Digital Calibration for Gain, Time Skew, and Bandwidth Mismatch in Under-Sampling Time-Interleaved System
Abstract
:1. Introduction
2. System Model and the Correction of Offset, Gain, Time Skew, and Bandwidth Mismatch
2.1. System Model
2.2. Correction of Offset, Gain, Time Skew, and Bandwidth Mismatch
3. The Extraction of Offset, Gain, Time Skew, and Bandwidth Mismatch
3.1. The Extraction of the Offset and Gain
3.2. The Extraction of the Gain, Time Skew and Bandwidth Mismatch
4. Test Verification
4.1. A Fixed Fractional Delay Filter
4.2. Simulation Result
4.3. Measurement Result
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TI-ADCs | Time-interleaved analog-to-digital converters |
LS | Least squares |
ADCs | Analog-to-digital converters |
SAR | Successive-approximation-register |
ADC | Analog-to-digital converter |
FPGA | Field-programmable gate array |
WSS | Wide-sense stationary |
DTFT | Discrete-time Fourier Transform |
IDTFT | Inverse discrete-time Fourier transform |
SNDR | Signal-to-noise distortion ratio |
SFDR | Spurious-free dynamic Rrange |
References
- Jiang, W.; Zhu, Y.; Zhang, M.; Chan, C.-H.; Martins, R.P. A Temperature-Stabilized Single-Channel 1-GS/s 60-dB SNDR SAR-Assisted Pipelined ADC With Dynamic Gm-R-Based Amplifier. IEEE J. Solid-State Circuits 2020, 55, 322. [Google Scholar] [CrossRef]
- Black, W.C.; Hodges, D.A. Time Interleaved Converter Arrays. IEEE J. Solid-State Circuits 1980, 15, 1022. [Google Scholar] [CrossRef]
- Seong, K.; Jung, D.-K.; Yoon, D.-H.; Han, J.-S.; Kim, J.-E.; Kim, T.T.-H.; Lee, W.; Baek, K.-H. Time-Interleaved SAR ADC with Background Timing-Skew Calibration for UWB Wireless Communication in IoT Systems. Sensors 2020, 20, 2430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Zhou, Y.; Zhao, J.; Niu, G.; Luo, X. Joint Error Estimation and Calibration Method of Memory Nonlinear Mismatch for a Four-Channel 16-Bit TIADC System. Sensors 2022, 22, 2427. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Sahoo, B.D. Closed-Form Expression for the Combined Effect of Offset, Gain, Timing, and Bandwidth Mismatch in Time-Interleaved ADCs Using Generalized Sampling. IEEE Trans. Instrum. Meas. 2021, 70, 1–12. [Google Scholar] [CrossRef]
- Ding, H.; Wu, D.; Zheng, X.; Zhou, L.; Chen, T.; Lv, F.; Wang, J.; An, B.; Wu, J.; Liu, X. A Low-Distortion 20 GS/s Four-Channel Time-Interleaved Sample-and-Hold Amplifier in 0.18 μm SiGe BiCMOS. Electronics 2020, 9, 20. [Google Scholar] [CrossRef] [Green Version]
- Adıyaman, M.Y.; Karalar, T.C. Time-interleaved SAR ADC design with background calibration. Int. J. Circuit Theory Appl. 2020, 48, 321–334. [Google Scholar] [CrossRef]
- Su, C.K.; Hurst, P.J.; Lewis, S.H. A Time-Interleaved SAR ADC With Signal-Independent Background Timing Calibration. IEEE Trans. Circuits Syst. I Regul. Pap. 2022, 69, 620. [Google Scholar] [CrossRef]
- Chang, D.-J.; Choi, M.; Ryu, S.-T. A 28-nm 10-b 2.2-GS/s 18.2-mW Relative-Prime Time-Interleaved Sub-Ranging SAR ADC With On-Chip Background Skew Calibration. IEEE J. Solid-State Circuits 2021, 56, 2691. [Google Scholar] [CrossRef]
- Järvinen, O.; Kempi, I.; Unnikrishnan, V.; Stadius, K.; Kosunen, M.; Ryynänen, J. Fully Digital On-Chip Wideband Background Calibration for Channel Mismatches in Time-Interleaved Time-Based ADCs. IEEE Solid-State Circuits Lett. 2022, 5, 9. [Google Scholar] [CrossRef]
- Niu, H.; Yuan, J. A Spectral-Correlation-Based Blind Calibration Method for Time-Interleaved ADCs. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 5007. [Google Scholar] [CrossRef]
- Jiang, W.; Zhu, Y.; Chan, C.H.; Murmann, B.; Martins, R.P. A 7-bit 2 GS/s Time-Interleaved SAR ADC With Timing Skew Calibration Based on Current Integrating Sampler. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 557. [Google Scholar] [CrossRef]
- Liu, S.; Zhao, L.; Li, S. A Novel All-Digital Calibration Method for Timing Mismatch in Time-Interleaved ADC Based on Modulation Matrix. IEEE Trans. Circuits Syst. I Regul. Pap. 2022, 69, 2955. [Google Scholar] [CrossRef]
- Guo, M.; Mao, J.; Sin, S.-W.; Wei, H.; Martins, R.P. A 1.6-GS/s 12.2-mW Seven-/Eight-Way Split Time-Interleaved SAR ADC Achieving 54.2-dB SNDR With Digital Background Timing Mismatch Calibration. IEEE J. Solid-State Circuits 2020, 55, 693. [Google Scholar] [CrossRef]
- Lu, Z.; Tang, H.; Ren, Z.; Hua, R.; Zhuang, H.; Peng, X. A Timing Mismatch Background Calibration Algorithm with Improved Accuracy. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2021, 29, 1591. [Google Scholar] [CrossRef]
- Ta, V.-T.; Hoang, V.-P.; Pham, V.-P.; Pham, C.-K. An Improved All-Digital Background Calibration Technique for Channel Mismatches in High Speed Time-Interleaved Analog-to-Digital Converters. Electronics 2020, 9, 73. [Google Scholar] [CrossRef] [Green Version]
- Lan, J.; Zhai, D.; Chen, Y.; Ni, Z.; Shen, X.; Ye, F.; Ren, J. A 2.5-GS/s Four-Way-Interleaved Ringamp-Based Pipelined-SAR ADC with Digital Background Calibration in 28-nm CMOS. Electronics 2021, 10, 3173. [Google Scholar] [CrossRef]
- Liu, X.; Xu, H.; Johansson, H.; Wang, Y.; Li, N. Correlation-Based Calibration for Nonlinearity Mismatches in Dual-Channel TIADCs. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 585. [Google Scholar] [CrossRef]
- Tavares, Y.A.; Lee, M. A Foreground Calibration for M-Channel Time-Interleaved Analog-to-Digital Converters Based on Genetic Algorithm. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 1444. [Google Scholar] [CrossRef]
- Miki, T.; Ozeki, T.; Naka, J. A 2-GS/s 8-bit Time-Interleaved SAR ADC for Millimeter-Wave Pulsed Radar Baseband SoC. IEEE J. Solid-State Circuits 2017, 52, 2712. [Google Scholar] [CrossRef]
- Park, Y.; Kim, J.; Kim, C. A Scalable Bandwidth Mismatch Calibration Technique for Time-Interleaved ADCs. IEEE Trans. Circuits Syst. I Regul. Pap. 2016, 63, 1889. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Lee, T.-C. A 12-bit 210-MS/s 2-Times Interleaved Pipelined-SAR ADC With a Passive Residue Transfer Technique. IEEE Trans. Circuits Syst. I Regul. Pap. 2016, 63, 929. [Google Scholar] [CrossRef]
- Stepanovic, D.; Nikolic, B. A 2.8 GS/s 44.6 mW Time-Interleaved ADC Achieving 50.9 dB SNDR and 3 dB Effective Resolution Bandwidth of 1.5 GHz in 65 nm CMOS. IEEE J. Solid-State Circuits 2013, 48, 971. [Google Scholar] [CrossRef]
- Song, J.; Ragab, K.; Tang, X.; Sun, N. A 10-b 800-MS/s Time-Interleaved SAR ADC With Fast Variance-Based Timing-Skew Calibration. IEEE J. Solid-State Circuits 2017, 52, 2563. [Google Scholar] [CrossRef]
- El-Chammas, M.; Murmann, B. A 12-GS/s 81-mW 5-bit Time-Interleaved Flash ADC With Background Timing Skew Calibration. IEEE J. Solid-State Circuits 2011, 46, 838. [Google Scholar] [CrossRef]
- Le Duc, H. All-Digital Calibration of Timing Skews for TIADCs Using the Polyphase Decomposition. IEEE Trans. Circuits Syst. II Express Briefs 2016, 63, 99. [Google Scholar] [CrossRef]
- Qiu, Y.; Liu, Y.-J.; Zhou, J.; Zhang, G.; Chen, D.; Du, N. All-Digital Blind Background Calibration Technique for Any Channel Time-Interleaved ADC. IEEE Trans. Circuits Syst. I Regul. Pap. 2018, 65, 2503. [Google Scholar] [CrossRef]
- Ta, V.T.; Hoang, V.P.; Tran, X.N. All-Digital Background Calibration Technique for Offset, Gain and Timing Mismatches in Time-Interleaved ADCs. EAI Endorsed Trans. Ind. Netw. Intell. Syst. 2019, 19, 21. [Google Scholar] [CrossRef]
- Jun, J. A condensed Cramer’s rule for the minimum norm least-squares solution of linear equations. Linear Algebra Its Appl. 2012, 437, 9. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Zhu, Z.; Ding, R.; Liu, M.; Yang, Y.; Sun, N. A 10-Bit 600-MS/s Time-Interleaved SAR ADC With Interpolation-Based Timing Skew Calibration. IEEE Trans. Circuits Syst. II Express Briefs 2019, 66, 16–24. [Google Scholar] [CrossRef]
- Yin, M.; Ye, Z. First Order Statistic Based Fast Blind Calibration of Time Skews for Time-Interleaved ADCs. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 162–166. [Google Scholar] [CrossRef]
Sub-ADC Number | Offset | Gain | Time Skew | Bandwidth |
---|---|---|---|---|
1 | 0 | 1 | 0 | 4 × fs |
2 | 0 | 1 | 0 | 1 × fs |
3 | 0 | 1 | 0 | 2 × fs |
4 | 0 | 1 | 0 | 3 × fs |
5 | 0 | 1 | 0 | 1 × fs |
6 | 0 | 1 | 0 | 2 × fs |
7 | 0 | 1 | 0 | 3 × fs |
8 | 0 | 1 | 0 | 3 × fs |
Parameter | Filter Design Method | Number of Taps |
---|---|---|
Fractional delay filters | Blackman Window | 73 |
Hilbert transform filters | Blackman Window | 73 |
Sub-ADC Number | Offset | Gain | Time Skew | Bandwidth |
---|---|---|---|---|
1 | 0.000 | 1.000 | 0.000 | |
2 | 0.000 | 1.400 | ||
3 | 0.000 | 1.300 | ||
4 | 0.000 | 1.200 | ||
5 | 0.000 | 1.100 | ||
6 | 0.000 | 1.200 | ||
7 | 0.000 | 1.300 | ||
8 | 0.000 | 1.100 |
[13] Work | [16] Work | [27] Work | [30] Work | [31] Work | This Work | |
---|---|---|---|---|---|---|
Mismatch types | T | O 1, G 2, T 3 | O, G, T | T | T | G, T, B 4 |
Blind calibration | Yes | Yes | Yes | Yes | Yes | Yes |
Background calibration | Yes | Yes | Yes | Yes | Yes | Yes |
Number of sub-ADC channels | 4 | 4 | 4 | 4 | 4 | 4 |
Number of bits | 12 | 11 | 9 | 10 | N/A | 12 |
Input frequency | 0.06fS | 0.45fS | 0.18fS | 0.167fS | 0.167fS | 0.167fS |
Convergence time | 110 K | 10 K | 40 K | 80 K | 3.1 K | N/A |
Filter taps with estimation time skew | 31 | 33 | 12 | 15 | 21 | 73 |
Samples with estimation time skew | 110 K | 10 K | 40 K | 80 K | 3.1 K | 2 K |
The number of adders | N/A | N/A | ||||
The number of multipliers | N/A | N/A | ||||
SNDR improvement (dB) | 25.31 | 43.7 | 36.55 | 19 | 19 | 38.36 |
SFDR improvement (dB) | 38.52 | 74 | 43.72 | 24.2 | 24.2 | 55.75 |
The effective number of bits (bit) | N/A | 9.61 | 9.02 | 7.95 | 11.20 | 9.72 |
Parameter | Test Conditions | Typical Values | Unit |
---|---|---|---|
The effective number of bits (ENOB) | The input frequency is 2482 MHz (dual-channel mode) | 8.0 | Bits |
Resolution | Resolution with no missing codes | 12 | Bits |
Differential nonlinearity (DNL) | Maximum positive excursion from the ideal step size | 0.3 | LSB |
Maximum negative excursion from the ideal step size | −0.3 | ||
Integral nonlinearity (INL) | Maximum positive excursion from the ideal transfer function | 1.6 | LSB |
Maximum negative excursion from the ideal transfer function | −2.0 | ||
Analog differential input full-scale range | Default | 800 | mV |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, M.; Yi, P. Digital Calibration for Gain, Time Skew, and Bandwidth Mismatch in Under-Sampling Time-Interleaved System. Appl. Sci. 2022, 12, 11029. https://doi.org/10.3390/app122111029
Hu M, Yi P. Digital Calibration for Gain, Time Skew, and Bandwidth Mismatch in Under-Sampling Time-Interleaved System. Applied Sciences. 2022; 12(21):11029. https://doi.org/10.3390/app122111029
Chicago/Turabian StyleHu, Min, and Pengxing Yi. 2022. "Digital Calibration for Gain, Time Skew, and Bandwidth Mismatch in Under-Sampling Time-Interleaved System" Applied Sciences 12, no. 21: 11029. https://doi.org/10.3390/app122111029
APA StyleHu, M., & Yi, P. (2022). Digital Calibration for Gain, Time Skew, and Bandwidth Mismatch in Under-Sampling Time-Interleaved System. Applied Sciences, 12(21), 11029. https://doi.org/10.3390/app122111029