Phytochemical Analysis of Polyphenols in Leaf Extract from Vernonia amygdalina Delile Plant Growing in Uganda
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Material
2.2. Preparation of the Plant Material and Extraction Procedure
2.3. UHPLC-DAD-ESI-MS Qualitative Analysis of V. amygdalina Leaf Extract
2.4. Preparative-HPLC Isolation of the Identified Compounds
2.5. UHPLC-DAD Quantitative Determination of Polyphenols in Plant Extract
3. Results
3.1. Identification of Phenolic Compounds in V. amygdalina Leaf Extract
3.2. Phenolic Acids
3.3. Flavonoids
4. Discussion
5. Conclusions Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Veiga Junior, V.F.; Pinto, A.C.; Maciel, M.A. Medicinal plants: Safe cure? Quim. Nova 2005, 28, 519–528. [Google Scholar] [CrossRef]
- Schmitz, W.; Saito, A.Y.; Estevão, D.; Saridakis, H.O. Green tea and its actions as a chemoprotectant. Semin Cienc Biol Saúde 2005, 26, 119–130. [Google Scholar] [CrossRef] [Green Version]
- Alvim, N.A.; Ferreira, M.D.; Cabral, I.E.; Almeida Filho, A.J.D. O uso de plantas medicinais como recurso terapêutico: Das influências da formação professional às implicações éticas e legais de sua aplicabilidade como extensão da prática de cuidar realizada pela enfermeira. Revista Latino-Amer. de Enfer. 2006, 14, 316–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Wang, X.; Guo, J.; Xia, Q.; Zhao, G.; Zhou, H.; Xie, F. Metabolic profiling of Chinese tobacco leaf of different geographical origins by GC-MS. J. Agric. Food Chem. 2013, 61, 2597–2605. [Google Scholar] [CrossRef]
- Saini, S.; Dhiman, A.; Nanda, S. Pharmacognostical and phytochemical studies of Piper betle Linn Leaf. Int. J. Pharm. 2016, 8, 222–226. [Google Scholar]
- Abotaleb, M.; Liskova, A.; Kubatka, P.; Büsselberg, D. Therapeutic potential of plant phenolic acids in the treatment of cancer. Biomolecules 2020, 10, 221. [Google Scholar] [CrossRef] [Green Version]
- Nugroho, A.; Heryani, H.; Choi, J.S.; Park, H.J. Identification and quantification of flavonoids in Carica papaya leaf and peroxynitrite-scavenging activity. Asian Pac. J. Trop. Biomed. 2017, 7, 208–213. [Google Scholar] [CrossRef]
- Anantharaju, P.G.; Gowda, P.C.; Vimalambike, M.G.; Madhunapantula, S.V. An overview on the role of dietary phenolics for the treatment of cancers. Nutr. J. 2016, 15, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Ding, S.; Jiang, H.; Fang, J. Regulation of immune function by polyphenols. J. Immunol. Res. 2018, 2018, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattacharjee, B.; Lakshminarasimhan, P.; Bhattacharjee, A.; Agrawala, D.K.; Pathak, M.K. Vernonia amygdalina Delile (Asteraceae)—African medicinal plant introduced in India. Zoo’s Print 2013, 28, 18–20. [Google Scholar]
- Ijeh, I.I.; Ejike, C.E.C. Current perspectives on the medicinal potentials of Vernonia amygdalina Del. J. Med. Plants Res. 2011, 5, 1051–1061. [Google Scholar]
- Wong, F.C.; Woo, C.C.; Hsu, A.; Tan, B.K.H. The anti-cancer activities of Vernonia amygdalina extract in human breast cancer cell lines are mediated through caspase-dependent and p53-independent pathways. PLoS ONE 2013, 8, e78021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erukainure, O.L.; Chukwuma, C.I.; Sanni, O.; Matsabisa, M.G.; Islam, S. Histochemistry, phenolic content, antioxidant, and anti-diabetic activities of Vernonia amygdalina leaf extract. J. Food Biochem. 2019, 43, e12737. [Google Scholar] [CrossRef]
- Nowak, J.; Wambebe, C.; Mukonzo, J.; Katuura, E. Cytotoxic activity of combining molecular iodine and dihydroartemisinin with methanol extracts of Carica papaya Linn and Vernonia amygdalina Delile leaves against MCF-7 and MDA-MB-231 breast cancer cell lines. Trop. J. Nat. Prod. Res. 2021, 5, 485–493. [Google Scholar]
- Willems, J.L.; Khamis, M.M.; Saeid, W.M.; Purves, R.W.; Katselis, G.; Low, N.H.; El-Aneed, A. Analysis of a series of chlorogenic acid isomers using differential ion mobility and tandem mass spectrometry. Anal. Chim. Acta 2016, 933, 164–174. [Google Scholar] [CrossRef]
- Xue, M.; Shi, H.; Zhang, J.; Liu, Q.Q.; Guan, J.; Zhang, J.Y.; Ma, Q. Stability and degradation of caffeoylquinic acids under different storage conditions studied by high-performance liquid chromatography with photo diode array detection and high-performance liquid chromatography with electrospray ionization collision-induced dissociation tandem mass spectrometry. Molecules 2016, 21, 948. [Google Scholar]
- Barros, L.; Pereira, E.; Calhelha, R.C.; Dueñas, M.; Carvalho, A.M.; Santos-Buelga, C.; Ferreira, I.C. Bioactivity and chemical characterization in hydrophilic and lipophilic compounds of Chenopodium ambrosioides L. J. Funct. Foods 2013, 5, 1732–1740. [Google Scholar] [CrossRef]
- Molina-Montes, E.; Salamanca-Fernández, E.; Garcia-Villanova, B.; Sánchez, M.J. The impact of plant-based dietary patterns on cancer-related outcomes: A rapid review and meta-analysis. Nutrients 2020, 12, 2010. [Google Scholar] [CrossRef]
- Soib, H.H.; Ismail, H.F.; Ya’akob, H.; Idris, M.K.H.; Abd Aziz, A. Effect of extraction solvents on antioxidant and wound healing properties of Carica papaya leaves extract. Food Res. 2020, 4 (Suppl. S2), 76–83. [Google Scholar] [CrossRef]
- Yang, L.; Wen, K.S.; Ruan, X.; Zhao, Y.X.; Wei, F.; Wang, Q. Response of plant secondary metabolites to environmental factors. Molecules 2018, 23, 762. [Google Scholar] [CrossRef] [Green Version]
- Hamed, Y.S.; Abdin, M.; Chen, G.; Akhtar, H.M.; Zeng, X. Effects of impregnate temperature on extraction of caffeoylquinic acid derivatives from Moringa oleifera leaves and evaluation of inhibitory activity on digestive enzyme, antioxidant, anti-proliferative and antibacterial activities of the extract. Int. J. Food Sci. Technol. 2020, 55, 3082–3090. [Google Scholar] [CrossRef]
- Nzekoue, F.K.; Angeloni, S.; Navarini, L.; Angeloni, C.; Freschi, M.; Hrelia, S.; Vitali, L.A.; Sagratini, G.; Vittori, S.; Caprioli, G. Coffee silverskin extracts: Quantification of 30 bioactive compounds by a new HPLC-MS/MS method and evaluation of their antioxidant and antibacterial activities. Food Res. Int. 2020, 133, 109128. [Google Scholar] [CrossRef] [PubMed]
- Trendafilova, A.; Ivanova, V.; Rangelov, M.; Todorova, M.; Ozek, G.; Yur, S.; Ozek, T.; Aneva, I.; Veleva, R.; Moskova-Doumanova, V.; et al. Caffeoylquinic acids, cytotoxic, antioxidant, acetylcholinesterase and tyrosinase enzyme inhibitory activities of six Inula species from Bulgaria. Chem. Biodivers. 2020, 17, e2000051. [Google Scholar] [CrossRef] [PubMed]
- Bourgou, S.; Rebey, I.B.; Mkadmini, K.; Isoda, H.; Ksouri, R.; Ksouri, W.M. LC-ESI-TOF-MS and GC-MS profiling of Artemisia herba-alba and evaluation of its bioactive properties. Food Res. Int. 2017, 99, 702–712. [Google Scholar] [CrossRef] [PubMed]
- Bulgakov, V.P.; Vereshchagina, Y.V.; Veremeichik, G.N. Anticancer polyphenols from cultured plant cells: Production and new bioengineering strategies. Curr. Med. Chem. 2018, 25, 4671–4692. [Google Scholar] [CrossRef]
- Giorgio, C.; Mena, P.; Del Rio, D.; Brighenti, F.; Barocelli, E.; Hassan-Mohamed, I.; Callegari, D.; Lodola, A.; Tognolini, M. The ellagitannin colonic metabolite urolithin D selectively inhibits EphA2 phosphorylation in prostate cancer cells. Mol. Nutr. Food Res. 2015, 59, 2155–2167. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Li, J.; Zhang, X.; Zu, Y.; Yang, Y.; Liu, W.; Xu, Z.; Gao, H.; Sun, X.; Jiang, X.; et al. Current advances in naturally occurring caffeoylquinic acids: Structure, bioactivity, and synthesis. J. Agric. Food Chem. 2020, 68, 10489–10516. [Google Scholar] [CrossRef]
- Murad, L.D.; Soares, N.D.; Brand, C.; Monteiro, M.C.; Teodoro, A.J. Effects of caffeic and 5-caffeoylquinic acids on cell viability and cellular uptake in human colon adenocarcinoma cells. Nutr. Cancer 2015, 67, 532–542. [Google Scholar] [CrossRef]
- Taira, J.; Uehara, M.; Tsuchida, E.; Ohmine, W. Inhibition of the β-catenin/Tcf signaling by caffeoylquinic acids in sweet potato leaf through down regulation of the Tcf-4 transcription. J. Agric. Food Chem. 2014, 62, 167–172. [Google Scholar] [CrossRef]
- Zheleva-Dimitrova, D.; Gevrenova, R.; Zaharieva, M.M.; Najdenski, H.; Ruseva, S.; Lozanov, V.; Balabanova, V.; Yagi, S.; Momekov, G.; Mitev, V. HPLC-UV and LC–MS analyses of acylquinic acids in Geigeria alata (DC) Oliv. & Hiern. and their contribution to antioxidant and antimicrobial capacity. Phytochem. Anal. 2017, 28, 176–184. [Google Scholar]
- Matthews, D.G.; Caruso, M.; Alcazar Magana, A.; Wright, K.M.; Maier, C.S.; Stevens, J.F.; Gray, N.E.; Quinn, J.F.; Soumyanath, A. Caffeoylquinic acids in Centella asiatica reverse cognitive deficits in male 5XFAD Alzheimer’s disease model mice. Nutrients 2020, 12, 3488. [Google Scholar] [CrossRef] [PubMed]
- Tsunoda, T.; Takase, M.; Shigemori, H. Structure-activity relationship of clovamide and its related compounds for the inhibition of amyloid β aggregation. Bioorg. Med. Chem. 2018, 26, 3202–3209. [Google Scholar] [CrossRef] [PubMed]
- Gray, N.E.; Morré, J.; Kelley, J.; Maier, C.S.; Stevens, J.F.; Quinn, J.F.; Soumyanath, A. Caffeoylquinic acids in Centella asiatica protect against amyloid-β toxicity. J. Alzheimers Dis. 2014, 40, 359–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Metwally, D.M.; Alajmi, R.A.; ElKhadragy, M.F.; Yehia, H.M.; AL-Megrin, W.A.; Akabawy, A.M.; Amin, H.K.; Moneim, A.E. Chlorogenic acid confers robust neuroprotection against arsenite toxicity in mice by reversing oxidative stress, inflammation, and apoptosis. J. Funct. Foods 2020, 75, 104202. [Google Scholar] [CrossRef]
- Sasaki, K.; Davies, J.; Doldán, N.G.; Arao, S.; Ferdousi, F.; Szele, F.G.; Isoda, H. 3,4,5-Tricaffeoylquinic acid induces adult neurogenesis and improves deficit of learning and memory in aging model senescence-accelerated prone 8 mice. Aging 2019, 11, 401. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [Green Version]
- David, A.V.; Arulmoli, R.; Parasuraman, S. Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacogn. Rev. 2016, 10, 84–89. [Google Scholar]
- Palombo, R.; Caporali, S.; Falconi, M.; Iacovelli, F.; Morozzo Della Rocca, B.; Lo Surdo, A.; Campione, E.; Candi, E.; Melino, G.; Bernardini, S.; et al. Luteolin-7-O-β-D-glucoside inhibits cellular energy production interacting with HEK2 in keratinocytes. Int. J. Mol. Sci. 2019, 20, 2689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Compounds | Molecular Formula | Retention Time [min] | UV (λmax in nm) | [M-H]− | Fragmentation Ions |
---|---|---|---|---|---|
1. 5-0- caffeoylquinic acid | C16H18O9 | 16.7 | 325 | 353 | 191 |
2. luteolin hexoside | C15H10O6 | 30.5 | 254, 350 | 447 | 285 |
3. 3,4-O-dicaffeoylquinic acid | C25H24O12 | 33.0 | 323 | 515 | 353,191,173,179,135 |
4. 1,5-O-dicaffeoylquinic acid | C25H24O12 | 33.9 | 328 | 515 | 353,335,191 |
5. 3,5-O-dicaffeoylquinic acid | C25H24O12 | 34.2 | 327 | 515 | 353 |
6. 4,5-O-dicaffeoylquinic acid | C25H24O12 | 36.3 | 327 | 515 | 353,191,179,173 |
7. luteolin dihexoside | C27H30O16 | 39.9 | 330 | 609 | 447,285 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowak, J.; Kiss, A.K.; Wambebe, C.; Katuura, E.; Kuźma, Ł. Phytochemical Analysis of Polyphenols in Leaf Extract from Vernonia amygdalina Delile Plant Growing in Uganda. Appl. Sci. 2022, 12, 912. https://doi.org/10.3390/app12020912
Nowak J, Kiss AK, Wambebe C, Katuura E, Kuźma Ł. Phytochemical Analysis of Polyphenols in Leaf Extract from Vernonia amygdalina Delile Plant Growing in Uganda. Applied Sciences. 2022; 12(2):912. https://doi.org/10.3390/app12020912
Chicago/Turabian StyleNowak, Jadwiga, Anna K. Kiss, Charles Wambebe, Esther Katuura, and Łukasz Kuźma. 2022. "Phytochemical Analysis of Polyphenols in Leaf Extract from Vernonia amygdalina Delile Plant Growing in Uganda" Applied Sciences 12, no. 2: 912. https://doi.org/10.3390/app12020912
APA StyleNowak, J., Kiss, A. K., Wambebe, C., Katuura, E., & Kuźma, Ł. (2022). Phytochemical Analysis of Polyphenols in Leaf Extract from Vernonia amygdalina Delile Plant Growing in Uganda. Applied Sciences, 12(2), 912. https://doi.org/10.3390/app12020912