Intracranial Hemorrhages Segmentation and Features Selection Applying Cuckoo Search Algorithm with Gated Recurrent Unit
Abstract
:1. Introduction
- Developed FCM clustering algorithm for segmenting the diseased portions from the collected 3D brain scans. The FCM clustering algorithm gives good results in the overlapped database, and it is comparatively better than other considered clustering algorithms.
- Performed hybrid feature extraction using HoG, LTP, and LBP descriptors. The hybrid feature extraction includes advantages such as improved data visualization, a sped-up training process, an increase in explainability, and overfitting risk reduction.
- Developed CSO algorithm for feature optimization to diminish the dimension of the extracted feature vectors that reduce the complexity of the system and computational time.
- Proposed OGRU model for classifying 3D brain image classes, namely Intraparenchymal, Subdural, Subarachnoid, Intraventricular, Epidural, and any other. The proposed OGRU model includes Broyden Fletcher Goldfarb Shanno’s (BFGS) algorithm to resolve the un-constrained non-linear optimization issues.
- Proposed OGRU-CSO model’s efficiency is investigated by utilizing evaluation measures such as Matthews Correlation Coefficient (MCC), precision, f-measure, specificity, recall, and accuracy.
2. Related Works
3. Methodology
3.1. Image Collection
3.2. Image Segmentation
3.3. Hybrid Feature Extraction
3.4. Feature Optimization
3.5. Classification
4. Experimental Results
4.1. Quantitative Evaluation
4.2. Comparative Evaluation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, L.; Wei, M.; Liu, B.; Atchaneeyasakul, K.; Zhou, F.; Pan, Z.; Kumar, S.A.; Zhang, J.Y.; Pu, Y.; Liebeskind, D.S.; et al. Deep learning for hemorrhagic lesion detection and segmentation on brain CT images. IEEE J. Biomed. Health Inform. 2020, 25, 1646–1659. [Google Scholar] [CrossRef] [PubMed]
- Remedios, S.W.; Roy, S.; Bermudez, C.; Patel, M.B.; Butman, J.A.; Landman, B.A.; Pham, D.L. Distributed deep learning across multisite datasets for generalized CT hemorrhage segmentation. Med. Phys. 2020, 47, 89–98. [Google Scholar] [CrossRef]
- Karki, M.; Cho, J.; Lee, E.; Hahm, M.H.; Yoon, S.Y.; Kim, M.; Ahn, J.Y.; Son, J.; Park, S.H.; Kim, K.H.; et al. CT window trainable neural network for improving intracranial hemorrhage detection by combining multiple settings. Artif. Intell. Med. 2020, 106, 101850. [Google Scholar] [CrossRef] [PubMed]
- Kuo, W.; Häne, C.; Mukherjee, P.; Malik, J.; Yuh, E.L. Expert-level detection of acute intracranial hemorrhage on head computed tomography using deep learning. Proc. Natl. Acad. Sci. USA 2019, 116, 22737–22745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duperron, M.G.; Tzourio, C.; Schilling, S.; Zhu, Y.C.; Soumare, A.; Mazoyer, B.; Debette, S. High dilated perivascular space burden: A new MRI marker for risk of intracerebral hemorrhage. Neurobiol. Aging 2019, 84, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Imran, R.; Hassan, N.; Tariq, R.; Amjad, L.; Wali, A. Intracranial Brain Haemorrhage Segmentation and Classification. Iksp J. Comput. Sci. Eng. 2021, 1, 52–56. [Google Scholar]
- Lee, J.Y.; Kim, J.S.; Kim, T.Y.; Kim, Y.S. Detection and classification of intracranial haemorrhage on CT images using a novel deep-learning algorithm. Sci. Rep. 2020, 10, 20546. [Google Scholar] [CrossRef]
- Lee, H.; Yune, S.; Mansouri, M.; Kim, M.; Tajmir, S.H.; Guerrier, C.E.; Ebert, S.A.; Pomerantz, S.R.; Romero, J.M.; Kamalian, S.; et al. An explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasets. Nat. Biomed. Eng. 2019, 3, 173–182. [Google Scholar] [CrossRef]
- Huang, J.L.; Woehrle, T.A.; Conway, P.; McCarty, C.A.; Eyer, M.M.; Eyer, S.D. Evaluation of a protocol for early detection of delayed brain hemorrhage in head injured patients on warfarin. Eur. J. Trauma Emerg. Surg. 2019, 45, 481–487. [Google Scholar] [CrossRef]
- Anupama, C.S.S.; Sivaram, M.; Lydia, E.L.; Gupta, D.; Shankar, K. Synergic deep learning model-based automated detection and classification of brain intracranial hemorrhage images in wearable networks. Pers. Ubiquitous Comput. 2022, 26, 1–10. [Google Scholar] [CrossRef]
- Raghavendra, U.; Pham, T.; Gudigar, A.; Vidhya, V.; Rao, B.N.; Sabut, S.; Wei, J.K.E.; Ciaccio, E.J.; Acharya, U.R. Novel and accurate non-linear index for the automated detection of haemorrhagic brain stroke using CT images. Complex. Intell. Syst. 2021, 7, 929–940. [Google Scholar] [CrossRef]
- Hssayeni, M.D.; Croock, M.S.; Salman, A.D.; Al-khafaji, H.F.; Yahya, Z.A.; Ghoraani, B. Intracranial hemorrhage segmentation using a deep convolutional model. Data 2020, 5, 14. [Google Scholar] [CrossRef] [Green Version]
- Ye, H.; Gao, F.; Yin, Y.; Guo, D.; Zhao, P.; Lu, Y.; Wang, X.; Bai, J.; Cao, K.; Song, Q.; et al. Precise diagnosis of intracranial hemorrhage and subtypes using a three-dimensional joint convolutional and recurrent neural network. Eur. Radiol. 2019, 29, 6191–6201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sage, A.; Badura, P. Intracranial hemorrhage detection in head CT using double-branch convolutional neural network, support vector machine, and random forest. Appl. Sci. 2020, 10, 7577. [Google Scholar] [CrossRef]
- Burduja, M.; Ionescu, R.T.; Verga, N. Accurate and efficient intracranial hemorrhage detection and subtype classification in 3D CT scans with convolutional and long short-term memory neural networks. Sensors 2020, 20, 5611. [Google Scholar] [CrossRef]
- Wang, X.; Shen, T.; Yang, S.; Lan, J.; Xu, Y.; Wang, M.; Zhang, J.; Han, X. A deep learning algorithm for automatic detection and classification of acute intracranial hemorrhages in head CT scans. NeuroImage Clin. 2021, 32, 102785. [Google Scholar] [CrossRef]
- Gautam, A.; Raman, B. Towards effective classification of brain hemorrhagic and ischemic stroke using CNN. Biomed. Signal. Processing Control 2021, 63, 102178. [Google Scholar] [CrossRef]
- Mansour, R.F.; Aljehane, N.O. An optimal segmentation with deep learning based inception network model for intracranial hemorrhage diagnosis. Neural Comput. Appl. 2021, 33, 13831–13843. [Google Scholar] [CrossRef]
- Kumar, I.; Bhatt, C.; Singh, K.U. Entropy based automatic unsupervised brain intracranial hemorrhage segmentation using CT images. J. King Saud Univ. Comput. Inf. Sci. 2020, 34, 2589–2600. [Google Scholar] [CrossRef]
- Patel, A.; Leemput, S.C.V.D.; Prokop, M.; Ginneken, B.V.; Manniesing, R. Image level training and prediction: Intracranial hemorrhage identification in 3D non-contrast CT. IEEE Access 2019, 7, 92355–92364. [Google Scholar] [CrossRef]
- Huang, H.; Meng, F.; Zhou, S.; Jiang, F.; Manogaran, G. Brain image segmentation based on FCM clustering algorithm and rough set. IEEE Access 2019, 7, 12386–12396. [Google Scholar] [CrossRef]
- Dubey, Y.K.; Mushrif, M.M. FCM clustering algorithms for segmentation of brain MR images. Adv. Fuzzy Syst. 2016, 2016, 3406406. [Google Scholar] [CrossRef] [Green Version]
- Kapoor, R.; Gupta, R.; Son, L.H.; Jha, S.; Kumar, R. Detection of power quality event using histogram of oriented gradients and support vector machine. Measurement 2018, 120, 52–75. [Google Scholar] [CrossRef]
- Nigam, S.; Singh, R.; Misra, A.K. Efficient facial expression recognition using histogram of oriented gradients in wavelet domain. Multimed. Tools Appl. 2018, 77, 28725–28747. [Google Scholar] [CrossRef]
- Turkoglu, M.; Hanbay, D. Leaf-based plant species recognition based on improved local binary pattern and extreme learning machine. Phys. A: Stat. Mech. Its Appl. 2019, 527, 121297. [Google Scholar] [CrossRef]
- Kanwal, N.; Girdhar, A.; Kaur, L.; Bhullar, J.S. Digital image splicing detection technique using optimal threshold based local ternary pattern. Multimed. Tools Appl. 2020, 79, 12829–12846. [Google Scholar] [CrossRef]
- Mareli, M.; Twala, B. An adaptive Cuckoo search algorithm for optimisation. Appl. Comput. Inform. 2018, 14, 107–115. [Google Scholar] [CrossRef]
- Cuong-Le, T.; Minh, H.L.; Khatir, S.; Wahab, M.A.; Tran, M.T.; Mirjalili, S. A novel version of Cuckoo search algorithm for solving optimization problems. Expert Syst. Appl. 2021, 186, 115669. [Google Scholar] [CrossRef]
- Chen, J.; Jing, H.; Chang, Y.; Liu, Q. Gated recurrent unit based recurrent neural network for remaining useful life prediction of nonlinear deterioration process. Reliab. Eng. Syst. Saf. 2019, 185, 372–382. [Google Scholar] [CrossRef]
- Xu, C.; Shen, J.; Du, X.; Zhang, F. An intrusion detection system using a deep neural network with gated recurrent units. IEEE Access 2018, 6, 48697–48707. [Google Scholar] [CrossRef]
CSO Algorithm with 50% Training and 50% Testing of Data | ||||||
---|---|---|---|---|---|---|
Classifiers | Precision (%) | Recall (%) | F-Measure (%) | MCC (%) | Specificity (%) | Accuracy (%) |
ANFIS | 78.30 | 74.90 | 81.81 | 80.80 | 72.90 | 74.82 |
Autoencoder | 80.88 | 78.50 | 82.88 | 85.55 | 80 | 82.40 |
RNN | 82.24 | 80.80 | 86.67 | 86.90 | 82.24 | 84.58 |
DBN | 86.90 | 84.80 | 86.66 | 87.98 | 86 | 87.77 |
LSTM | 82.34 | 87.78 | 87.20 | 88.90 | 87.40 | 88.90 |
GRU | 88.90 | 88.68 | 88.50 | 90.18 | 88.90 | 90.08 |
OGRU | 92.80 | 90.28 | 91.90 | 92.91 | 90.48 | 90.88 |
CSO Algorithm with 80% Training and 20% Testing of Data | ||||||
---|---|---|---|---|---|---|
Classifiers | Precision (%) | Recall (%) | F-Measure (%) | MCC (%) | Specificity (%) | Accuracy (%) |
ANFIS | 94.50 | 94.09 | 93.40 | 90.83 | 92.30 | 94.32 |
Autoencoder | 93.30 | 90.55 | 92.80 | 96.97 | 93.20 | 92.47 |
RNN | 88.78 | 89.80 | 89.29 | 86 | 91.10 | 93.50 |
DBN | 95.98 | 94.30 | 96.66 | 97.99 | 96.90 | 97.48 |
LSTM | 97.90 | 97.74 | 97.82 | 98.94 | 97.43 | 98.93 |
GRU | 98.98 | 98.65 | 98.50 | 99 | 98.98 | 99.04 |
OGRU | 99.86 | 99.25 | 99.34 | 99.67 | 99.40 | 99.36 |
OGRU Model With 50% Training and 50% Testing of Data | ||||||
---|---|---|---|---|---|---|
Optimizers | Precision (%) | Recall (%) | F-Measure (%) | MCC (%) | Specificity (%) | Accuracy (%) |
ACO | 78.90 | 80.10 | 79.00 | 78.00 | 80.54 | 82.36 |
ABC | 82.50 | 80.55 | 80.92 | 77.97 | 85.96 | 84.45 |
PSO | 84.66 | 82.20 | 81.82 | 78.20 | 84.68 | 85.59 |
GA | 88.70 | 84.58 | 84.73 | 79.84 | 87.68 | 86.48 |
WOA | 88.78 | 86.94 | 85.86 | 80.50 | 88.80 | 88.87 |
GOA | 88.90 | 87.87 | 88.96 | 82.90 | 89.90 | 89.19 |
CSO | 92.80 | 90.28 | 91.90 | 92.91 | 90.48 | 90.88 |
OGRU Model with 80% Training and 20% Testing of Data | ||||||
---|---|---|---|---|---|---|
Optimizers | Precision (%) | Recall (%) | F-Measure (%) | MCC (%) | Specificity (%) | Accuracy (%) |
ACO | 91.40 | 90.90 | 90.00 | 93.80 | 90.40 | 92.30 |
ABC | 92.50 | 90.50 | 93.90 | 97.90 | 95.90 | 94.40 |
PSO | 89.70 | 93.50 | 95.85 | 93.29 | 94.67 | 95.55 |
GA | 94.00 | 94.56 | 97.65 | 97.80 | 97.65 | 96.40 |
WOA | 96.70 | 96.90 | 98.80 | 98.70 | 98.40 | 98.99 |
GOA | 98.90 | 97.69 | 98.97 | 99.09 | 99.00 | 99.11 |
CSO | 99.86 | 99.25 | 99.34 | 99.67 | 99.40 | 99.36 |
OGRU-CSO Model with 50:50% Training and Testing of Data | ||||||
---|---|---|---|---|---|---|
Features | Precision (%) | Recall (%) | F-Measure (%) | MCC (%) | Specificity (%) | Accuracy (%) |
HoG | 78.62 | 88.82 | 83.40 | 90.99 | 90.22 | 90.00 |
LBP | 88.50 | 90.13 | 90.14 | 89.77 | 89.65 | 90.02 |
LTP | 90.70 | 82.89 | 90.78 | 90.24 | 88.66 | 82.93 |
Hybrid | 92.80 | 90.28 | 91.90 | 92.91 | 90.48 | 90.88 |
OGRU-CSO Model with 80:20% Training and Testing of Data | ||||||
---|---|---|---|---|---|---|
Features | Precision (%) | Recall (%) | F-Measure (%) | MCC (%) | Specificity (%) | Accuracy (%) |
HoG | 92.52 | 91.09 | 93.02 | 92.87 | 92.43 | 93.36 |
LBP | 94.55 | 93.43 | 93.94 | 93.55 | 94.08 | 93.42 |
LTP | 93.72 | 94.88 | 96.77 | 94.20 | 94.60 | 96.90 |
Hybrid | 99.86 | 99.25 | 99.34 | 99.67 | 99.40 | 99.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sengupta, J.; Alzbutas, R. Intracranial Hemorrhages Segmentation and Features Selection Applying Cuckoo Search Algorithm with Gated Recurrent Unit. Appl. Sci. 2022, 12, 10851. https://doi.org/10.3390/app122110851
Sengupta J, Alzbutas R. Intracranial Hemorrhages Segmentation and Features Selection Applying Cuckoo Search Algorithm with Gated Recurrent Unit. Applied Sciences. 2022; 12(21):10851. https://doi.org/10.3390/app122110851
Chicago/Turabian StyleSengupta, Jewel, and Robertas Alzbutas. 2022. "Intracranial Hemorrhages Segmentation and Features Selection Applying Cuckoo Search Algorithm with Gated Recurrent Unit" Applied Sciences 12, no. 21: 10851. https://doi.org/10.3390/app122110851
APA StyleSengupta, J., & Alzbutas, R. (2022). Intracranial Hemorrhages Segmentation and Features Selection Applying Cuckoo Search Algorithm with Gated Recurrent Unit. Applied Sciences, 12(21), 10851. https://doi.org/10.3390/app122110851