzym. Microb. Technol. 2006, 39, 496–500. [Google Scholar] [CrossRef]
- Powell, C.D.; Diacetis, A.N. Long term serial repitching and the genetic and phenotypic stability of brewer’s yeast. J. Inst. Brew. 2007, 113, 67–74. [Google Scholar] [CrossRef]
- Tian, X.; Yang, P.; Jiang, W. Effect of Alkali Treatment Combined with High Pressure on Extraction Efficiency of β-d-Glucan from Spent Brewer’s Yeast. Waste Biomass Valorization 2019, 10, 1131–1140. [Google Scholar] [CrossRef]
- Melendres, A.V.; Unno, H.; Shiragami, N.; Honda, H. A concept of critical velocity for cell disruption by bead mill. J. Chem. Eng. Jpn. 1992, 25, 354–356. [Google Scholar] [CrossRef] [Green Version]
- Kareem, M.A. Unit-2 Extraction of Proteins; Indira Gandhi National Open University: New Delhi, India, 2021; Available online: https://www.egyankosh.ac.in/bitstream/123456789/71692/1/unit-2.pdf (accessed on 18 July 2021).
- Heim, A.; Kamionowska, U.; Solecki, M. The effect of microorganism concentration on yeast cell disruption in a bead mill. J. Food Eng. 2007, 83, 121–128. [Google Scholar] [CrossRef]
- Kakko, N.; Ivanona, N.; Rantasalo, A. Cell Disruption Methods. 2016. Available online: https://www.mlsu.ac.in/econtents/404_Unit%204-%20Physical%20and%20Chemical%20Cell%20disruption%20methods.pdf (accessed on 18 July 2021).
- Geciova, J.; Bury, D.; Jelen, P. Methods for disruption of microbial cells for potential use in the dairy industry—A review. Int. Dairy J. 2002, 12, 541–553. [Google Scholar] [CrossRef]
- Melendres, A.V.; Honda, H.; Shiragami, N.; Unno, H. A kinetic analysis of cell disruption by bead mill. Bioseparation 1991, 2, 231–236. [Google Scholar]
- Bzducha-Wróbel, A.; Blłazejak, S.; Kawarska, A.; Stasiak-Rózańska, L.; Gientka, I.; Majewska, E. Evaluation of the efficiency of different disruption methods on yeast cell wall preparation for β-glucan isolation. Molecules 2014, 19, 20941–20961. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-S. Washing for debittering of brewers yeast slurry. Korean J. Food Sci. Technol. 2001, 33, 205–208. [Google Scholar]
- Chang, Y.K.; Ooi, C.W.; Liew, P.E.; Ng, I.S.; Huang, Y.N.; Chen, Z.H. Optimization of three-phase fluidized bed cell disruptor for the release of alcohol dehydrogenase from baker’s yeast. Chem. Eng. J. 2020, 386, 121224. [Google Scholar] [CrossRef]
- Engler, C.R.; Robinson, C.W. New method of measuring cell-wall rupture. Biotechnol. Bioeng. 1979, 21, 1861–1869. [Google Scholar] [CrossRef]
- Ricci-Silva, M.E.; Vitolo, M.; Abrahão-Neto, J. Protein and glucose 6-phosphate dehydrogenase releasing from baker’s yeast cells disrupted by a vertical bead mill. Process Biochem. 2000, 35, 831–835. [Google Scholar] [CrossRef]
- Liu, X.Y.; Wang, Q.; Cui, S.W.; Liu, H.Z. A new isolation method of β-d-glucans from spent yeast Saccharomyces cerevisiae. Food Hydrocoll. 2008, 22, 239–247. [Google Scholar] [CrossRef]
- Tanguler, H.; Erten, H. Utilisation of spent brewer’s yeast for yeast extract production by autolysis: The effect of temperature. Food Bioprod. Process. 2008, 86, 317–321. [Google Scholar] [CrossRef]
- Wenger, M.D.; DePhillips, P.; Bracewell, D.G. A microscale yeast cell disruption technique for integrated process development strategies. Biotechnol. Prog. 2008, 24, 606–614. [Google Scholar] [CrossRef]
- Suphantharika, M.; Khunrae, P.; Thanardkit, P.; Verduyn, C. Preparation of spent brewer’s yeast β-glucans with a potential application as an immunostimulant for black tiger shrimp, Penaeus monodon. Bioresour. Technol. 2003, 88, 55–60. [Google Scholar] [CrossRef]
- Avramia, I.; Amariei, S. Research on obtaining high β-glucans content from different sources of yeast by harnessing their biologically active potential. Food Environ. Saf. J. 2017, 16, 190–195. [Google Scholar]
- Mao, H.H.; Moo-Young, M. Disruption of baker’s yeast by a new bead mill. Biotechnol. Tech. 1990, 4, 335–340. [Google Scholar]
- Vieira, E.F.; Melo, A.; Ferreira, I.M.P.L.V.O. Autolysis of intracellular content of Brewer’s spent yeast to maximize ACE-inhibitory and antioxidant activities. LWT-Food Sci. Technol. 2017, 82, 255–259. [Google Scholar] [CrossRef]
- Ardiyanti, C.A.P.; Guntoro, G. Produksi Yeast Extract dari Spent Brewer’s. J. Pendidik. Biol. 2019, 12, 47–60. [Google Scholar]
- Larrosa, V.; Lorenzo, G.; Zaritzky, N.; Califano, A. Improvement of the texture and quality of cooked gluten-free pasta. LWT-Food Sci. Technol. 2016, 70, 96–103. [Google Scholar] [CrossRef]
- Magnani, M.; Calliari, C.M.; de Macedo, F.C.; Mori, M.P.; de Syllos Cólus, I.M.; Castro-Gomez, R.J.H. Optimized methodology for extraction of (1 → 3)(1 → 6)-β-d-glucan from Saccharomyces cerevisiae and in vitro evaluation of the cytotoxicity and genotoxicity of the corresponding carboxymethyl derivative. Carbohydr. Polym. 2009, 78, 658–665. [Google Scholar] [CrossRef]
- Liu, D.; Ding, L.; Sun, J.; Boussetta, N.; Vorobiev, E. Yeast cell disruption strategies for recovery of intracellular bio-active compounds—A review. Innov. Food Sci. Emerg. Technol. 2016, 36, 181–192. [Google Scholar] [CrossRef]
- Solecki, M.; Trawińska, A.; Kacprowicz, A. The effect of cell size on the kinetics of yeast disintegration in a bead mill. Powder Technol. 2021, 380, 584–597. [Google Scholar] [CrossRef]
- Marinescu, G.; Stoicescu, A. Researches concerning the preparation of spent brewer’s yeast β-glucans. J. Agroaliment. Processes Technol. 2009, 15, 547–553. [Google Scholar]
- Bacon, J.S.; Farmer, V.C.; Jones, D.; Taylor, I.F. The glucan components of the cell wall of baker’s yeast (Saccharomyces cerevisiae) considered in relation to its ultrastructure. Biochem. J. 1969, 114, 557–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novák, M.; Synytsyaa, A.; Gedeonb, O.; Slepičkac, P.; Procházkab, V.; Synytsyad, A.; Blahovece, J.; Hejlováe, A.; Čopíkováa, J. Yeast β(1-3),(1-6)-d-glucan films: Preparation and characterization of some structural and physical properties. Carbohydr. Polym. 2012, 87, 2496–2504. [Google Scholar] [CrossRef]
- Fonseca, P.R.M.S.; Dekker, R.F.H.; Barbosa, A.M.; Silveira, J.L.M.; Vasconcelos, A.F.D.; Monteiro, N.K.; Aranda-Selverio, G.; Corradi Da Silva, M.D.L. Thermal and rheological properties of a family of botryosphaerans produced by botryosphaeria rhodina MAMB-05. Molecules 2011, 16, 7488–7501. [Google Scholar] [CrossRef] [Green Version]
- Bacha, U.; Nasir, M.; Iqbal, S.; Anjum, A.A. Effects of β-Glucan Isolated from Yeast. Biomed Res. Int. 2017, 2017, 8972678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Run | Actual Values | Coded Values | ||||
---|---|---|---|---|---|---|
Yeast Suspension Concentration (%) | Yeast/Glass Bead Ratio (v/w) | Vortexing Cycles | A | B | C | |
1 | 5 | 1:1 | 2 | −1.00 | −1.00 | 0.00 |
2 | 5 | 1:2 | 1 | −1.00 | 0.00 | −1.00 |
3 | 5 | 1:2 | 3 | −1.00 | 0.00 | 1.00 |
4 | 5 | 1:3 | 2 | −1.00 | 1.00 | 0.00 |
5 | 10 | 1:1 | 1 | 0.00 | −1.00 | −1.00 |
6 | 10 | 1:1 | 3 | 0.00 | −1.00 | 1.00 |
7 | 10 | 1:2 | 2 | 0.00 | 0.00 | 0.00 |
8 | 10 | 1:2 | 2 | 0.00 | 0.00 | 0.00 |
9 | 10 | 1:2 | 2 | 0.00 | 0.00 | 0.00 |
10 | 10 | 1:2 | 2 | 0.00 | 0.00 | 0.00 |
11 | 10 | 1:2 | 2 | 0.00 | 0.00 | 0.00 |
12 | 10 | 1:3 | 1 | 0.00 | 1.00 | −1.00 |
13 | 10 | 1:3 | 3 | 0.00 | 1.00 | 1.00 |
14 | 15 | 1:1 | 2 | 1.00 | −1.00 | 0.00 |
15 | 15 | 1:2 | 1 | 1.00 | 0.00 | −1.00 |
16 | 15 | 1:2 | 3 | 1.00 | 0.00 | 1.00 |
17 | 15 | 1:3 | 2 | 1.00 | 1.00 | 0.00 |
Yeast Suspension Concentration (%) | Yeast/Glass Bead Ratio (v/w) | Vortexing Cycles | Disruption Efficiency (%) |
---|---|---|---|
5 | 1:1 | 2 | 34.8 h |
5 | 1:2 | 1 | 45.6 e |
5 | 1:2 | 3 | 99.8 a |
5 | 1:3 | 2 | 78.9 c |
10 | 1:1 | 1 | 21.5 j |
10 | 1:1 | 3 | 44.0 f |
10 | 1:2 | 2 | 41.6 g |
10 | 1:3 | 1 | 33.4 i |
10 | 1:3 | 3 | 93.9 b |
15 | 1:1 | 2 | 14.5 l |
15 | 1:2 | 1 | 15.1 k |
15 | 1:2 | 3 | 49.0 d |
15 | 1:3 | 2 | 21.5 j |
Model | Sum of Squares | Mean Square | F-Value | p-Value |
---|---|---|---|---|
Quadratic | 9768.51 | 1085.39 | 393.43 | <0.0001 |
A-Yeast suspension concentration | 3157.34 | 3157.34 | 1144.46 | <0.0001 |
B-Yeast/glass bead ratio | 1594.71 | 1594.71 | 578.05 | <0.0001 |
C-Number of cycles | 3665.39 | 3665.39 | 1328.62 | <0.0001 |
AB | 342.81 | 342.81 | 124.26 | <0.0001 |
AC | 102.82 | 102.82 | 37.27 | 0.0005 |
BC | 361.38 | 361.38 | 130.99 | <0.0001 |
A2 | 0.0002 | 0.0002 | 0.0001 | ns |
B2 | 73.44 | 73.44 | 26.62 | 0.0013 |
C2 | 488.50 | 488.50 | 177.07 | <0.0001 |
Residual | 19.31 | 2.76 | ||
Lack of fit | 19.31 | 6.44 | ||
Fit statistics | ||||
Mean | 44.76 | |||
Standard deviation | 1.66 | |||
C.V. (%) | 3.71 | |||
R2 | 0.9980 | |||
Adj.-R2 | 0.9955 | |||
Predicted R2 | 0.9684 | |||
Adeq. Precision | 67.5219 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avramia, I.; Amariei, S. A Simple and Efficient Mechanical Cell Disruption Method Using Glass Beads to Extract β-Glucans from Spent Brewer’s Yeast. Appl. Sci. 2022, 12, 648. https://doi.org/10.3390/app12020648
Avramia I, Amariei S. A Simple and Efficient Mechanical Cell Disruption Method Using Glass Beads to Extract β-Glucans from Spent Brewer’s Yeast. Applied Sciences. 2022; 12(2):648. https://doi.org/10.3390/app12020648
Chicago/Turabian StyleAvramia, Ionut, and Sonia Amariei. 2022. "A Simple and Efficient Mechanical Cell Disruption Method Using Glass Beads to Extract β-Glucans from Spent Brewer’s Yeast" Applied Sciences 12, no. 2: 648. https://doi.org/10.3390/app12020648
APA StyleAvramia, I., & Amariei, S. (2022). A Simple and Efficient Mechanical Cell Disruption Method Using Glass Beads to Extract β-Glucans from Spent Brewer’s Yeast. Applied Sciences, 12(2), 648. https://doi.org/10.3390/app12020648