Unified Evolutionary Algorithm Framework for Hybrid Power Converter
Abstract
:1. Introduction
- Introduce a modified hybrid converter that simultaneously optimizes three variables (duty cycle D, scale factor k, and DZ);
- A new framework to be designed for the hybrid power converter;
- We proposed a unified EA to minimize the input-current ripple;
- A hybrid algorithm that combines DE and GA is suggested to enhance the current model’s performance.
2. Background
2.1. Existing Hybrid Power Converters
2.1.1. The Case of D > DZ
2.1.2. The Case of D < DZ
2.2. Differential Evolution (DE)
2.3. Genetic Algorithm (GA)
3. Proposed Methodology
3.1. Modified Hybrid Power Converter
3.2. Unified Evolutionary Algorithm
4. Simulation Setup and Results
4.1. Comparison between the Proposed Method and Baseline Algorithm
4.2. Further Analysis on the Proposed Method
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rahal-Arabi, T.; Park, H.-J.; Hahn, J. Power delivery for the next generation mobile platform. In Proceedings of the 2008 Electrical Design of Advanced Packaging and Systems Symposium, Seoul, Korea, 10–12 December 2008. [Google Scholar]
- Williams, B.W. Unified Synthesis of Tapped-Inductor DC-to-DC Converters. IEEE Trans. Power Electron. 2013, 29, 5370–5383. [Google Scholar] [CrossRef]
- Pavlovic, T.; Bjazic, T.; Ban, Z. Simplified Averaged Models of DC–DC Power Converters Suitable for Controller Design and Microgrid Simulation. IEEE Trans. Power Electron. 2012, 28, 3266–3275. [Google Scholar] [CrossRef]
- Hegazy, O.; Van Mierlo, J.; Lataire, P. Analysis, Modeling, and Implementation of a Multidevice Interleaved DC/DC Converter for Fuel Cell Hybrid Electric Vehicles. IEEE Trans. Power Electron. 2012, 27, 4445–4458. [Google Scholar] [CrossRef]
- Rosas-Caro, J.C.; Ramirez, J.M.; Peng, F.Z.; Valderrabano, A. A DC–DC multilevel boost converter. IET Power Electron. 2010, 3, 129–137. [Google Scholar] [CrossRef]
- Berrezzek, F. A study of new techniques of controlled PWM inverters. Eur. J. Sci. Res. 2009, 32, 77–87. [Google Scholar]
- Carrara, G.; Gardella, S.; Marchesoni, M.; Salutari, R.; Sciutto, G. A new multilevel PWM method: A theoretical analysis. IEEE Trans. Power Electron. 1992, 7, 497–505. [Google Scholar] [CrossRef]
- Palakonda, V.; Awad, N.H.; Mallipeddi, R.; Ali, M.; Veluvolu, K.C.; Suganthan, P.N. Differential evolution with stochastic selection for uncertain environments: A smart grid application. In Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil, 8–13 July 2018. [Google Scholar] [CrossRef]
- Ramlan, F.W.; Palakonda, V.; Mallipeddi, R. Differential Evolutionary (DE) Based Interactive Recoloring Based on YUV Based Edge Detection for Interior Design. In Proceedings of the 2019 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Korea, 16–18 October 2019. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Holland, J.H. Adaptation in Natural and Artificial Systems, 1st ed.; University of Michigan Press: Ann Arbor, MI, USA, 1975. [Google Scholar]
- Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the MHS’95, Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995. [Google Scholar]
- Ghorbanpour, S.; Pamulapati, T.; Mallipeddi, R. Swarm and evolutionary algorithms for energy disaggregation: Challenges and prospects. Int. J. Bio-Inspired Comput. 2021, 17, 215–226. [Google Scholar] [CrossRef]
- Ghorbanpour, S.; Pamulapati, T.; Mallipeddi, R.; Lee, M. Energy disaggregation considering least square error and temporal sparsity: A multi-objective evolutionary approach. Swarm Evol. Comput. 2021, 64, 100909. [Google Scholar] [CrossRef]
- Banerjee, S.; Ghosh, A.; Rana, N. An Improved Interleaved Boost Converter With PSO-Based Optimal Type-III Controller. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 5, 323–337. [Google Scholar] [CrossRef]
- Laoprom, I.; Tunyasrirut, S. Design of PI Controller for Voltage Controller of Four-Phase Interleaved Boost Converter Using Particle Swarm Optimization. J. Control Sci. Eng. 2020, 2020, 9515160. [Google Scholar] [CrossRef] [Green Version]
- Suganya, R.; Rajkumar, M.V.; Pushparani, P. Simulation and Analysis of Boost Converter with MPPT for PV System using Chaos PSO Algorithm. Int. J. Emerg. Technol. Eng. Res. 2017, 5, 97–105. [Google Scholar]
- Chew, C.-K.; Kondapalli, S.R.R. Modeling, Analysis, Simulation and Design Optimization (Genetic Algorithm) of dc-dc Converter for Uninterruptible Power Supply Applications. In Proceedings of the 2005 International Conference on Power Electronics and Drives Systems, Kuala Lumpur, Malaysia, 28 November–1 December 2005. [Google Scholar]
- Badis, A.; Mansouri, M.N.; Boujmil, M.H. A genetic algorithm optimized MPPT controller for a PV system with DC-DC boost converter. In Proceedings of the 2017 International Conference on Engineering & MIS (ICEMIS), Monastir, Tunisia, 8–10 May 2017. [Google Scholar]
- Ortatepe, Z.; Karaarslan, A. Pre-calculated duty cycle optimization method based on genetic algorithm implemented in DSP for a non-inverting buck-boost converter. J. Power Electron. 2019, 20, 34–42. [Google Scholar] [CrossRef]
- Chang, W.; Wang, J.; Chen, Q. Multi-objective optimization of synchronous buck converter based on NSGA-U algorithm. In Proceedings of the 2016 IEEE International Conference on Mechatronics and Automation, Harbin, China, 7–10 August 2016. [Google Scholar]
- Yang, S.; Qing, A. Design of high-power millimeter-wave TM/sub 01/-TE/sub 11/mode converters by the differential evolution algorithm. IEEE Trans. Plasma Sci. 2005, 33, 1372–1376. [Google Scholar] [CrossRef]
- Yahia, H.; Liouane, N.; Dhifaoui, R. Weighted differential evolution based PWM optimization for single phase voltage source inverter. Int. Rev. Electr. Eng. 2010, 9, 125–130. [Google Scholar]
- Rashid, M.I.M.; Hiendro, A.; Anwari, M. Optimal HE-PWM inverter switching patterns using differential evolution algorithm. In Proceedings of the 2012 IEEE International Conference on Power and Energy (PECon), Kota Kinabalu, Malaysia, 2–5 December 2012. [Google Scholar]
- Raghavendran, P.; Surendar, V. Design and Implementation of Hybrid Converter for PV System for Both AC and DC Load. In Proceedings of the 2019 International Conference on Recent Advances in Energy-efficient Computing and Communication (ICRAECC), Nagercoil, India, 7–8 March 2019. [Google Scholar]
- Prabakar, K.; Li, F. Application of genetic algorithm for the improved performance of boost converters. IFAC Proc. Vol. 2012, 45, 85–90. [Google Scholar] [CrossRef]
- Achiammal, B.; Kayalvizhi, D. Optimal tuning of PI controller using genetic algorithm for power electronic converter. Int. J. Eng. Res. 2013, 2, 6. [Google Scholar]
- Karaarslan, A. The Implementation of Bee Colony Optimization Algorithm to Sheppard–Taylor PFC Converter. IEEE Trans. Ind. Electron. 2012, 60, 3711–3719. [Google Scholar] [CrossRef]
- Karaarslan, A. The implementation of bee colony optimization control method for interleaved converter. Electr. Eng. 2015, 98, 109–119. [Google Scholar] [CrossRef]
- Sasilatha, T.; Lakshmi, D.; Rajasree, R. Design and Development of Hybrid Converter for Marine Applications. Eur. J. Med. Nat. Sci. 2022, 5, 1–8. [Google Scholar] [CrossRef]
- Rodríguez, A.; Alejo-Reyes, A.; Cuevas, E.; Beltran-Carbajal, F.; Rosas-Caro, J.C. An Evolutionary Algorithm-Based PWM Strategy for a Hybrid Power Converter. Mathematics 2020, 8, 1247. [Google Scholar] [CrossRef]
- Wang, C. Investigation on Interleaved Boost Converters and Applications. Ph.D. Thesis, Virginia Tech, Blacksburg, VA, USA, 2009. [Google Scholar]
- Jang, Y.; Jovanovic, M.M. Interleaved Boost Converter With Intrinsic Voltage-Doubler Characteristic for Universal-Line PFC Front End. IEEE Trans. Power Electron. 2007, 22, 1394–1401. [Google Scholar] [CrossRef]
- Pedro, A.-A.J.; Cesar, R.-C.J.; Francisco, B.-C.; Antonio, V.-G.; Eduardo, H.-S.; Salvador, G.-A.; Avelina, A.-R.; Martin, G.-V.P. Power quality improvement by interleaving unequal switching converters. IEICE Electron. Express 2016, 13, 20160558. [Google Scholar] [CrossRef]
- Holland, J.H. Genetic algorithms: Computer programs that “evolve” in ways that resemble natural selection can solve complex problems even their creators do not fully understand. Sci. Am. 2005, 267, 1992. [Google Scholar]
Input Voltage Vin | 20 V |
Inductor Factor kL | 0.6666 |
Switching Frequency fS | 50 kHz |
Output Resistance R | 60 Ω |
L1 | 66 µH |
L2 | 100 µH |
Gain | Methodology | Input-Current Ripple (Δig) | D | k | DZ |
---|---|---|---|---|---|
3 | Proposed | 0.0758 | 0.5807 | 0.6751 | 0.9999 |
Baseline | 0.0844 | 0.5806 | 0.6753 | 0.6 | |
3.1 | Proposed | 0.0203 | 0.5951 | 0.6688 | 0.7998 |
Baseline | 0.0520 | 0.5950 | 0.6689 | 0.6 | |
3.166 | Proposed | 1.32 × 10−5 | 0.6000 | 0.6666 | 0.7888 |
Baseline | 0.0105 | 0.6000 | 0.6667 | 0.6 | |
3.2 | Proposed | 0.0180 | 0.6045 | 0.6646 | 0.9999 |
Baseline | 0.0508 | 0.6037 | 0.6685 | 0.6 | |
3.3 | Proposed | 0.0710 | 0.6175 | 0.6588 | 0.7010 |
Baseline | 0.1527 | 0.6144 | 0.6744 | 0.6 | |
3.4 | Proposed | 0.1265 | 0.6298 | 0.6533 | 0.8508 |
Baseline | 0.2548 | 0.6245 | 0.6794 | 0.6 | |
3.5 | Proposed | 0.1721 | 0.6414 | 0.6480 | 0.9180 |
Baseline | 0.3562 | 0.6342 | 0.6847 | 0.6 | |
3.6 | Proposed | 0.2271 | 0.6524 | 0.6430 | 0.8303 |
Baseline | 0.4504 | 0.6435 | 0.6886 | 0.6 | |
3.7 | Proposed | 0.2662 | 0.6629 | 0.6383 | 0.9999 |
Baseline | 0.5339 | 0.6524 | 0.6923 | 0.6 | |
3.8 | Proposed | 0.3204 | 0.6728 | 0.6338 | 0.9334 |
Baseline | 0.6255 | 0.6607 | 0.6971 | 0.6 | |
3.9 | Proposed | 0.3533 | 0.6823 | 0.6295 | 0.9759 |
Baseline | 0.7045 | 0.6687 | 0.7007 | 0.6 | |
4 | Proposed | 0.3944 | 0.7081 | 0.5149 | 0.9519 |
Baseline | 0.7873 | 0.6768 | 0.7031 | 0.6 | |
4.1 | Proposed | 0.4234 | 0.7169 | 0.5054 | 0.8247 |
Baseline | 0.8646 | 0.6840 | 0.7067 | 0.6 | |
4.2 | Proposed | 0.4657 | 0.7250 | 0.4968 | 0.9966 |
Baseline | 0.9416 | 0.6912 | 0.7101 | 0.6 | |
4.3 | Proposed | 0.4758 | 0.7327 | 0.4890 | 0.9602 |
Baseline | 1.0116 | 0.6980 | 0.7130 | 0.6 | |
4.4 | Proposed | 0.5354 | 0.7400 | 0.4819 | 0.9141 |
Baseline | 1.0635 | 0.7045 | 0.7156 | 0.6 | |
4.5 | Proposed | 0.5407 | 0.7468 | 0.4753 | 0.8284 |
Baseline | 1.1519 | 0.7108 | 0.7185 | 0.6 | |
4.6 | Proposed | 0.5418 | 0.7533 | 0.4693 | 0.8076 |
Baseline | 1.1947 | 0.7169 | 0.7205 | 0.6 | |
4.7 | Proposed | 0.5613 | 0.7594 | 0.4636 | 0.8536 |
Baseline | 1.2526 | 0.7229 | 0.7218 | 0.6 | |
4.8 | Proposed | 0.5797 | 0.7652 | 0.4584 | 0.9999 |
Baseline | 1.3181 | 0.7285 | 0.7253 | 0.6 | |
4.9 | Proposed | 0.6217 | 0.7708 | 0.4536 | 0.9999 |
Baseline | 1.364 | 0.7339 | 0.7273 | 0.6 | |
5 | Proposed | 0.6652 | 0.7760 | 0.4490 | 0.9999 |
Baseline | 1.4482 | 0.7392 | 0.7281 | 0.6 | |
5.1 | Proposed | 0.7102 | 0.7811 | 0.4448 | 0.9999 |
Baseline | 1.4702 | 0.7444 | 0.7296 | 0.6 | |
5.2 | Proposed | 0.7848 | 0.7859 | 0.4408 | 0.9999 |
Baseline | 1.5316 | 0.7492 | 0.7331 | 0.6 | |
5.3 | Proposed | 0.7166 | 0.7904 | 0.4371 | 0.9999 |
Baseline | 1.5812 | 0.7541 | 0.7329 | 0.6 | |
5.4 | Proposed | 0.6714 | 0.7948 | 0.4336 | 0.9999 |
Baseline | 1.6132 | 0.7587 | 0.7342 | 0.6 | |
5.5 | Proposed | 0.7472 | 0.7990 | 0.4303 | 0.9999 |
Baseline | 1.6585 | 0.7628 | 0.7376 | 0.6 | |
5.6 | Proposed | 0.7614 | 0.8031 | 0.4271 | 0.9426 |
Baseline | 1.7035 | 0.7673 | 0.7380 | 0.6 | |
5.7 | Proposed | 0.7751 | 0.8069 | 0.4241 | 0.9999 |
Baseline | 1.7547 | 0.7716 | 0.7403 | 0.6 | |
5.8 | Proposed | 0.8227 | 0.8107 | 0.4213 | 0.9999 |
Baseline | 1.778 | 0.7752 | 0.7416 | 0.6 | |
5.9 | Proposed | 0.8362 | 0.8142 | 0.4186 | 0.9995 |
Baseline | 1.8344 | 0.7793 | 0.7419 | 0.6 | |
6 | Proposed | 0.8493 | 0.8177 | 0.4161 | 0.9999 |
Baseline | 1.8721 | 0.7831 | 0.7442 | 0.6 |
Gain | Input-Current Ripple (Δig) | |||
---|---|---|---|---|
Proposed | DE | DE* | GA | |
3 | 0.0758 | 0.0903 | 0.8000 | 0.2745 |
3.1 | 0.0203 | 0.0368 | 0.0338 | 0.2478 |
3.166 | 1.32 × 10−5 | 0.0098 | 0.0031 | 0.2214 |
3.2 | 0.0180 | 0.0303 | 0.0213 | 0.1413 |
3.3 | 0.0710 | 0.0811 | 0.0892 | 0.3102 |
3.4 | 0.1265 | 0.1369 | 0.1353 | 0.4496 |
3.5 | 0.1721 | 0.1920 | 0.1857 | 0.4079 |
3.6 | 0.2271 | 0.2304 | 0.2348 | 0.4199 |
3.7 | 0.2662 | 0.2906 | 0.2774 | 0.5628 |
3.8 | 0.3204 | 0.3318 | 0.3345 | 0.5955 |
3.9 | 0.3533 | 0.3654 | 0.3699 | 0.7023 |
4 | 0.3944 | 0.4157 | 0.4170 | 0.6418 |
4.1 | 0.4234 | 0.4461 | 0.4475 | 0.6955 |
4.2 | 0.4657 | 0.4751 | 0.4756 | 0.8467 |
4.3 | 0.4758 | 0.5040 | 0.4921 | 0.9972 |
4.4 | 0.5354 | 0.5485 | 0.5557 | 1.0329 |
4.5 | 0.5407 | 0.5801 | 0.5592 | 1.0595 |
4.6 | 0.5418 | 0.6622 | 0.5698 | 1.0270 |
4.7 | 0.5613 | 0.5925 | 0.5795 | 1.2939 |
4.8 | 0.5797 | 0.6535 | 0.5910 | 1.0793 |
4.9 | 0.6217 | 0.7050 | 0.6450 | 1.2583 |
5 | 0.6652 | 0.6843 | 0.6792 | 1.3074 |
5.1 | 0.7102 | 0.7431 | 0.7441 | 1.3449 |
5.2 | 0.7848 | 0.7932 | 0.7936 | 1.3159 |
5.3 | 0.7166 | 0.7579 | 0.7214 | 1.3645 |
5.4 | 0.6714 | 0.8528 | 0.6949 | 1.3718 |
5.5 | 0.7472 | 0.7864 | 0.7645 | 1.5165 |
5.6 | 0.7614 | 0.9056 | 0.7806 | 1.5898 |
5.7 | 0.7751 | 0.7966 | 0.7888 | 1.4792 |
5.8 | 0.8227 | 0.8491 | 0.8499 | 1.7313 |
5.9 | 0.8362 | 0.9011 | 0.8652 | 1.6052 |
6 | 0.8493 | 0.9514 | 0.8783 | 1.4860 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghorbanpour, S.; Seo, M.; Park, J.-J.; Kim, M.; Jin, Y.; Han, S. Unified Evolutionary Algorithm Framework for Hybrid Power Converter. Appl. Sci. 2022, 12, 11236. https://doi.org/10.3390/app122111236
Ghorbanpour S, Seo M, Park J-J, Kim M, Jin Y, Han S. Unified Evolutionary Algorithm Framework for Hybrid Power Converter. Applied Sciences. 2022; 12(21):11236. https://doi.org/10.3390/app122111236
Chicago/Turabian StyleGhorbanpour, Samira, Mingyu Seo, Jeong-Ju Park, Musu Kim, Yuwei Jin, and Sekyung Han. 2022. "Unified Evolutionary Algorithm Framework for Hybrid Power Converter" Applied Sciences 12, no. 21: 11236. https://doi.org/10.3390/app122111236
APA StyleGhorbanpour, S., Seo, M., Park, J.-J., Kim, M., Jin, Y., & Han, S. (2022). Unified Evolutionary Algorithm Framework for Hybrid Power Converter. Applied Sciences, 12(21), 11236. https://doi.org/10.3390/app122111236