Quantitative Evaluation of Light Collimating for Commercial UV-LEDs Based on Analytic Collimating Lens
Abstract
:1. Introduction
2. Design of Analytic Collimating Lens for Light Collimation
2.1. Commercial UV-LED Light Source and Lens Material
2.2. Analytic Collimating Lens Design
2.3. Analysis of Collimated Light
3. Numerical Calculation
3.1. Data Analysis
3.2. Optimized Parameters after Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
OE | Optical efficiency |
DF | Dimensional factor |
DA | Divergence angles |
Appendix A. Analytic Collimating Lens
References
- Shiba, S.F.; Tan, J.Y.; Kim, J. Multidirectional UV-LED lithography using an array of high-intensity UV-LEDs and tilt-rotational sample holder for 3-D microfabrication. Micro Nano Syst. Lett. 2020, 8, 5. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, X.; rong Zheng, Z.; Fu Gu, P. Freeform LED lens for uniform illumination. Opt. Express 2008, 16, 12958–12966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, Y.; Feng, Z.; Han, Y.; Li, H. Design of compact and smooth free-form optical system with uniform illuminance for LED source. Opt. Express 2010, 18, 9055–9063. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Zhang, H.; Zheng, H.; Liu, S. New reversing freeform lens design method for LED uniform illumination with extended source and near field. Opt. Commun. 2018, 410, 123–129. [Google Scholar] [CrossRef]
- Kuo, S.H.; Chen, C.F. Design of a collimated UV-LED exposure unit based on light spread function method. Appl. Opt. 2017, 56, 5542–5549. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.J.; Lin, C.T. Freeform surface design for a light-emitting diode-based collimating lens. Opt. Eng. 2010, 49, 093001. [Google Scholar] [CrossRef]
- Chen, J.J.; Wang, T.Y.; Huang, K.L.; Liu, T.S.; Tsai, M.D.; Lin, C.T. Freeform lens design for LED collimating illumination. Opt. Express 2012, 20, 10984–10995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, R.S. Investigation of a slope-point-based method for the design of aspheric surfaces in a catadioptric collimating optical system for a light-emitting diode source. Appl. Opt. 2014, 53, H129–H139. [Google Scholar] [CrossRef] [PubMed]
- Grabovičkić, D.; Benítez, P.; nano, J.C.M. TIR RXI collimator. Opt. Express 2012, 20, A51–A61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.; Wang, L.; Li, F.; Zhang, G. Collimating lens for light-emitting-diode light source based on non-imaging optics. Appl. Opt. 2012, 51, 1654–1659. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Xu, C.; Jing, X.; Tam, H.Y. Design of compact LED free-form optical system for aeronautical illumination. Appl. Opt. 2015, 54, 7632–7639. [Google Scholar] [CrossRef] [PubMed]
- Romanova, G.E.; Qiao, X. Composing method and aberration theory in collimating systems design. In Optical Design and Testing X; Wang, Y., Kidger, T.E., Matoba, O., Wu, R., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2020; Volume 11548, pp. 234–240. [Google Scholar] [CrossRef]
- Kumar, H.; Velu, R.; Balasubramanian, E. A novel freeform lens design for collimating UV light emitted from an LED with large divergent angle. Optik 2019, 181, 1039–1048. [Google Scholar] [CrossRef]
- Kari, T.; Gadegaard, J.; Søndergaard, T.; Pedersen, T.G.; Pedersen, K. Reliability of point source approximations in compact LED lens designs. Opt. Express 2011, 19, A1190–A1195. [Google Scholar] [CrossRef] [PubMed]
- Avendaño-Alejo, M.; Román-Hernández, E.; neda, L.C.; Moreno-Oliva, V.I. Analytic conic constants to reduce the spherical aberration of a single lens used in collimated light. Appl. Opt. 2017, 56, 6244–6254. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.C.; Low, A.L.Y.; Chien, S.F. Combinational system of a truncated ball lens and a hyperbolic lens for collimating a highly divergent source. OSA 2004, 43, 6380. [Google Scholar] [CrossRef] [PubMed]
- Logean, E.; Hvozdara, L.; Di-Francesco, J.; Herzig, H.P.; Voelkel, R.; Eisner, M.; Baroni, P.Y.; Rochat, M.; Müller, A. High numerical aperture silicon collimating lens for mid-infrared quantum cascade lasers manufactured using wafer-level techniques. In Optical Systems Design 2012; Mazuray, L., Wartmann, R., Wood, A.P., de la Fuente, M.C., Tissot, J.L.M., Raynor, J.M., Smith, D.G., Wyrowski, F., Erdmann, A., Kidger, T.E., et al., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2012; Volume 8550, pp. 228–233. [Google Scholar] [CrossRef] [Green Version]
- Syms, R. Refractive collimating microlens arrays by surface tension self-assembly. IEEE Photonics Technol. Lett. 2000, 12, 1507–1509. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yan, G.; Li, Z.; Fang, F. Quality improvement of collimating lens produced by precision glass molding according to performance evaluation. Opt. Express 2019, 27, 5033–5047. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.R.; Weng, T.C.; Tzai, W.J.; Chen, C.H.; Yu, C.C.; Chu, W.Y.; Yoo, S.; Huang, C.J.; Cheng, C.Y. Lithography process controllers and photoresist monitoring by signal response metrology (SRM). In Metrology, Inspection, and Process Control for Microlithography XXIX; Cain, J.P., Sanchez, M.I., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2015; Volume 9424, pp. 744–753. [Google Scholar] [CrossRef]
- Miller, D.B.; Forman, D.L.; Jones, A.M.; McLeod, R.R. Super-resolved critical dimensions in far-field I-line photolithography. J. Micro/Nanolithogr. MEMS MOEMS 2019, 18, 013505. [Google Scholar] [CrossRef]
- Giel, B.V.; Meuret, Y.; Thienpont, H. Using a fly’s eye integrator in efficient illumination engines with multiple light-emitting diode light sources. Opt. Eng. 2007, 46, 043001. [Google Scholar] [CrossRef]
- Jiang, H.; Sun, X.; Yang, R.; Chen, J.; Xie, L.; Yin, S. Design of UV LED illumination system for direct imaging lithography. In Optical Design and Testing VIII; Wang, Y., Kidger, T.E., Tatsuno, K., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2018; Volume 10815, pp. 195–202. [Google Scholar] [CrossRef]
- Huang, J.W. The illumination design of UV LED array for lithography. In Optical Microlithography XXXI; Kye, J., Ed.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2018; Volume 10587, pp. 278–285. [Google Scholar] [CrossRef]
- Syu, Y.S.; Wu, C.Y.; Lee, Y.C. Double-Sided Freeform Lens for Light Collimation of Light Emitting Diodes. Appl. Sci. 2019, 9, 5452. [Google Scholar] [CrossRef] [Green Version]
- EVONIK. PLEXIGLAS®8012 Material Manual; EVONIK: Essen, Germany, 2019; Available online: https://corporate.evonik.com/en/ (accessed on 17 December 2021).
Optical Characteristics (Ths = 25 °C) | |||
---|---|---|---|
Item | Luminous Area | Luminous Flux | Directivity |
(mm2) | (mW) | ||
Luminus | |||
(I) SST-10-UV | 1 × 1 | 2200–2500 | 120 |
(II) CBT-120-UV | 4.63 × 2.60 | 14,600–19,500 | 100 |
Nichia | |||
(III) NVSU333A | 2 × 2 | 4640 | 138 |
(IV) NVSU119C | 2 × 2 | 1420 | 110 |
Seoul Viosys | |||
(V) CUN0GB1A | 2.8 × 2.8 | 1630 | 60 |
(VI) CUN06B1B_140516 | 2 × 2 | 1160 | 46 |
Item | Directivity | DF | DA | DA | OE | ||
---|---|---|---|---|---|---|---|
(mm) | (%) | ||||||
I | 120 | 20 | 0.6 | 0.0500 | 1.56 | 4.16 | 50.2 |
II | 100 | 22 | 2.5 | 0.1643 | 2.20 | 3.44 | 56.6 |
III | 138 | 12 | 0.1 | 0.1667 | 2.84 | 12.84 | 63.0 |
IV | 110 | 28 | 0.3 | 0.0714 | 1.62 | 4.56 | 44.8 |
V | 60 | 26 | 0.7 | 0.1076 | 1.66 | 2.54 | 72.0 |
VI | 46 | 27 | 0.9 | 0.0740 | 1.58 | 2.30 | 33.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Syu, Y.-S.; Lee, Y.-C. Quantitative Evaluation of Light Collimating for Commercial UV-LEDs Based on Analytic Collimating Lens. Appl. Sci. 2022, 12, 911. https://doi.org/10.3390/app12020911
Syu Y-S, Lee Y-C. Quantitative Evaluation of Light Collimating for Commercial UV-LEDs Based on Analytic Collimating Lens. Applied Sciences. 2022; 12(2):911. https://doi.org/10.3390/app12020911
Chicago/Turabian StyleSyu, Yong-Sin, and Yung-Chun Lee. 2022. "Quantitative Evaluation of Light Collimating for Commercial UV-LEDs Based on Analytic Collimating Lens" Applied Sciences 12, no. 2: 911. https://doi.org/10.3390/app12020911
APA StyleSyu, Y. -S., & Lee, Y. -C. (2022). Quantitative Evaluation of Light Collimating for Commercial UV-LEDs Based on Analytic Collimating Lens. Applied Sciences, 12(2), 911. https://doi.org/10.3390/app12020911