A Fluid Inclusion and Critical/Rare Metal Study of Epithermal Quartz-Stibnite Veins Associated with the Gerakario Porphyry Deposit, Northern Greece
Abstract
:1. Introduction
2. Geological Setting and Mineralization
2.1. Local Geology
2.2. Porphyry Cu-Au Mineralization
2.3. Epithermal Sb Mineralization
3. Materials and Methods
3.1. Fieldwork and Sampling
3.2. Microscopy
3.3. Bulk Chemical Analysis
3.4. Scanning Electron Microscope
3.5. LA-ICP-MS
3.6. Fluid Inclusion Micro-Thermometry
4. Results
4.1. Bulk Geochemistry of Critical and Rare Metals in the Epithermal Quartz-Stibnite Veins
4.2. Mode of Occurrence of Stibnite
4.3. Mineral Chemistry of Stibnite
4.4. Statistical Analysis of Trace Elements Concentrations in Stibnite
4.5. Fluid Inclusions Petrography
4.6. Microthermometry
5. Discussion
5.1. Conditions of Formation of the Porphyry Cu-Au Deposit at Gerakario
5.2. Genesis and Geochemistry of the Epithermal Quartz-Stibnite Veins at Gerakario
5.3. Mineral Chemistry of Stibnite and Nano-Scale Inclusions
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Humphreys, D. The mining industry and the supply of critical minerals. In Critical Metals Handbook; Gunn, G., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2014; pp. 20–40. [Google Scholar]
- Huston, D.L. New age metals: The geology and genesis of ores required for a changing economy and a carbon-constrained world-preface to a thematic issue on critical commodities. Miner. Depos. 2014, 49, 885–887. [Google Scholar] [CrossRef]
- European Commission. Critical Raw Materials Resilience: Charting a Path towards Greater Security and Sustainability; European Commission: Brussels, Belgium, 2020; p. 24. [Google Scholar]
- Barakos, G.; Gutzmer, J.; Mischo, H. Strategic evaluations and mining process optimization towards a strong global REE supply chain. J. Sustain. Min. 2016, 15, 26–35. [Google Scholar] [CrossRef] [Green Version]
- Dostal, J. Rare metal deposits associated with alkaline/peralkaline igneous rocks. In Rare Earth and Critical Elements in Ore Deposits; Verplanck, P.L., Hitzman, M.W., Eds.; Society of Economic Geologists Inc.: Littleton, CO, USA, 2016; pp. 33–54. [Google Scholar]
- Sengupta, D.; Van Gosen, B.S. Placer-type rare earth element deposits. In Rare Earth and Critical Elements in Ore Deposits; Verplanck, P.L., Hitzman, M.W., Eds.; Society of Economic Geologists Inc.: Littleton, CO, USA, 2016; pp. 81–100. [Google Scholar]
- Verplanck, P.L.; Mariano, A.N.; Mariano, A., Jr. Rare earth element ore geology of carbonatites. In Rare Earth and Critical Elements in Ore Deposits; Verplanck, P.L., Hitzman, M.W., Eds.; Society of Economic Geologists Inc.: Littleton, CO, USA, 2016; pp. 5–32. [Google Scholar]
- John, D.A.; Taylor, R.D. By-products of porphyry copper and molybdenum deposits. In Rare Earth and Critical Elements in Ore Deposits; Verplanck, P.L., Hitzman, M.W., Eds.; Society of Economic Geologists Inc.: Littleton, CO, USA, 2016; pp. 137–164. [Google Scholar]
- Velásquez, G.; Carrizo, D.; Salvi, S.; Vela, I.; Pablo, M.; Pérez, A. Tracking cobalt, REE and gold from a porphyry-type deposit by LA-ICP-MS: A geological approach towards metal-selective mining in tailings. Minerals 2020, 10, 109. [Google Scholar] [CrossRef] [Green Version]
- Hofstra, A.H.; Kreiner, D.C. Systems-Deposits-Commodities-Critical Minerals Table for the Earth Mapping Resources Initiative; No. 2020-1042; U.S. Geological Survey: Reston, VA, USA, 2020; p. 24.
- Goldfarb, R.J.; Hofstra, A.H.; Simmons, S.F. Critical elements in Carlin, epithermal, and orogenic gold deposits. In Rare Earth and Critical Elements in Ore Deposits; Verplanck, P.L., Hitzman, M.W., Eds.; Society of Economic Geologists Inc.: Littleton, CO, USA, 2016; pp. 217–244. [Google Scholar]
- Deditius, A.P.; Utsunomiya, S.; Reich, M.; Kesler, S.E.; Ewing, R.C.; Hough, R.; Walshe, J. Trace metal nanoparticles in pyrite. Ore Geol. Rev. 2011, 42, 32–46. [Google Scholar] [CrossRef]
- Cook, N.J.; Ciobanu, C.L.; Pring, A.; Skinner, W.; Shimizu, M.; Danyushevsky, L.; Saini-Eidukat, B.; Melcher, F. Trace and minor elements in sphalerite: A LA-ICPMS study. Geochim. Cosmochim. Acta 2009, 73, 4761–4791. [Google Scholar] [CrossRef]
- George, L.L.; Cook, N.J.; Crowe, B.B.; Ciobanu, C.L. Trace elements in hydrothermal chalcopyrite. Mineral. Mag. 2018, 82, 59–88. [Google Scholar] [CrossRef]
- George, L.L.; Cook, N.J.; Ciobanu, C.L. Minor and trace elements in natural tetrahedrite-tennantite: Effects on element partitioning among base metal sulphides. Minerals 2017, 7, 17. [Google Scholar] [CrossRef] [Green Version]
- Fu, S.; Hu, R.; Bi, X.; Sullivan, N.A.; Yan, J. Trace element composition of stibnite: Substitution mechanism and implications for the genesis of Sb deposits in southern China. Appl. Geochem. 2020, 118, 104637. [Google Scholar] [CrossRef]
- Dill, H.G.; Pertold, Z.; Kilibarda, R.C. Sediment-hosted and volcanic-hosted Sb vein mineralization in the Potosi region, Central Bolivia. Econ. Geol. 1997, 92, 623–632. [Google Scholar] [CrossRef]
- Dill, H.G.; Melcher, F.; Botz, B. Meso- to epithermal W-bearing Sb vein-type deposits in calcareous rocks in western Thailand; with special reference to their metallogenetic position in SE Asia. Ore Geol. Rev. 2008, 34, 242–262. [Google Scholar] [CrossRef]
- Wang, L.; Qin, K.Z.; Song, G.X.; Li, G.M. A review of intermediate sulfidation epithermal deposits and subclassification. Ore Geol. Rev. 2019, 107, 434–456. [Google Scholar] [CrossRef]
- Cook, N.J.; Ciobanu, C.L.; Giles, D.; Wade, B. Correlating textures and trace elements in ore minerals. Mineral deposit research for a high-tech world. In Proceedings of the 12th Biennial SGA Meeting, Uppsala, Sweden, 12–15 August 2013; Jonsson, E., Ed.; Geological Survey of Sweden: Uppsala, Sweden, 2013; pp. 288–291. [Google Scholar]
- Wang, J.; Wen, H.; Fan, H.; Zhu, J. Sm-Nd geochronology, REE geochemistry and C and O isotope characteristics of calcites and stibnites from the Banian antimony deposit, Guizhou Province, China. Geochem. J. 2012, 46, 393–407. [Google Scholar] [CrossRef] [Green Version]
- Cassard, D.; Bertrand, G.; Billa, M.; Serrano, J.J.; Tourlière, B.; Angel, J.M.; Gaál, G. ProMine mineral databases: New tools to assess primary and secondary mineral resources in Europe. In 3D, 4D and Predictive Modelling of Major Mineral Belts in Europe. Mineral Resource Reviews; Weihed, P., Ed.; Springer: Cham, Switzerland, 2015; pp. 9–58. [Google Scholar]
- Melfos, V.; Voudouris, P. Cenozoic metallogeny of Greece and potential for precious, critical and rare metals exploration. Ore Geol. Rev. 2017, 89, 1030–1057. [Google Scholar] [CrossRef]
- Voudouris, P.; Mavrogonatos, C.; Spry, P.G.; Baker, T.; Melfos, V.; Klemd, R.; Haase, K.; Repstock, A.; Djiba, A.; Bismayer, U.; et al. Porphyry and epithermal deposits in Greece: An overview, new discoveries, and mineralogical constraints on their genesis. Ore Geol. Rev. 2019, 107, 654–691. [Google Scholar] [CrossRef]
- Arvanitidis, N.D. New metallogenetic concepts and sustainability perspectives for non-energy metallic minerals in Central Macedonia, Greece. Bull. Geol. Soc. Greece 2010, 43, 2437–2445. [Google Scholar] [CrossRef] [Green Version]
- Tsirambides, A.; Filippidis, A. Metallic mineral resources of Greece. Cent. Eur. J. Geosci. 2012, 4, 641–650. [Google Scholar]
- Tsirambides, A.; Filippidis, A. Gold metallogeny of the Serbomacedonian-Rhodope metallogenic belt (SRMB). Bull. Geol. Soc. Greece 2016, 50, 2037–2046. [Google Scholar] [CrossRef] [Green Version]
- Tsirambides, A.; Filippidis, A. Sb- Bi-bearing metallogeny of the SerboMacedonian-Rhodope Metallogenic Belt (SRMB). Bull. Geol. Soc. Greece 2019, 55, 34–64. [Google Scholar] [CrossRef]
- Melfos, V.; Voudouris, P.C. Geological, mineralogical and geochemical aspects for critical and rare metals in Greece. Minerals 2012, 2, 300–317. [Google Scholar] [CrossRef] [Green Version]
- Baker, T. Gold ± copper endowment and deposit diversity in the Western Tethyan magmatic belt, southeast Europe: Implications for exploration. Econ. Geol. 2019, 114, 1237–1250. [Google Scholar] [CrossRef]
- Stergiou, C.L.; Melfos, V.; Voudouris, P. A Review on the Critical and Rare Metals Distribution throughout the Vertiskos Unit, N. Greece; MDPI: Basel, Switzerland, 2018. [Google Scholar]
- Stergiou, C.L.; Melfos, V.; Voudouris, P.; Spry, P.G.; Papadopoulou, L.; Chatzipetros, A.; Giouri, K.; Mavrogonatos, C.; Filippidis, A. The geology, geochemistry, and origin of the porphyry Cu-Au-(Mo) system at Vathi, Serbo-Macedonian Massif, Greece. Appl. Sci. 2021, 11, 479. [Google Scholar] [CrossRef]
- Stergiou, C.L.; Melfos, V.; Voudouris, P.; Papadopoulou, L.; Spry, P.G.; Peytcheva, I.; Dimitrova, D.; Stefanova, E.; Giouri, K. Rare and Critical Metals in Pyrite, Chalcopyrite, Magnetite, and Titanite from the Vathi Porphyry Cu-Au ± Mo Deposit, Northern Greece. Minerals 2021, 11, 630. [Google Scholar] [CrossRef]
- Vavelidis, Μ.; Melfos, V.; Kilias, A. The gold-bearing quartz veins in the metamorphic rocks at the Drakontio area, central Macedonia, northern Greece. Mineral Deposits, Process to Processing. In Proceedings of the Fifth Biennial SGA Meeting and the Tenth Quadrennial IAGOD Symposium, London, UK, 22–25 August 1999; Stanley, C.J., Ed.; Balkema: Rotterdam, The Netherlands, 1999; Volume 1, pp. 209–212. [Google Scholar]
- Bristol, S.K.; Spry, P.G.; Voudouris, P.C.; Melfos, V.; Mathur, R.D.; Fornadel, A.P.; Sakellaris, G.A. Geochemical and geochronological constraints on the formation of shear-zone hosted Cu-Au-Bi-Te mineralization in the Stanos area, Chalkidiki, northern Greece. Ore Geol. Rev. 2015, 66, 266–282. [Google Scholar] [CrossRef]
- Skoupras, E. Study of the Stibnite Ore Mineralization in Rizana, Kilkis. Master’s Thesis, Aristotle University of Thessaloniki, Thessaloniki, Greece, 2019. [Google Scholar]
- Dimou, E. Native minerals in rocks and mineralizations of Greece and their significance. Bull. Geol. Soc. Greece 1989, 23, 207–223. [Google Scholar]
- Vasilatos, C.; Mparlas, K.; Stamatakis, M.; Tsivilis, S. Wolframite-stibnite mineral assemblages from Rizana Lachanas, Macedonia, Greece, and their possible use as flux agent in the manufacturing of clinker. Bull. Geol. Soc. Greece 2001, 34, 827–834. [Google Scholar] [CrossRef] [Green Version]
- Toumanidou, O.C. Preliminary Study of the Porphyry System in Gerakario of Kilkis. Master’s Thesis, Aristotle University of Thessaloniki, Thessaloniki, Greece, 2019. [Google Scholar]
- Kelepertsis, A.E.; Reeves, R.; Andrulakis, J. Geochemical studies of porphyry type mineralization at Gerakario-Vathi of Kilkis area, northern Greece. Miner. Wealth 1986, 42, 43–48. [Google Scholar]
- Miggiros, G.; Ioannidis, K.; Kelepertsis, A. Geological Map of Greece: Herson Map Sheet, 1:50,000; Hellenic Survey of Geology and Mineral Exploration (HSGME): Athens, Greece, 1990. [Google Scholar]
- Frei, R. Isotope (Pb, Rb-Sr, S, O, C, U-Pb) Geochemical Investigations on Tertiary Intrusives and Related Mineralizations in the Serbomacedonian Pb-Zn, Sb + Cu-Mo Metallogenic Province in Northern Greece. Ph.D. Thesis, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland, 1992. [Google Scholar]
- Tompouloglou, C. Les Minéralisations Tertiares, Type Cuivre Porphyrique, du Massif Serbo-Macédonien (Macédoine, Grèce) Dans Leur Context Magmatique (Avec un Traitement Géostatistique pour les Données du Prospect d’Alexia). Ph.D. Thesis, Ecole National Supérieure des Mines de Paris, Paris, France, 1981. [Google Scholar]
- Tompouloglou, C. Etude d’inclusions fluides dans le context hydrothermal de mineralizsations tertiaires, type cuivre porphyrique, du Massif Serbo-Mecadonien en Mecedoine, Grece. In Special Volume in Honor of the Emeritus Professor Ioannis Papageorgakis; Metsovion National Technical University: Athens, Greece, 2001; pp. 225–261. [Google Scholar]
- Dimou, E.; Papastavrou, S.; Sermet, R. Antimony in Greece, Samos Island, Gerakario Kilkis, Pefka Rhodope, Stagira Chalkidiki; Hellenic Survey of Geology and Mineral Exploration (HSGME): Athens, Greece, 1987; Volume 3, p. 68. [Google Scholar]
- Guillong, M.; Meier, D.L.; Allan, M.M.; Heinrich, C.A.; Yardley, B.W.D. SILLS: A MATLAB-based program for the reduction of laser ablation ICP-MS data of homogeneous materials and inclusions. In Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues; Sylvester, P., Ed.; Mineralogical Association of Canada Short Course 40: Vancouver, BC, Canada, 2008; pp. 328–333. [Google Scholar]
- Bakker, R.J. Package FLUIDS. Part 4: Thermodynamic modelling and purely empirical equations for H2O-NaCl-KCl solutions. Mineral. Petrol. 2012, 105, 1–29. [Google Scholar] [CrossRef]
- Driesner, T.; Heinrich, C.A. The system H2O-NaCl. Part I: Correlations for molar volume, enthalpy, and isobaric heat capacity from 0 to 1000 °C, 1 to 5000 bar, and 0 to 1 X-NaCl. Geochim. Cosmochim. Acta 2007, 71, 4880–4901. [Google Scholar] [CrossRef]
- Driesner, T. The system H2O-NaCl. Part II: Correlations for molar volume, enthalpy, and isobaric heat capacity from 0 to 1000 °C, 1 to 5000 bar, and 0 to 1 XNaCl. Geochim. Cosmochim. Acta 2007, 71, 4902–4919. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the continental crust. In The Crust, 1st ed.; Rudnick, R.L., Holland, H.D., Turekian, K.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 1–64. [Google Scholar]
- Monecke, T.; Monecke, J.; Reynolds, T.J.; Tsuruoka, S.; Bennett, M.M.; Skewes, W.B.; Palin, R.M. Quartz solubility in the H2O-NaCl System: A framework for understanding vein formation in porphyry copper deposits. Econ. Geol. 2018, 113, 1007–1046. [Google Scholar] [CrossRef]
- Tarantola, A.; Diamond, L.W.; Stünitz, H.; Thust, A.; Pec, M. Modification of fluid inclusions in quartz by deviatoric stress. III: Influence of principal stresses on inclusion density and orientation. Contrib. Mineral. Petrol. 2012, 164, 537–550. [Google Scholar] [CrossRef]
- Roedder, E. Fluid inclusions. Rev. Miner. 1984, 12, 644. [Google Scholar]
- Goldstein, R.H.; Reynolds, T.J. Systematics of Fluid Inclusions in Diagenetic Minerals; Society for Sedimentary Geology: Broken Arrow, OK, USA, 1994; p. 199. [Google Scholar]
- Shepherd, T.; Rankin, A.; Alderton, D. A Practical Guide to Fluid Inclusion Studies, 1st ed.; Blackie and Son: Glasgow, UK, 1985; p. 239. [Google Scholar]
- Bodnar, R.J. Introduction to fluid inclusions. In Fluid Inclusions: Analysis and Interpretation; Samson, I.M., Anderson, A.J., Marshall, D.D., Eds.; Society for Sedimentary Geology: Broken Arrow, OK, USA, 2003; Volume 32, pp. 1–8. [Google Scholar]
- Audétat, A.; Pettke, T.; Heinrich, C.A.; Bodnar, R.J. Special paper: The composition of magmatic-hydrothermal fluids in barren and mineralized intrusions. Econ. Geol. 2008, 103, 877–908. [Google Scholar] [CrossRef]
- Brathwaite, R.L.; Simpson, M.; Faure, K.; Skinner, D. Telescoped porphyry Cu-Mo-Au mineralisation, advanced argillic alteration and quartz-sulphide-gold-anhydrite veins in the Thames District, New Zealand. Miner. Depos. 2001, 36, 623–640. [Google Scholar] [CrossRef]
- Archer, D.G. Thermodynamic properties of the NaCl + H2O system. II. Thermodynamic properties of NaCl (aq), NaCl⋅2H2 (cr), and phase equilibria. J. Phys. Chem. Ref. Data 1992, 21, 793–829. [Google Scholar] [CrossRef] [Green Version]
- Bodnar, R.J.; Reynolds, T.J.; Kuehn, C.A. Fluid-Inclusion systematics in epithermal systems. Rev. Econ. Geol. 1985, 2, 73–97. [Google Scholar]
- Díaz-García, M.E.; Badía-Laíño, R. Fluorescence, Derivatization. In Encyclopedia of Analytical Science, 2nd ed.; Worsfold, P., Townshend, A., Poole, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 138–148. [Google Scholar]
- Wood, S.A.; Shannon, W.M. Rare-earth elements in geothermal waters from Oregon, Nevada, and California. J. Solid State Chem. 2003, 171, 246–253. [Google Scholar] [CrossRef]
- Sillitoe, R.H. Porphyry copper systems. Econ. Geol. 2010, 105, 3–41. [Google Scholar] [CrossRef] [Green Version]
- Melfos, V.; Voudouris, P.; Melfou, M.; Sánchez, M.G.; Papadopoulou, L.; Filippidis, A.; Spry, P.G.; Schaarschmidt, A.; Klemd, R.; Haase, K.M.; et al. Mineralogical constraints on the potassic and sodic-calcic hydrothermal alteration and vein-type mineralization of the Maronia porphyry Cu-Mo ± Re ± Au deposit in NE Greece. Minerals 2020, 10, 182. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Yonezu, K.; Imai, A.; Tindell, T.; Li, H.; Gabo-Ratio, J.A. Trace elements mineral chemistry of sulfides from the Woxi Au-Sb-W deposit, southern China. Resour. Geol. 2021, 72, e12279. [Google Scholar] [CrossRef]
Host Rock | Two-Mica Gneiss | Host Rock | Two-Mica Gneiss | ||||||
---|---|---|---|---|---|---|---|---|---|
Alteration | Sericitic Alteration | Alteration | Sericitic Alteration | ||||||
Element | Detection Limit | Ger 3.1 | Ger 5 | AVG | Element | Detection Limit | Ger 3.1 | Ger 5 | AVG |
ppm | ppm | ||||||||
Ag | 0.01 | 0.98 | 1.2 | 1.1 | Nd | 0.1 | b.d.l. | b.d.l. | n.a. |
Au | 5 × 10−6 | 0.05 | 0.04 | 0.05 | Re | 0.001 | b.d.l. | b.d.l. | n.a. |
Bi | 0.01 | 0.02 | 0.03 | 0.03 | Sb | 0.01 | 326,000 | 574,000 | 450,000 |
Cd | 0.01 | 0.05 | 0.04 | 0.05 | Se | 0.2 | b.d.l. | b.d.l. | n.a. |
Ce | 0.02 | 0.09 | 0.12 | 0.11 | Sm | 0.03 | b.d.l. | b.d.l. | n.a. |
Co | 0.1 | 1.8 | 0.9 | 1.4 | Ta | 0.01 | b.d.l. | b.d.l. | n.a. |
Ga | 0.05 | 0.16 | 0.07 | 0.12 | Te | 0.01 | b.d.l. | b.d.l. | n.a. |
Gd | 0.05 | b.d.l. | b.d.l. | n.a. | Th | 0.2 | b.d.l. | b.d.l. | n.a. |
Ge | 0.05 | b.d.l. | b.d.l. | n.a. | Tl | 0.02 | 0.81 | 0.86 | 0.84 |
Hg | 0.005 | b.d.l. | b.d.l. | n.a. | Ti | 50 | b.d.l. | b.d.l. | n.a. |
In | 0.005 | b.d.l. | b.d.l. | n.a. | U | 0.05 | 0.09 | 0.13 | 0.11 |
La | 0.2 | 0.4 | 0.4 | 0.4 | V | 1 | b.d.l. | b.d.l. | n.a. |
Nb | 0.05 | b.d.l. | b.d.l. | n.a. | W | 0.05 | b.d.l. | b.d.l. | n.a. |
Alteration | Sericitic | Alteration | Sericitic | ||||||
---|---|---|---|---|---|---|---|---|---|
Host Rock | Two-Mica Gneiss | Host Rock | Two-Mica Gneiss | ||||||
Mineralization Stage | Stb1; Epithermal Quartz-Stibnite Veins (n = 15) | Mineralization Stage | Stb1; Epithermal Quartz-Stibnite Veins (n = 15) | ||||||
Element/AVG. Detection Limit | MIN | MAX | STDEV | AVG | Element/AVG. Detection Limit | MIN | MAX | STDEV | AVG |
ppm | ppm | ppm | ppm | ||||||
Ag/0.3 | 0.12 | 0.91 | 0.27 | 0.45 | Nb/0.08 | b.d.l. | b.d.l. | n.a. | n.a. |
As/n.a. | 12 | 231 | 70 | 62 | Nd/0.56 | b.d.l. | b.d.l. | n.a. | n.a. |
Au/0.24 | b.d.l. | b.d.l. | n.a. | n.a. | Pb/n.a. | 98 | 165 | 23 | 122 |
Bi/0.24 | 0.15 | 0.33 | 0.05 | 0.2 | Re/0.06 | 0.03 | 0.03 | n.a. | 0.03 |
Cd/0.9 | b.d.l. | b.d.l. | n.a. | n.a. | Sb/n.a. | 710,800 | 716,500 | 1.611 | 711,827 |
Ce/n.a. | 0.09 | 0.32 | 0.08 | 0.2 | Se/5.8 | b.d.l. | b.d.l. | n.a. | n.a. |
Co/0.25 | b.d.l. | b.d.l. | n.a. | n.a. | Sm/0.33 | 0.10 | 0.10 | n.a. | 0.10 |
Cu/n.a. | 29 | 55 | 8.6 | 40 | Te/1.6 | b.d.l. | b.d.l. | n.a. | n.a. |
Ga/0.85 | b.d.l. | b.d.l. | n.a. | n.a. | Th/0.06 | 0.02 | 0.02 | n.a. | 0.02 |
Gd/0.33 | b.d.l. | b.d.l. | n.a. | n.a. | Ti/n.a. | 9.7 | 18 | 2.3 | 13 |
Ge/2.5 | b.d.l. | b.d.l. | n.a. | n.a. | Tl/0.32 | 0.35 | 0.56 | 0.11 | 0.48 |
Hg/0.27 | b.d.l. | b.d.l. | n.a. | n.a. | U/0.04 | b.d.l. | b.d.l. | n.a. | n.a. |
In/0.06 | b.d.l. | b.d.l. | n.a. | n.a. | V/0.52 | b.d.l. | b.d.l. | n.a. | n.a. |
La/n.a. | 24 | 86 | 28 | 44 | W/0.33 | b.d.l. | b.d.l. | n.a. | n.a. |
Mineralization Style | FI Type | Th (°C) | Tm (Ice) (°C) | Salinity (wt.% NaCl equiv.) |
---|---|---|---|---|
Porphyry style quartz veins (A-type) | 1 L + V → L | 382 to 496 (n = 34) | −19.4 to −10.8 (n = 6) | 14.8 to 22.0 |
2 L + V + S → L | 381 to 458 (n = 27) | 271 to 386 (n = 27) | 35.7 to 45.6 | |
3 L + V → V | 382 to 504 (n = 33) | −16.5 to −11.9 (n = 6) | 14.4 to 19.8 | |
Epithermal style quartz-stibnite veins | 1 L + V → L | 256 to 326 (n = 75) | −6.9 to −5.0 (n = 12) | 7.9 to 10.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stergiou, C.L.; Melfos, V.; Voudouris, P.; Papadopoulou, L.; Spry, P.G.; Peytcheva, I.; Dimitrova, D.; Stefanova, E. A Fluid Inclusion and Critical/Rare Metal Study of Epithermal Quartz-Stibnite Veins Associated with the Gerakario Porphyry Deposit, Northern Greece. Appl. Sci. 2022, 12, 909. https://doi.org/10.3390/app12020909
Stergiou CL, Melfos V, Voudouris P, Papadopoulou L, Spry PG, Peytcheva I, Dimitrova D, Stefanova E. A Fluid Inclusion and Critical/Rare Metal Study of Epithermal Quartz-Stibnite Veins Associated with the Gerakario Porphyry Deposit, Northern Greece. Applied Sciences. 2022; 12(2):909. https://doi.org/10.3390/app12020909
Chicago/Turabian StyleStergiou, Christos L., Vasilios Melfos, Panagiotis Voudouris, Lambrini Papadopoulou, Paul G. Spry, Irena Peytcheva, Dimitrina Dimitrova, and Elitsa Stefanova. 2022. "A Fluid Inclusion and Critical/Rare Metal Study of Epithermal Quartz-Stibnite Veins Associated with the Gerakario Porphyry Deposit, Northern Greece" Applied Sciences 12, no. 2: 909. https://doi.org/10.3390/app12020909