A Method for Optimal Estimation of Shoreline in Cliff Zones Based on Point Cloud Segmentation and Centroid Calculation
Abstract
:1. Introduction
2. Methods
2.1. Data Introduction and Method Flow
2.2. Point Cloud Extraction at the Cliff
2.3. Point Cloud Segmentation at the Cliff
2.4. Calculation of Centroid Points of Each Block and Side Points
2.5. Projection of Side Points and Elevation Correction
2.6. Calculation of the Points of Optimal Coastline and Integration with the Points of Coastline Outside the Cliff
3. Experiment and Analysis
3.1. Experiment on Coastline Extraction at the Cliff
3.2. Comparison with Other Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stockdonf, H.F.; Sallenger, A.H., Jr.; List, J.H.; Holman, R.A. Estimation of Shoreline Position and Change Using Airborne Topographic Lidar Data. J. Coast. Res. Summer 2002, 18, 502–513. [Google Scholar]
- Robertson, W.; Whitman, D.; Zhang, K.; Leatherman, S.P. Mapping Shoreline Position Using Airborne Laser Altimetry. J. Coast. Res. 2004, 203, 884–892. [Google Scholar] [CrossRef]
- Xu, S.; Ye, N.; Xu, S. A new method for shoreline extraction from airborne LiDAR point clouds. Remote Sens. Lett. 2019, 10, 496–505. [Google Scholar] [CrossRef]
- Luque, I.F.; Torres, F.J.A.; Torres, M.A.; García, J.L.P.; Arenas, A.L. A New, Robust, and Accurate Method to Extract Tide-Coordinated Shorelines from Coastal Elevation Models. J. Coast. Res. 2012, 28, 683–699. [Google Scholar] [CrossRef]
- Li, W.; Liu, H.; Qin, C. A method for the extraction of shorelines from airborne lidar data in muddy areas and areas with shoals. Remote Sens. Lett. 2022, 13, 480–491. [Google Scholar] [CrossRef]
- Liu, H.; Sherman, D.; Gu, S. Automated Extraction of Shorelines from Airborne Light Detection and Ranging Data and Accuracy Assessment Based on Monte Carlo Simulation. J. Coast. Res. 2007, 236, 1359–1369. [Google Scholar] [CrossRef]
- Incekara, A.H.; Seker, D.Z.; Bayram, B. Qualifying the LIDAR-Derived Intensity Image as an Infrared Band in NDWI-Based Shoreline Extraction. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 5053–5062. [Google Scholar] [CrossRef]
- Wei, L.; Yang, B.; Jiang, J.; Cao, G. Adaptive algorithm for classifying LiDAR data into water and land points by multi-feature statistics. J. Appl. Remote Sens. 2016, 10, 045020. [Google Scholar] [CrossRef]
- Smeeckaert, J.; Mallet, C.; David, N.; Chehata, N.; Ferraz, A. Large-scale classification of water areas using airborne topographic lidar data. Remote Sens. Environ. 2013, 138, 134–148. [Google Scholar] [CrossRef]
- Yousef, A.; Iftekharuddin, K.M.; Karim, M.A. Shoreline extraction from light detection and ranging digital elevation model data and aerial images. Opt. Eng. 2013, 53, 011006. [Google Scholar] [CrossRef]
- Demir, N.; Bayram, B.; Şeker, D.Z.; Oy, S.; İnce, A.; Bozkurt, S. Advanced Lake Shoreline Extraction Approach by Integration of SAR Image and LIDAR Data. Mar. Geod. 2019, 42, 166–185. [Google Scholar] [CrossRef]
- Sukcharoenpong, A.; Yilmaz, A.; Li, R. An Integrated Active Contour Approach to Shoreline Mapping Using HSI and DEM. IEEE Trans. Geosci. Remote Sens. 2015, 54, 1586–1597. [Google Scholar] [CrossRef]
- Yang, B.; Hwang, C.; Cordell, H.K. Use of LiDAR shoreline extraction for analyzing revetment rock beach protection: A case study of Jekyll Island State Park, USA. Ocean. Coast. Manag. 2012, 69, 1–15. [Google Scholar] [CrossRef]
- Yun, M.; Choi, C. Spatial analysis of Shoreline change in Northwest coast of Taean Peninsula. Korean J. Remote Sens. 2015, 31, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Lee, I.S.; Park, H.J.; Lee, J.O.; Kim, Y.S. Delineating the Natural Features of a Cadastral Shoreline in South Korea Using Airborne Laser Scanning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 905–910. [Google Scholar] [CrossRef]
- Nassif, F.B.; Pimenta, F.M.; D’Aquino, C.D.A.; Assireu, A.T.; Garbossa, L.H.P.; Passos, J.C. Coastal Wind Measurements and Power Assessment. Using a LIDAR on a Pier. Rev. Bras. De Meteorol. 2020, 35, 255–268. [Google Scholar] [CrossRef]
- Yu, C.; Xu, J.; Xu, J.; Zheng, Y.; Li, G. A new method for extracting coastline from LiDAR point cloud. Surv. Mapp. Bull. 2015, 10, 66–68. [Google Scholar] [CrossRef]
- Jiang, H.; Huang, J.; Yu, Y.; Fan, Y.; Dong, G. Coastline extraction method under multiple constraints of coarse and fine grids. J. Surv. Mapp. Sci. Technol. 2020, 37, 392–397. [Google Scholar]
- Yu, C.; Wang, J.; Feng, J.; Xu, J.; Chen, H. A coastline extraction method based on LiDAR point cloud grid. J. Surv. Mapp. Sci. Technol. 2015, 32, 187–191+196. [Google Scholar]
- Bengoufa, S.; Niculescu, S.; Mihoubi, M.K.; Belkessa, R.; Abbad, K. Rocky Shoreline Extraction Using A Deep Learning Model And Object-Based Image Analysis. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, XLIII-B3-2021, 23–29. [Google Scholar] [CrossRef]
- Sun, W.; Ma, Y.; Zhang, J.; Liu, S.; Ren, G. Study of Remote Sensing Interpretation Keys and Extraction Technique of Different types of Shoreline. Bull. Surv. Mapp. 2011, 3, 41–44. [Google Scholar]
Method | Total No. of Points | Error Range (Points) | Standard Deviation (m) | Variance (m2) | |||||
---|---|---|---|---|---|---|---|---|---|
>1 | 0.8–1.0 | 0.6–0.8 | 0.4–0.6 | 0.2–0.4 | 0.0–0.2 | ||||
Proposed | 254 | 0 | 0 | 21 | 62 | 54 | 117 | 0.1528 | 0.0233 |
Contour tracking | 254 | 2 | 6 | 85 | 156 | 5 | 0 | 0.3658 | 0.1338 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Liu, H.; Qin, C. A Method for Optimal Estimation of Shoreline in Cliff Zones Based on Point Cloud Segmentation and Centroid Calculation. Appl. Sci. 2022, 12, 10810. https://doi.org/10.3390/app122110810
Li W, Liu H, Qin C. A Method for Optimal Estimation of Shoreline in Cliff Zones Based on Point Cloud Segmentation and Centroid Calculation. Applied Sciences. 2022; 12(21):10810. https://doi.org/10.3390/app122110810
Chicago/Turabian StyleLi, Weihua, Hao Liu, and Changcai Qin. 2022. "A Method for Optimal Estimation of Shoreline in Cliff Zones Based on Point Cloud Segmentation and Centroid Calculation" Applied Sciences 12, no. 21: 10810. https://doi.org/10.3390/app122110810
APA StyleLi, W., Liu, H., & Qin, C. (2022). A Method for Optimal Estimation of Shoreline in Cliff Zones Based on Point Cloud Segmentation and Centroid Calculation. Applied Sciences, 12(21), 10810. https://doi.org/10.3390/app122110810