Virtual and Augmented Reality as a Novel Opportunity to Unleash the Power of Radiotherapy in the Digital Era: A Scoping Review
Abstract
:1. Introduction
1.1. Radiotherapy: A Niche in Healthcare
1.2. Virtual and Augmented Reality: Two Mainstays in the ICT Era
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Search Strategy
2.3. Selection of Sources of Evidence
3. Education and Training for Students and Radiation Oncology Professionals
3.1. AR/VR in RT Education and Training
3.2. VR in External Beam RT and the Central Role of VERT
3.3. VR/AR in Brachytherapy
4. Patient Empowerment and Mindfulness
4.1. The Pivotal Role of Empowerment in Modern Healthcare
4.2. Mindfulness and Stress Relief
5. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jaffray, D.A.; Gospodarowicz, M.K. Radiation Therapy for Cancer. In Cancer: Disease Control Priorities, 3rd ed.; Gelband, H., Jha, P., Sankaranarayanan, R., Horton, S., Eds.; The International Bank for Reconstruction and Development/The World Bank: Washington, DC, USA, 2015; Volume 3, ISBN 978-1-4648-0349-9. [Google Scholar]
- Lievens, Y.; Gospodarowicz, M.; Grover, S.; Jaffray, D.; Rodin, D.; Torode, J.; Yap, M.L.; Zubizarreta, E.; GIRO Steering and Advisory Committees. Global Impact of Radiotherapy in Oncology: Saving One Million Lives by 2035. Radiother. Oncol. 2017, 125, 175–177. [Google Scholar] [CrossRef] [PubMed]
- Gillan, C.; Abrams, D.; Harnett, N.; Wiljer, D.; Catton, P. Fears and Misperceptions of Radiation Therapy: Sources and Impact on Decision-Making and Anxiety. J. Cancer Educ. 2014, 29, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Alterio, D.; Marvaso, G.; Ferrari, A.; Volpe, S.; Orecchia, R.; Jereczek-Fossa, B.A. Modern Radiotherapy for Head and Neck Cancer. Semin Oncol. 2019, 46, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Dee, E.C.; Byrne, J.D.; Wo, J.Y. Evolution of the Role of Radiotherapy for Anal Cancer. Cancers 2021, 13, 1208. [Google Scholar] [CrossRef]
- Donovan, J.L.; Hamdy, F.C.; Lane, J.A.; Mason, M.; Metcalfe, C.; Walsh, E.; Blazeby, J.M.; Peters, T.J.; Holding, P.; Bonnington, S.; et al. Patient-Reported Outcomes after Monitoring, Surgery, or Radiotherapy for Prostate Cancer. N. Engl. J. Med. 2016, 375, 1425–1437. [Google Scholar] [CrossRef] [Green Version]
- Chierchini, S.; Ingrosso, G.; Saldi, S.; Stracci, F.; Aristei, C. Physician And Patient Barriers To Radiotherapy Service Access: Treatment Referral Implications. Cancer Manag. Res. 2019, 11, 8829–8833. [Google Scholar] [CrossRef] [Green Version]
- Cooper, J.S.; Pajak, T.F.; Forastiere, A.A.; Jacobs, J.; Campbell, B.H.; Saxman, S.B.; Kish, J.A.; Kim, H.E.; Cmelak, A.J.; Rotman, M.; et al. Postoperative Concurrent Radiotherapy and Chemotherapy for High-Risk Squamous-Cell Carcinoma of the Head and Neck. N. Engl. J. Med. 2004, 350, 1937–1944. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, C.M.; Turrini, O.; Parikh, P.; House, M.G.; Zyromski, N.J.; Nakeeb, A.; Howard, T.J.; Pitt, H.A.; Lillemoe, K.D. Effect of Hospital Volume, Surgeon Experience, and Surgeon Volume on Patient Outcomes after Pancreaticoduodenectomy: A Single-Institution Experience. Arch. Surg. 2010, 145, 634–640. [Google Scholar] [CrossRef] [Green Version]
- Piroth, M.D.; Draia, S.; Jawad, J.A.; Piefke, M. Anxiety and Depression in Patients with Breast Cancer Undergoing Radiotherapy: The Role of Intelligence, Life History, and Social Support—Preliminary Results from a Monocentric Analysis. Strahlenther. Onkol. 2022, 198, 388–396. [Google Scholar] [CrossRef]
- Wang, L.J.; Casto, B.; Luh, J.Y.; Wang, S.J. Virtual Reality-Based Education for Patients Undergoing Radiation Therapy. J. Cancer Educ. 2022, 37, 694–700. [Google Scholar] [CrossRef]
- Ayoub, A.; Pulijala, Y. The Application of Virtual Reality and Augmented Reality in Oral & Maxillofacial Surgery. BMC Oral Health 2019, 19, 238. [Google Scholar] [CrossRef] [Green Version]
- Huang, T.-K.; Yang, C.-H.; Hsieh, Y.-H.; Wang, J.-C.; Hung, C.-C. Augmented Reality (AR) and Virtual Reality (VR) Applied in Dentistry. Kaohsiung J. Med. Sci. 2018, 34, 243–248. [Google Scholar] [CrossRef]
- Dyer, E.; Swartzlander, B.J.; Gugliucci, M.R. Using Virtual Reality in Medical Education to Teach Empathy. J. Med. Libr. Assoc. 2018, 106, 498–500. [Google Scholar] [CrossRef] [Green Version]
- Van der Linde-van den Bor, M.; Slond, F.; Liesdek, O.C.D.; Suyker, W.J.; Weldam, S.W.M. The Use of Virtual Reality in Patient Education Related to Medical Somatic Treatment: A Scoping Review. Patient Educ. Couns. 2022, 105, 1828–1841. [Google Scholar] [CrossRef]
- Barteit, S.; Lanfermann, L.; Bärnighausen, T.; Neuhann, F.; Beiersmann, C. Augmented, Mixed, and Virtual Reality-Based Head-Mounted Devices for Medical Education: Systematic Review. JMIR Serious Games 2021, 9, e29080. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.C.; McCloskey, S.A.; Wallner, P.E.; Steinberg, M.L.; Raldow, A.C. The Declining Residency Applicant Pool: A Multi-Institutional Medical Student Survey to Identify Precipitating Factors. Adv. Radiat. Oncol. 2021, 6, 100597. [Google Scholar] [CrossRef]
- Hirsch, A.E.; Handal, R.; Daniels, J.; Levin-Epstein, R.; Denunzio, N.J.; Dillon, J.; Shaffer, K.; Bishop, P.M. Quantitatively and Qualitatively Augmenting Medical Student Knowledge of Oncology and Radiation Oncology: An Update on the Impact of the Oncology Education Initiative. J. Am. Coll. Radiol. 2012, 9, 115–120. [Google Scholar] [CrossRef]
- Kahn, J.M.; Fields, E.C.; Pollom, E.; Wairiri, L.; Vapiwala, N.; Nabavizadeh, N.; Thomas, C.R.; Jimenez, R.B.; Chandra, R.A. Increasing Medical Student Engagement Through Virtual Rotations in Radiation Oncology. Adv. Radiat. Oncol. 2021, 6, 100538. [Google Scholar] [CrossRef]
- Pollom, E.L.; Sandhu, N.; Frank, J.; Miller, J.A.; Obeid, J.-P.; Kastelowitz, N.; Panjwani, N.; Soltys, S.G.; Bagshaw, H.P.; Donaldson, S.S.; et al. Continuing Medical Student Education During the Coronavirus Disease 2019 (COVID-19) Pandemic: Development of a Virtual Radiation Oncology Clerkship. Adv. Radiat. Oncol. 2020, 5, 732–736. [Google Scholar] [CrossRef]
- Leong, A.; Herst, P.; Kane, P. VERT, a Virtual Clinical Environment, Enhances Understanding of Radiation Therapy Planning Concepts. J. Med. Radiat. Sci. 2018, 65, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Kane, P. Simulation-Based Education: A Narrative Review of the Use of VERT in Radiation Therapy Education. J. Med. Radiat. Sci. 2018, 65, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.L.; Kovtun, K.A. The Future of Virtual Reality in Radiation Oncology. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 1162–1164. [Google Scholar] [CrossRef] [PubMed]
- Flinton, D. Competency Based Assessment Using a Virtual Environment for Radiotherapy. Procedia Comput. Sci. 2013, 25, 399–401. [Google Scholar] [CrossRef] [Green Version]
- Chamunyonga, C.; Burbery, J.; Caldwell, P.; Rutledge, P.; Fielding, A.; Crowe, S. Utilising the Virtual Environment for Radiotherapy Training System to Support Undergraduate Teaching of IMRT, VMAT, DCAT Treatment Planning, and QA Concepts. J. Med. Imaging Radiat. Sci. 2018, 49, 31–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chamunyonga, C.; Rutledge, P.; Caldwell, P.J.; Burbery, J.; Hargrave, C. The Application of the Virtual Environment for Radiotherapy Training to Strengthen IGRT Education. J. Med. Imaging Radiat. Sci. 2020, 51, 207–213. [Google Scholar] [CrossRef]
- Cheung, E.Y.W.; Law, M.Y.Y.; Cheung, F. The Role of Virtual Environment for Radiotherapy Training (VERT) in Medical Dosimetry Education. J. Cancer Educ. 2021, 36, 271–277. [Google Scholar] [CrossRef]
- Czaplinski, I.; Fielding, A.L. Developing a Contextualised Blended Learning Framework to Enhance Medical Physics Student Learning and Engagement. Phys. Med. 2020, 72, 22–29. [Google Scholar] [CrossRef]
- Green, D.; Appleyard, R. The Influence of VERTTM Characteristics on the Development of Skills in Skin Apposition Techniques. Radiography 2011, 17, 178–182. [Google Scholar] [CrossRef]
- Taunk, N.K.; Shah, N.K.; Hubley, E.; Anamalayil, S.; Trotter, J.W.; Li, T. Virtual Reality-Based Simulation Improves Gynecologic Brachytherapy Proficiency, Engagement, and Trainee Self-Confidence. Brachytherapy 2021, 20, 695–700. [Google Scholar] [CrossRef]
- Zhou, Z.; Jiang, S.; Yang, Z.; Zhou, L. Personalized Planning and Training System for Brachytherapy Based on Virtual Reality. Virtual Real. 2019, 23, 347–361. [Google Scholar] [CrossRef]
- Zhou, Z.; Yang, Z.; Jiang, S.; Ma, X.; Zhang, F.; Yan, H. Surgical Navigation System for Low-Dose-Rate Brachytherapy Based on Mixed Reality. IEEE Comput. Graph. Appl. 2021, 41, 113–123. [Google Scholar] [CrossRef]
- Zhou, Z.; Yang, Z.; Jiang, S.; Zhang, F.; Yan, H. Design and Validation of a Surgical Navigation System for Brachytherapy Based on Mixed Reality. Med. Phys. 2019, 46, 3709–3718. [Google Scholar] [CrossRef]
- Health Promotion Glossary [WWW Document]. 2021. Available online: https://www.who.int/publications/i/item/WHO-HPR-HEP-98.1 (accessed on 4 July 2022).
- Canil, T.; Cashell, A.; Papadakos, J.; Abdelmutti, N.; Friedman, A.J. Evaluation of the Effects of Pre-Treatment Education on Self-Efficacy and Anxiety in Patients Receiving Radiation Therapy: A Pilot Study. J. Med. Imaging Radiat. Sci. 2012, 43, 221–227. [Google Scholar] [CrossRef]
- Jimenez, Y.A.; Cumming, S.; Wang, W.; Stuart, K.; Thwaites, D.I.; Lewis, S.J. Patient Education Using Virtual Reality Increases Knowledge and Positive Experience for Breast Cancer Patients Undergoing Radiation Therapy. Support Care Cancer 2018, 26, 2879–2888. [Google Scholar] [CrossRef]
- Martin-Gomez, A.; Hill, C.; Lin, H.Y.; Fotouhi, J.; Han-Oh, S.; Wang, K.K.-H.; Navab, N.; Narang, A.K. Towards Exploring the Benefits of Augmented Reality for Patient Support During Radiation Oncology Interventions. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2021, 9, 322–329. [Google Scholar] [CrossRef]
- Definition of MINDFULNESS [WWW Document]. Available online: https://www.merriam-webster.com/dictionary/mindfulness (accessed on 29 June 2022).
- Henderson, V.P.; Massion, A.O.; Clemow, L.; Hurley, T.G.; Druker, S.; Hébert, J.R. A Randomized Controlled Trial of Mindfulness-Based Stress Reduction for Women with Early-Stage Breast Cancer Receiving Radiotherapy. Integr. Cancer Ther. 2013, 12, 404–413. [Google Scholar] [CrossRef]
- Pollard, A.; Burchell, J.L.; Castle, D.; Neilson, K.; Ftanou, M.; Corry, J.; Rischin, D.; Kissane, D.W.; Krishnasamy, M.; Carlson, L.E.; et al. Individualised Mindfulness-Based Stress Reduction for Head and Neck Cancer Patients Undergoing Radiotherapy of Curative Intent: A Descriptive Pilot Study. Eur. J. Cancer Care 2017, 26, e12474. [Google Scholar] [CrossRef]
- Würtzen, H.; Dalton, S.O.; Christensen, J.; Andersen, K.K.; Elsass, P.; Flyger, H.L.; Pedersen, A.E.; Sumbundu, A.; Steding-Jensen, M.; Johansen, C. Effect of Mindfulness-Based Stress Reduction on Somatic Symptoms, Distress, Mindfulness and Spiritual Wellbeing in Women with Breast Cancer: Results of a Randomized Controlled Trial. Acta Oncol. 2015, 54, 712–719. [Google Scholar] [CrossRef] [Green Version]
- Amutio-Kareaga, A.; García-Campayo, J.; Delgado, L.C.; Hermosilla, D.; Martínez-Taboada, C. Improving Communication between Physicians and Their Patients through Mindfulness and Compassion-Based Strategies: A Narrative Review. J. Clin. Med. 2017, 6, 33. [Google Scholar] [CrossRef]
- From Mindfulness to Medical Education: Penn Radiation Oncology Explores the Potential of VR [WWW Document]. Available online: https://www.pennmedicine.org/news/news-blog/2018/august/from-mindfulness-to-medical-education-penn-radiation-oncology-explores-the-potential-of-vr (accessed on 29 June 2022).
- Amaniera, I.; Nibauer-Cohen, F.; Levin, W.; Metz, J. First Report of the Integration of Virtual Reality Relaxation in a Radiation Therapy Department. Int. J. Radiat. Oncol.Biol. Phys. 2020, 108, E12. [Google Scholar] [CrossRef]
- Li, R.; Fu, N.; Ouyang, J.; Mao, Y.; Liu, Y.; Dang, S.; Hu, J.; Deng, J.; Yu, S.; Zhu, Y.; et al. EP-1740: Application of Virtual Reality Guide Hypnosis in the Control of Respiration Motion for Radiotherapy. Radiother. Oncol. 2016, 119, S814–S815. [Google Scholar] [CrossRef] [Green Version]
- Marquess, M.; Johnston, S.P.; Williams, N.L.; Giordano, C.; Leiby, B.E.; Hurwitz, M.D.; Dicker, A.P.; Den, R.B. A Pilot Study to Determine If the Use of a Virtual Reality Education Module Reduces Anxiety and Increases Comprehension in Patients Receiving Radiation Therapy. J. Radiat. Oncol. 2017, 6, 317–322. [Google Scholar] [CrossRef]
Students Category (N) | Topics | Experimental Design | Effectiveness Assessment Modality | Reported Benefits | Reported Drawbacks | |
---|---|---|---|---|---|---|
Chamunyonga et al., 2018 [26] | Undergraduate RT students (NA) | IMRT, VMAT, and DCAT plans; QA concepts | Plan evaluation for dose to target and OARs for the different techniques | NA |
| - |
Chamunyonga et al., 2020 [27] | Undergraduate RT students—year 3 (NA) | IGRT and image matching | VERT-based matching of CBCT images | NA |
| - |
Cheung et al., 2021 [28] | Year 3 RT bachelor students—year 3 (26) | Medical dosimetry | Two groups (Grs):
|
|
| - |
Czaplinski et al., 2020 [29] | Postgraduate medical physics students (14) | Basics of RT | Theoretical + VERT + practical modules administered sequentially |
|
|
|
Leong et al., 2018 [22] | RT bachelor students (29) | 3DCRT, IMRT, VMAT | Cross-over design, two groups (Grs):
|
|
| - |
Green et al., 2011 [30] | Year 1 (23) and 2 (21) pre-registration RT students | Skin apposition electron technique | Group demonstration sessions followed by individual practical assessment |
|
|
|
Flinton et al., 2013 [25] | Year 1 and 2 RT students (52) | Managing an electron patient’s set | Two groups (Grs):
|
|
| SCORE:
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marvaso, G.; Pepa, M.; Volpe, S.; Mastroleo, F.; Zaffaroni, M.; Vincini, M.G.; Corrao, G.; Bergamaschi, L.; Mazzocco, K.; Pravettoni, G.; et al. Virtual and Augmented Reality as a Novel Opportunity to Unleash the Power of Radiotherapy in the Digital Era: A Scoping Review. Appl. Sci. 2022, 12, 11308. https://doi.org/10.3390/app122211308
Marvaso G, Pepa M, Volpe S, Mastroleo F, Zaffaroni M, Vincini MG, Corrao G, Bergamaschi L, Mazzocco K, Pravettoni G, et al. Virtual and Augmented Reality as a Novel Opportunity to Unleash the Power of Radiotherapy in the Digital Era: A Scoping Review. Applied Sciences. 2022; 12(22):11308. https://doi.org/10.3390/app122211308
Chicago/Turabian StyleMarvaso, Giulia, Matteo Pepa, Stefania Volpe, Federico Mastroleo, Mattia Zaffaroni, Maria Giulia Vincini, Giulia Corrao, Luca Bergamaschi, Ketti Mazzocco, Gabriella Pravettoni, and et al. 2022. "Virtual and Augmented Reality as a Novel Opportunity to Unleash the Power of Radiotherapy in the Digital Era: A Scoping Review" Applied Sciences 12, no. 22: 11308. https://doi.org/10.3390/app122211308
APA StyleMarvaso, G., Pepa, M., Volpe, S., Mastroleo, F., Zaffaroni, M., Vincini, M. G., Corrao, G., Bergamaschi, L., Mazzocco, K., Pravettoni, G., Orecchia, R., & Jereczek-Fossa, B. A. (2022). Virtual and Augmented Reality as a Novel Opportunity to Unleash the Power of Radiotherapy in the Digital Era: A Scoping Review. Applied Sciences, 12(22), 11308. https://doi.org/10.3390/app122211308