Antimicrobial and Odour Qualities of Alkylpyrazines Occurring in Chocolate and Cocoa Products
Abstract
:1. Introduction
2. Pyrazines in Chocolate and Cocoa
2.1. The Way of Formation of Pyrazine in Cocoa and Cocoa Products
2.1.1. Fermentation Stage of Cocoa Manufacturing
2.1.2. Roasting Stage of Cocoa Manufacturing
2.1.3. Conching Stage of Chocolate Manufacturing
2.2. Alkylpyrazines Detected in Cocoa and Chocolate
3. Antimicrobial Activity of Pyrazines
3.1. Antibacterial Activity
3.2. Antifungal and Antioomycete Activity
3.3. Structure–Antimicrobial Activity Relationship of Alkylpyrazines
3.4. AntiBac-Pred and PASS Testing
4. The Quantification of the Impact of Alkylpyrazine Compounds on the Aroma of Cocoa and Chocolate
4.1. Odour Values of Pyrazine Compounds in Cocoa
4.2. Pyrazine Content Differences in Cocoa, Dark and Milk Chocolate
4.3. Challenges in Odour Values Measurement of Alkylpyrazines
4.4. Structure–Odour Relationship in Alkylpyrazines
- Positions 3 and 5 were not acceptable for an ethyl group; only position 2 was. In addition, a propyl, butyl, pentyl, isobutyl or hexyl group in position 2 was too bulky, and the OT was high in these compounds compared with 2,3-dimethylpyrazine, which was not substituted by them. However, positions 2 and 3 are more suitable for bulky groups than positions 5 and 6 regarding the OT value;
- Replacing the H atom in position 2 with a methyl group reduced the OT, and the lengthening of the side chain to ethylpyrazine decreased the OT even further;
- For compounds with a low OT, the only group allowed in position 5 is the methyl group;
- For a low OT, position 6 should be unsubstituted;
- For the dialkylpyrazines, the substitution position affects the OT by lowering the OT at 2,5-dialkyl-pyrazine, then 2,6-dialkyl-pyrazine and then 2,3-dialkyl-pyrazine.
- The incorporation of a highly polar group among those presented in cocoa alkylpyrazines (such as methoxy) tends to lower OT values. As an example, 3-alkyl-2-methoxypyrazines belong to a unique class of odourants with very low OT values.
5. Relationship between Odour and Antimicrobial Activities of Pyrazines
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Verna, R. The History and Science of Chocolate. Malays. J. Pathol. 2013, 35, 111–121. [Google Scholar] [PubMed]
- Coe, S.D.; Coe, M.D. The True History of Chocolate, 3rd ed.; Thames & Hudson Inc.: New York, NY, USA, 2013; pp. 129–137. ISBN 978-0-500-29068-2. [Google Scholar]
- Belitz, H.-D.; Grosch, W.; Schieberle, P. Food Chemistry, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 350, 372, 388, 399–400, 959–967. ISBN 978-3-540-69933-0. [Google Scholar]
- Montagna, M.T.; Diella, G.; Triggiano, F.; Caponio, G.R.; Giglio, O.D.; Caggiano, G.; Ciaula, A.D.; Portincasa, P. Chocolate, “Food of the Gods”: History, Science, and Human Health. Int. J. Environ. Res. Public Health 2019, 16, 4960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barišić, V.; Kopjar, M.; Jozinović, A.; Flanjak, I.; Ačkar, Đ.; Miličević, B.; Šubarić, D.; Jokić, S.; Babić, J. The Chemistry behind Chocolate Production. Molecules 2019, 24, 3163. [Google Scholar] [CrossRef] [Green Version]
- Squicciarini, M.P.; Swinnen, J. The Economics of Chocolate; OXFORD University Press: Oxford, UK, 2016; pp. 119–134. ISBN 978-0-19-179326-4. [Google Scholar]
- Frauendorfer, F.; Schieberle, P. Identification of the Key Aroma Compounds in Cocoa Powder Based on Molecular Sensory Correlations. J. Agric. Food Chem. 2006, 54, 5521–5529. [Google Scholar] [CrossRef]
- Aprotosoaie, A.C.; Luca, S.V.; Miron, A. Flavor Chemistry of Cocoa and Cocoa Products-An Overview: Flavor Chemistry of Cocoa. Compr. Rev. Food Sci. Food Saf. 2016, 15, 73–91. [Google Scholar] [CrossRef]
- Lazzarini, G.; Richter, T.; Felder, T.; Stolze, M. Market Potential for Organic Cocoa-Study on the Global Market for Cocoa Beans and Semi-Finished Cocoa Products; Research Institute of Organic Agriculture FiBL: Frick, Switzerland, 2022; pp. 7–20. Available online: http://orgprints.org/43832/ (accessed on 1 September 2022).
- Misnawi, J.; Ariza, B.T.S. Use of Gas Chromatography–Olfactometry in Combination with Solid Phase Micro Extraction for Cocoa Liquor Aroma Analysis. Int. Food Res. J. 2011, 18, 801–807. [Google Scholar]
- Mortzfeld, F.B.; Hashem, C.; Vranková, K.; Winkler, M.; Rudroff, F. Pyrazines: Synthesis and Industrial Application of these Valuable Flavor and Fragrance Compounds. Biotechnol. J. 2020, 15, 2000064. [Google Scholar] [CrossRef]
- Schiffman, S.S.; Leffingwell, J.C. Perception of Odors of Simple Pyrazines by Young and Elderly Subjects: A Multidimensional Analysis. Pharmacol. Biochem. Behav. 1981, 14, 787–798. [Google Scholar] [CrossRef]
- Afoakwa, E.O.; Paterson, A.; Fowler, M.; Ryan, A. Flavor Formation and Character in Cocoa and Chocolate: A Critical Review. Crit. Rev. Food Sci. Nutr. 2008, 48, 840–857. [Google Scholar] [CrossRef]
- Spada, F.P.; Balagiannis, D.P.; Purgatto, E.; do Alencar, S.M.; Canniatti-Brazaca, S.G.; Parker, J.K. Characterisation of the Chocolate Aroma in Roast Jackfruit Seeds. Food Chem. 2021, 354, 129537. [Google Scholar] [CrossRef]
- Godočiková, L.; Ivanišová, E.; Zaguła, G.; Noguera-Artiaga, L.; Carbonell-Barrachina, Á.A.; Kowalczewski, P.Ł.; Kačániová, M. Antioxidant Activities and Volatile Flavor Components of Selected Single-Origin and Blend Chocolates. Molecules 2020, 25, 3648. [Google Scholar] [CrossRef] [PubMed]
- Frauendorfer, F.; Schieberle, P. Changes in Key Aroma Compounds of Criollo Cocoa Beans During Roasting. J. Agric. Food Chem. 2008, 56, 10244–10251. [Google Scholar] [CrossRef] [PubMed]
- Bonvehí, J.S. Investigation of Aromatic Compounds in Roasted Cocoa Powder. Eur. Food Res Technol. 2005, 221, 19–29. [Google Scholar] [CrossRef]
- García-Lomillo, J.; González-SanJosé, M.L.; Del Pino-García, R.; Ortega-Heras, M.; Muñiz-Rodríguez, P. Effect of a New Natural Seasoning on the Formation of Pyrazines in Barbecued Beef Patties. J. Chem. 2016, 2016, 1056201. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Liu, M.; He, C.; Song, H.; Guo, J.; Wang, Y.; Yang, H.; Su, X. A Comparative Study of Aroma-Active Compounds between Dark and Milk Chocolate: Relationship to Sensory Perception: Aroma-Active Compounds in Chocolate. J. Sci. Food Agric. 2015, 95, 1362–1372. [Google Scholar] [CrossRef] [PubMed]
- Counet, C.; Callemien, D.; Ouwerx, C.; Collin, S. Use of Gas Chromatography−Olfactometry To Identify Key Odorant Compounds in Dark Chocolate. Comparison of Samples before and after Conching. J. Agric. Food Chem. 2002, 50, 2385–2391. [Google Scholar] [CrossRef] [PubMed]
- Afoakwa, E.O.; Paterson, A.; Fowler, M.; Ryan, A. Matrix Effects on Flavour Volatiles Release in Dark Chocolates Varying in Particle Size Distribution and Fat Content Using GC–Mass Spectrometry and GC–Olfactometry. Food Chem. 2009, 113, 208–215. [Google Scholar] [CrossRef]
- Andre, A.; Casty, B.; Ullrich, L.; Chestschik, I. Use of molecular networking to identify 2,5-diketopiperazines in chocolates as potential markers of bean variety. Heliyon 2022, 8, e10770. [Google Scholar] [CrossRef]
- Selmat, J.; Rosli, W.I.W.; Russly, A.R.; Nordin, L.M. Effect of Roasting Time and Temperature on Volatile Component Profiles during Nib Roasting of Cocoa Beans (Theobroma Cacao). J. Sci. Food Agric. 1998, 77, 441–448. [Google Scholar] [CrossRef]
- Tran, P.D.; Van Durme, J.; Van de Walle, D.; de Winne, A.; Delbaere, C.; de Clercq, N.; Phan, T.T.Q.; Phuc Nguyen, C.-H.; Tran, D.N.; Dewettinck, K. Quality Attributes of Dark Chocolate Produced from Vietnamese Cocoa Liquors: Vietnamese Dark Chocolate Quality. J. Food Qual. 2016, 39, 311–322. [Google Scholar] [CrossRef]
- The Good Scent Company Informational System. Available online: http://www.thegoodscentscompany.com/ (accessed on 7 November 2022).
- Masuda, H.; Mihara, S. Olfactive Properties of Alkylpyrazines and 3-Substituted 2-Alkylpyrazines. J. Agric. Food Chem. 1988, 36, 584–587. [Google Scholar] [CrossRef]
- Ramli, N.; Hassan, O.; Said, M.; Samsudin, W.; Idris, N.A. Influence of Roasting Conditions on Volatile Flavor of Roasted Malaysian Cocoa Beans. J. Food Process. Preserv. 2006, 30, 280–298. [Google Scholar] [CrossRef]
- Wagner, R.; Czerny, M.; Bielohradsky, J.; Grosch, W. Structure-Odour-Activity Relationships of Alkylpyrazines. Z. Für Lebensm. Und Forsch. 1999, 208, 308–316. [Google Scholar] [CrossRef]
- Deuscher, Z.; Gourrat, K.; Repoux, M.; Boulanger, R.; Labouré, H.; Le Quéré, J.-L. Key Aroma Compounds of Dark Chocolates Differing in Organoleptic Properties: A GC-O Comparative Study. Molecules 2020, 25, 1809. [Google Scholar] [CrossRef] [Green Version]
- Schnermann, P.; Schieberle, P. Evaluation of Key Odorants in Milk Chocolate and Cocoa Mass by Aroma Extract Dilution Analyses. J. Agric. Food Chem. 1997, 45, 867–872. [Google Scholar] [CrossRef]
- Seyfried, C.; Granvogl, M. Characterization of the Key Aroma Compounds in Two Commercial Dark Chocolates with High Cocoa Contents by Means of the Sensomics Approach. J. Agric. Food Chem. 2019, 67, 5827–5837. [Google Scholar] [CrossRef]
- Shibamoto, T. Odor Threshold of Some Pyrazines. J. Food Sci. 1986, 51, 1098–1099. [Google Scholar] [CrossRef]
- Czerny, M.; Christlbauer, M.; Christlbauer, M.; Fischer, A.; Granvogl, M.; Hammer, M.; Hartl, C.; Hernandez, N.M.; Schieberle, P. Re-Investigation on Odour Thresholds of Key Food Aroma Compounds and Development of an Aroma Language Based on Odour Qualities of Defined Aqueous Odorant Solutions. Eur. Food Res. Technol. 2008, 228, 265–273. [Google Scholar] [CrossRef]
- Mihara, S.; Masuda, H.; Tateba, H.; Tuda, T. Olfactive Properties of 3-Substituted5-Alkyl-2-Mehtylpyrazines. J. Agric. Food Chem. 1988, 36, 584–587. [Google Scholar]
- Lange, L. Antimicrobial Activity and Metabolic Effects of Alkylpyrazines on Facultative Pathogens. Master’s Thesis, Institute of Environmental Biotechnology Graz University of Technology, Graz, Austria, January 2016. [Google Scholar]
- Mamonov, A.A.; Shchegolev, B.F.; Stefanov, V.E. Molecular Dynamics Simulation of Interaction between Phospholipid Membrane and Pyrazine and Its Derivatives. Biochem. Suppl. Ser. A Membr. Cell Biol. 2013, 7, 78–89. [Google Scholar] [CrossRef]
- Schulz, S.; Dickschat, J.S. Bacterial Volatiles: The Smell of Small Organisms. Nat. Prod. Rep. 2007, 24, 814. [Google Scholar] [CrossRef] [PubMed]
- Tsai, T.-H.; Liang, C.-C. Pharmacokinetics of Tetramethylpyrazine in Rat Blood and Brain Using Microdialysis. Int. J. Pharm. 2001, 216, 61–66. [Google Scholar] [CrossRef]
- Yamada, K.; Watanabe, Y.; Aoyagi, Y.; Ohta, A. Effect of Alkylpyrazine Derivatives on the Duration of Pentobarbital- Induced Sleep, Picrotoxicin-Induced Convulsion and g-Aminobutyric Acid (GABA) Levels in the Mouse Brain. Biol. Pharm. Bull 2001, 24, 1068–1071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kremer, J.I.; Pickard, S.; Stadlmair, L.F.; Glaß-Theis, A.; Buckel, L.; Bakuradze, T.; Eisenbrand, G.; Richling, E. Alkylpyrazines from Coffee Are Extensively Metabolized to Pyrazine Carboxylic Acids in the Human Body. Mol. Nutr. Food Res. 2019, 63, 1801341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miniyar, P.; Murumkar, P.; Patil, P.; Barmade, M.; Bothara, K. Unequivocal Role of Pyrazine Ring in Medicinally Important Compounds: A Review. Mini-Rev. Med. Chem. 2013, 13, 1607–1625. [Google Scholar] [CrossRef] [PubMed]
- Seliem, I.A.; Girgis, A.S.; Moatasim, Y.; Kandeil, A.; Mostafa, A.; Ali, M.A.; Bekheit, M.S.; Panda, S.S. New Pyrazine Conjugates: Synthesis, Computational Studies, and Antiviral Properties against SARS-CoV-2. ChemMedChem 2021, 16, 3418–3427. [Google Scholar] [CrossRef] [PubMed]
- Agisha, V.N.; Kumar, A.; Eapen, S.J.; Sheoran, N.; Suseelabhai, R. Broad-Spectrum Antimicrobial Activity of Volatile Organic Compounds from Endophytic Pseudomonas Putida BP25 against Diverse Plant Pathogens. Biocontrol Sci. Technol. 2019, 29, 1069–1089. [Google Scholar] [CrossRef]
- Schöck, M.; Liebminger, S.; Berg, G.; Cernava, T. First Evaluation of Alkylpyrazine Application as a Novel Method to Decrease Microbial Contaminations in Processed Meat Products. AMB Express 2018, 8, 54. [Google Scholar] [CrossRef]
- Zou, J.; Gao, P.; Hao, X.; Xu, H.; Zhan, P.; Liu, X. Recent Progress in the Structural Modification and Pharmacological Activities of Ligustrazine Derivatives. Eur. J. Med. Chem. 2018, 147, 150–162. [Google Scholar] [CrossRef]
- Ding, K.; Jiang, Q.; Wang, J.; Liu, N.; Zhang, F. Effect of Tetramethylpyrazine on Growth Performance, Campylobacter Jejuni Carriage and Endogenous Antimicrobial Peptides in Rabbits. Czech J. Anim. Sci. 2019, 64, 465–471. [Google Scholar] [CrossRef] [Green Version]
- Liu, N.; Wang, J.Q.; Liu, Z.Y.; Chen, Y.K.; Wang, J.P. Tetramethylpyrazine Attenuates Necrotic Enteritis by Reducing Gut Oxidative Stress, Inflammation, Opportunistic Bacteria and Endotoxins in Broilers. Eur. Poult. Sci. 2018, 82, 1612–9199. [Google Scholar] [CrossRef]
- Liu, N.; Lin, L.; Wang, J.Q.; Zhang, F.K.; Wang, J.P. Tetramethylpyrazine Supplementation Reduced Salmonella Typhimurium Load and Inflammatory Response in Broilers. Poult. Sci. 2019, 98, 3158–3164. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Shi, J.; Shi, J.; Wang, Q.; Li, Y. Antimicrobial Effects of Volatiles Produced by Two Antagonistic Bacillus Strains on the Anthracnose Pathogen in Postharvest Mangos. Biol. Control 2013, 65, 200–206. [Google Scholar] [CrossRef]
- Munjal, V.; Nadakkakath, A.V.; Sheoran, N.; Kundu, A.; Venugopal, V.; Subaharan, K.; Rajamma, S.; Eapen, S.J.; Kumar, A. Genotyping and Identification of Broad Spectrum Antimicrobial Volatiles in Black Pepper Root Endophytic Biocontrol Agent, Bacillus Megaterium BP17. Biol. Control 2016, 92, 66–76. [Google Scholar] [CrossRef]
- Haidar, R.; Roudet, J.; Bonnard, O.; Dufour, M.C.; Corio-Costet, M.F.; Fert, M.; Gautier, T.; Deschamps, A.; Fermaud, M. Screening and Modes of Action of Antagonistic Bacteria to Control the Fungal Pathogen Phaeomoniella Chlamydospora Involved in Grapevine Trunk Diseases. Microbiol. Res. 2016, 192, 172–184. [Google Scholar] [CrossRef]
- Fontes, F.L.; Peters, B.J.; Crans, D.C.; Crick, D.C. The Acid–Base Equilibrium of Pyrazinoic Acid Drives the PH Dependence of Pyrazinamide-Induced Mycobacterium Tuberculosis Growth Inhibition. ACS Infect. Dis. 2020, 6, 3004–3014. [Google Scholar] [CrossRef]
- Hunziker, L.; Bönisch, D.; Groenhagen, U.; Bailly, A.; Schulz, S.; Weisskopf, L. Pseudomonas Strains Naturally Associated with Potato Plants Produce Volatiles with High Potential for Inhibition of Phytophthora Infestans. Appl. Environ. Microbiol. 2015, 81, 821–830. [Google Scholar] [CrossRef] [Green Version]
- Chuankun, X.; Minghe, M.; Leming, Z.; Keqin, Z. Soil Volatile Fungistasis and Volatile Fungistatic Compounds. Soil Biol. Biochem. 2004, 36, 1997–2004. [Google Scholar] [CrossRef]
- Mülner, P.; Bergna, A.; Wagner, P.; Sarajlić, D.; Gstöttenmayr, B.; Dietel, K.; Grosch, R.; Cernava, T.; Berg, G. Microbiota Associated with Sclerotia of Soilborne Fungal Pathogens–A Novel Source of Biocontrol Agents Producing Bioactive Volatiles. Phytobiomes J. 2019, 3, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Vlassi, A.; Nesler, A.; Perazzolli, M.; Lazazzara, V.; Büschl, C.; Parich, A.; Puopolo, G.; Schuhmacher, R. Volatile Organic Compounds From Lysobacter Capsici AZ78 as Potential Candidates for Biological Control of Soilborne Plant Pathogens. Front. Microbiol. 2020, 11, 1748. [Google Scholar] [CrossRef]
- Chen, L.; Hui-Nan, X.; Xiao-Ling, L. In Vitro Permeation of Tetramethylpyrazine across Porcine Buccal Mucosa. Acta Pharm. Sin. 2002, 23, 792–796. [Google Scholar]
- Nie, S.-Q.; Majarais, I.; Kwan, C.-Y.; Epand, R.M. Analogues of Tetramethylpyrazine Affect Membrane Fluidity of Liposomes: Relationship to Their Biological Activities. Eur. J. Pharmacol. Mol. Pharmacol. 1994, 266, 11–18. [Google Scholar] [CrossRef]
- AntiBac-Pred. Available online: http://www.way2drug.com/antibac/ (accessed on 6 October 2022).
- Pogodin, P.V.; Lagunin, A.A.; Rudik, A.V.; Druzhilovskiy, D.S.; Filimonov, D.A.; Poroikov, V.V. AntiBac-Pred: A Web Application for Predicting Antibacterial Activity of Chemical Compounds. J. Chem. Inf. Model. 2019, 59, 4513–4518. [Google Scholar] [CrossRef] [PubMed]
- Pass Online. Available online: http://www.way2drug.com/passonline/index.php (accessed on 6 October 2022).
- Anzali, S.; Barnickel, G.; Cezanne, B.; Krug, M.; Filimonov, D.; Poroikov, V. Discriminating between Drugs and Nondrugs by Prediction of Activity Spectra for Substances (PASS). J. Med. Chem. 2001, 44, 2432–2437. [Google Scholar] [CrossRef]
- Sadym, A.; Lagunin, A.; Filimonov, D.; Poroikov, V. Prediction of Biological Activity Spectra via The Internet. SAR QSAR Environ. Res. 2003, 14, 339–347. [Google Scholar] [CrossRef]
- Ryu, W.-S. Picornavirus. Molecular Virology of Human Pathogenic Viruses; Elsevier: Amsterdam, The Netherlands, 2017; pp. 153–164. ISBN 978-0-12-800838-6. [Google Scholar]
- Teranishi, R.; Buttery, R.G.; Guadagni, D.G. Odor Quality and Chemical Structure in Fruit and Vegetable Flavors. Ann. N. Y. Acad. Sci. 1974, 237, 209–216. [Google Scholar] [CrossRef]
- Mihara, S.; Masuda, H. Structure-Odor Relationships for Disubstituted Pyrazines. J. Agric. Food Chem. 1988, 36, 1242–1247. [Google Scholar] [CrossRef]
- Shimazaki, K.; Inoue, T.; Shikata, H.; Sakakibara, K. Evaluation of the Odor Activity of Pyrazine Derivatives Using Structural and Electronic Parameters Derived from Conformational Study by Molecular Mechanics (MM3) and Ab Initio Calculations. J. Mol. Struct. 2005, 749, 169–176. [Google Scholar] [CrossRef]
- Cerny, C.; Grosch, W. Quantification of Character-Impact Odour Compounds of Roasted Beef. Z Leb. Unters Forsch. 1993, 196, 417–422. [Google Scholar] [CrossRef]
- Buchbauer, G.; Klein, C.T.; Wailzer, B.; Wolschann, P. Threshold-Based Structure−Activity Relationships of Pyrazines with Bell-Pepper Flavor. J. Agric. Food Chem. 2000, 48, 4273–4278. [Google Scholar] [CrossRef]
- Yoshii, F.; Hirono, S. Construction of a Quantitative Three-Dimensional Model for Odor Quality Using Comparative Molecular Field Analysis (CoMFA). Chem. Senses 1996, 21, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Alpert, H.R.; Agaku, I.T.; Connolly, G.N. A Study of Pyrazines in Cigarettes and How Additives Might Be Used to Enhance Tobacco Addiction. Tob. Control 2016, 25, 444–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrington, A.; Rosario, V.; Serby, M.J.; Chobor, K.L. Science of Olfaction; Springer: New York, NY, USA, 1992; pp. 410–433. ISBN 978-1-4612-7690-6/978-1-4612-2836-3. [Google Scholar]
- Fard, P.A.; Shakoorjavan, S.; Akbari, S. The relationship between odour intensity and antibacterial durability of encapsulated thyme essential oil by PPI dendrimer on cotton fabrics. J. Text. Inst. 2017, 109, 832–841. [Google Scholar] [CrossRef]
CIN | Compound name | LSOP in Cocoa | LSOP in DC | LSOP in MC | LS of Odour Description | Odour Description from Literature | Odour Description from The Good Scent Informational System |
---|---|---|---|---|---|---|---|
1 | pyrazine | [17] | [13,20] | [12,13,17,26] | pungent, sweet, corn-like, nutty, chocolate, hazelnut, green | pungent, sweet, corn, roasted, hazelnut, barley | |
2 | 2-methylpyrazine | [14,17,23] | [13,15,20,21,24] | [12,17,20,21,24,26] | nutty, hazelnut, chocolate, cocoa, roasted, green, sweet, meat, fruity | nutty, cocoa, roasted, chocolate, peanut, green, earthy | |
3 | 2,3-dimethylpyrazine | [14,17,22,27] | [13,15,20,21,24] | [12,17,18,21,24,28] | caramel, cocoa, hazelnut, nutty, roasted, bitter, green, coffee, potato, baked | nutty, cocoa, peanut butter, coffee, caramel, roasted potato, musty | |
4 | 2,5-dimethylpyrazine | [14,17,19,23,27] | [13,15,20,21,24,29] | [12,13,17,18,19,21,24,28,29] | cocoa, roasted nuts, rum, fried potato, popcorn, chocolate, chemical, ether, green, roasted barley, butter | cocoa, roasted, nutty, beef, woody, grassy, medicinal, earthy | |
5 | 2,6-dimethylpyrazine | [14,17,23] | [21] | [12,17,18,21,28] | nutty, peanut, coffee, green, ether, chocolate, fruity, sweet, roasted, potato | ether, cocoa, nutty, roasted, beefy, coffee, buttermilk | |
6 | trimethylpyrazine | [7,10,14,16,17,19,23,27,28,30] | [13,15,20,21,24,29] | [13] | [3,7,10,12,13,16,17,19,20,21,24,28,29,30] | earthy, cocoa, roasted, nutty, peanut, baked, fried potato, fruity, ether, pungent, green, vegetable, sweet, beans | nutty, earthy, powdery, cocoa, potato, roasted |
7 | tetramethylpyrazine | [10,19,23,27] | [13,15,20,21,24] | [10,12,13,19,20,21,24] | candy, chocolate, sweet, milky, nutty, peanut, grassy, green, mocha coffee, sour, roasted, beans | nutty, musty, chocolate, coffee, cocoa, burnt, musty, vanilla | |
8 | 2-ethylpyrazine | [14,17] | [13,20,21,29] | [13,17,20,21,26,29] | peanut, peanut butter, nutty, roasted, rum, ether, cereal, musty, green, sweet | peanut butter, nutty, woody, roasted, cocoa, coffee, meaty | |
9 | 2-ethyl-3-methylpyrazine | [14,17,23] | [13,20,21] | [13,17,21,28] | hazelnut, roasted, raw potato | nutty, musty, corn, raw, earthy, bready | |
10 | 2-ethyl-5-methylpyrazine | [14,17] | [13,20,21] | [13,17,18,21] | nutty, raw potato, roasted, grassy, green, cocoa | coffee, beans, nutty, grassy, roasted | |
11 | 2-ethyl-6-methylpyrazine | [14,19,27] | [13,15,20,21] | [13,18,19,21] | cocoa, roasted, potato, green, nutty, popcorn, sweet | roasted, potato | |
12 | 2-ethyl-3,5-dimethylpyrazine | [7,13,16,30] | [13,15,20,21,29,31] | [13] | [3,7,13,16,20,28,29,30,31] | earthy, chocolate, roasted, sweet, woody, potato chips, smoky, praline, rum, vegetable | burnt, coffee, nutty, roasted, woody, potato-chip-like, |
13 | 2-ethyl-3,6-dimethylpyrazine | [7,14,16,19,23,27,30] | [13,20,21,29,31] | [13] | [3,7,13,19,20,28,29,30,31] | praline, rum, nutty, earthy, potato, popcorn, roasted, smoky, vegetable | burnt, coffee, nutty, roasted, woody |
14 | 2-ethyl-5,6-dimethylpyrazine | [10,14] | [21,29] | [10,21,28,29,32] | deep roasted, cocoa, chocolate, baked potato, earthy, nutty | burnt, popcorn, roasted, cocoa | |
15 | 2,3-diethylpyrazine | [14,17] | [17,28] | nutty, hazelnut, cereal, meaty, earthy | raw, nutty, pepper, bell pepper | ||
16 | 3,5-diethyl-2-methylpyrazine | [14,19,23,27] | [13,20] | [13,19,20,28] | cocoa, chocolate, rum, roasted, nutty, green, bell pepper, popcorn, sweet | nutty, meaty, vegetable | |
17 | 2,5-diethyl-3-methylpyrazine | [14,28] | [13,20] | [13,20] | cocoa, chocolate, rum, roasted, meaty, sweet | hazelnut, roasted, meaty | |
18 | 2,3-diethyl-5-methylpyrazine | [7,13,14,16,23,30] | [13,20,30] | [13] | [3,13,16,28,30,31,33,34] | nutty, cocoa, roasted, vegetable, earthy, chocolate, potato chips | musty, nutty, earthy, roasted, potato, dusty, vegetable, green, meaty |
19 | 2,3,5-trimethyl-6-ethylpyrazine | [10,14] | [15,21,24] | [21,24] | chocolate, cocoa, coffee, sweet, hazelnut, roasted | - | |
20 | 2-methoxy-3-isopropylpyrazine | [13,30] | [13,20,31] | [13] | [3,13,20,28,30,31,33] | bell pepper, earthy, green pea, beans, hazelnut, | vegetable, earthy, potato |
21 | 2-ethenylpyrazine | [13,20] | nutty | nutty, hazelnut | |||
22 | 2-ethenyl-5-methylpyrazine | [29] | [29] | [29] | vegetal, earthy, roasted, coffee | coffee | |
23 | 2-ethenyl-6-methylpyrazine | [27] | [13,20,21,29] | [13,20,21,29] | roasted, smoked, praline, rum, nutty, hazelnut, vegetable, earthy | nutty | |
24 | 2,5-dimethyl-3-isobutylpyrazine | [13,20,29] | [13,20,29] | cocoa, hazelnut, musty, earthy, roasted, nutty, vegetable, pepper | cocoa, hazelnut, musty, earthy, roasted, nutty | ||
25 | 2,6-dimethyl-3-isobutylpyrazine | [13,20] | [13,20] | cocoa, hazelnut, musty, earthy, roasted, nutty, vegetable, pepper | cocoa, hazelnut, musty, earthy, roasted, nutty | ||
26 | 2,5-dimethyl-3-isopenthylpyrazine | [13,20] | [13,20] | roasted, sweet, green | fruity | ||
27 | 2,3,5-trimethyl-6-isopenthylpyrazine | [14] | [29] | [29] | floral, anise, minty | - | |
28 | 2,3,5-trimethyl-6-isobutylpyrazine | [29] | [29] | [29] | vegetal, cucumber | - | |
29 | 2-acetylpyrazine | [29,31] | [3,12,29] | nutty, popcorn, roasted corn, dirt, burnt, sweet | popcorn, nutty, corn, bread crust, chocolate, hazelnut, coffee | ||
30 | 2-methoxy-3-isobutylpyrazine | [16] | [31] | [3,12,16,28,31,33] | green bell pepper, green pea, vegetable, hot paprika | pea, green bell pepper | |
31 | 2,6-dimethyl-3-propylpyrazine | [23] | [28] | earthy | nutty, hazelnut, roasted | ||
32 | 2,5-dimethyl-3-propylpyrazine | [23] | - | nutty, hazelnut, roasted | |||
33 | 2-isobutyl-3-methylpyrazine | [14] | - | herbal, green, sweet | |||
34 | 2,6-diethylpyrazine | [14,29] | [29] | [29] | vegetable | nutty, hazelnut | |
35 | 2,5-diethylpyrazine | [14] | - | nutty, hazelnut | |||
36 | 2-propylpyrazine | [14] | [25] | nutty, green, vegetable | green, vegetable, nutty, hazelnut, barley, roasted, corn | ||
37 | 2,3-diethyl-5,6-dimethylpyrazine | [14] | - | - | |||
38 | 2,3,5-trimethyl-6-(2-methylbutyl)pyrazine | [14] | [32] | coffee | - | ||
39 | 2-sec-butyl-3-methoxypyrazine | [31] | [31] | pea, roasted | musty, green pea, bell pepper, green, vegetable, nutty, potato | ||
40 | 3-ethyl-5-methyl-2-ethenylpyrazine | [31] | [31] | roasted, popcorn | earthy |
CIN | Pyrazine Compound | Campylobacter jejuni | Clostridium perfringens | Escherichia coli | Ralstonia pseudosolanacearum | Ralstonia solanacearum | Salmonella | Staphylococcus aureus | Plant parasitic nematode Radopholus similis |
---|---|---|---|---|---|---|---|---|---|
2 | methylpyrazine | [43] | [43] | ||||||
4 | 2,5-dimethylpyrazine | [50] | [43] | [50] | [43] | ||||
7 | tetramethylpyrazine | [46] | [47] | [47] | [47,48] | ||||
9 | 2-ethyl-3-metylpyrazine | [50] | |||||||
10 | 2-ethyl-5-methylpyrazine | [43] | [43] | ||||||
13 | 2-ethyl-3,6-dimethylpyrazine | [43] | [43] | ||||||
33 | 2-isobutyl-3-methylpyrazine | [35] | [35] |
CIN | Pyrazine Compound | Athelia rolfsii | Candida albicans | Colletotrichum gloeosporioides | Gibberella moniliformis | Magnaporthe oryzae | Phaeomoniella chlamydospora | Phytophthora capsici | Phytophthora infestans | Phytophthora rot | Pythium myriotylum | Pythium ultimum | Rhizoctonia solani | Sclerotinia minor | Sclerotinia sclerotiorum |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | methylpyrazine | [43] | [43,49] | [43] | [43] | [43,50] | [43] | [43] | |||||||
4 | 2,5-dimethylpyrazine | [43] | [43] | [43] | [43,50] | [51] | [43,50] | [53] | [43] | [43] | [56] | [43,56] | [56] | ||
6 | trimethylpyrazine | [53] | |||||||||||||
7 | tetramethylpyrazine | [53] | |||||||||||||
8 | ethylpyrazine | [50] | [50] | [55] | |||||||||||
9 | 2-ethyl-3-metylpyrazine | [50] | [50] | ||||||||||||
10 | 2-ethyl-5-methylpyrazine | [43] | [43] | [43] | [43] | [43] | [43] | [43] | [43] | ||||||
12 | 2-ethyl-3,5-dimethylpyrazine | [51] | |||||||||||||
13 | 2-ethyl-3,6-dimethylpyrazine | [43] | [43] | [43] | [43] | [43] | [43] | [43] | [43] | ||||||
20 | 2-methoxy-3-isopropyprazine | [56] | [56] | [56] | |||||||||||
33 | 2-isobutyl-3-methylpyrazine | [35] |
CIN | Compound Name | AntiBac-Pred | PASS | ||
---|---|---|---|---|---|
Yersinia pestis | Resistant Mycobacterium tuberculosis | Corynebacterium jeikeium | Picornavirus | ||
1 | pyrazine | 0.7689 | 0.674 | ||
7 | tetramethylpyrazine | 0.7431 | 0.632 | ||
3 | 2,3-dimethylpyrazine | 0.7010 | 0.635 | ||
4 | 2,5-dimethylpyrazine | 0.7010 | 0.6459 | 0.591 | |
5 | 2,6-dimethylpyrazine | 0.6560 | 0.587 | ||
2 | 2-methylpyrazine | 0.6050 | 0.5963 | 0.601 | |
6 | trimethylpyrazine | 0.6050 | 0.522 | ||
15 | 2,3-diethylpyrazine | 0.5018 | 0.564 | ||
9 | 2-ethyl-3-methylpyrazine | 0.539 | |||
19 | 2,3,5-trimethyl-6-ethylpyrazine | 0.536 | |||
30 | 2-isobutyl-3-methoxypyrazine | 0.6632 | |||
28 | 2,3,5-trimethyl-6-isobutylpyrazine | 0.5910 | 0.532 | ||
27 | 2,3,5-trimethyl-6-isopentylpyrazine | 0.5910 | |||
33 | 2-isobutyl-3-methylpyrazine | 0.5242 | 0.535 | ||
8 | 2-ethylpyrazine | 0.523 |
CIN | Odour Threshold, µg/L | Flavour Dilution Factor | Odour Activity Values | Concentration, mg/kg | ||||
---|---|---|---|---|---|---|---|---|
Cocoa | Dark Chocolate | Milk Chocolate | Cocoa | Dark Chocolate | Milk Chocolate | |||
1 | 175,000 a [12,65], 180,000 a [17], 300,000 a [26], 500,000 a [12] | 0.00024 pw [17] | 0–0.067(0.043) pw [17] | 0.144 [20] | ||||
2 | 60 a [17], >2000 b [28], 27,000 a [24], 30,000 a [26], 60,000 a [12,65], 100,000 a [12] | 2 [20] | <1 dc [24], 4.83 pw [17] | 0.11–0.37 (0.29) pw [17], 0.316–0.364 pw [14] | 0.009–0.099 [24], 1.329–2.544 [20], 0.8 [15] | |||
3 | 400 a [12], 800 a,d [18,66], 880 b [28], 2500 a [12,17,65] | 256, >4096 [20] | 0.084 pw [17] | 0.01–0.44 (0.21) pw [17], 0.097–0.107 pw [14], 0.27–3.5 rcb [27] | 0.034–0.059 [24], 0.59–0.802 [20], 2.74–15.11 1.99–10.18 [15] | |||
4 | 7.9 e [67], 1700 a [17], 1800 a [12,65], 1820 b [28], 2600 a [24] | 27 lq [19] | 81 [19] | 27 [19] | 0.65 pw [17], <1 dc [24] | 0.204–0.24 lq [19], 0.23–1.69 (1.10) pw [17], 0.25–2.47 rcb [27], 0.474–0.59 pw [14] | 0.014–0.078 [24], 0.34–0.376 [19], 0.094–1.434 [20], 1.99–10.18 [15] | 0.051–0.065 [19] |
5 | 400 a,d [18,66], 1500 a [12,65], 1720 b [28], 9000 a [17] | 0.027 pw [17] | 0.11–0.39 (0.24) pw [17], 0.109–0.275 pw [14] | |||||
6 | 0.087 e [67], 50 b [28], 90 a [3], 180 c [31], 290 a [24], 400 a [12], 290 [7,16], 1800 a [17] | 27 lq [19], 32 pw [30], 128 pw [7], 256 rcb [16] | 243 [19], 256 [20] | 32 [30], 81 [19] | 0.46 pw [17], <1 pw [7], <1 dc [24], 1 dc [31], 3.2 rcb [16] | 0.073–0.093 lq [19], 0.21–1.71 (0.82) pw [17], 0.2 pw [7], 0.303–0.749 pw [14], 0.38–5.39 rcb [27], 0.92 rcb [16] | 0.053–0.307 [24], 0.23–0.245 [31], 0.241–0.283 [19], 1.702–2.359 [20], 15.01–81.39 [15] | 0.095–0.129 [19] |
7 | 1000 a [12], >2000 b [28], 10,000 a [17], 38,000 a [24] | 243 lq [19] | 81 [19], 2048, >4096 [20] | 9 [19] | <1 dc [24] | 0.13–2.68 rcb [27], 1.636–1.714 lq [19] | 0.128–2.543 [24], 1.064–1.222 [19], 6.135–7.983 [20], 60.31–285.74 [15] | 0.223–0.269 [19] |
8 | >2000 b [28], 4000 a [26],6000 a [12,17,65] | 32 [20] | 0.05 pw [17] | 0.15–0.41 (0.30) pw [17], 0.132–0.322 pw [14] | 0.336–0.539 [20] | |||
9 | 0.55 e [67], 35 b [28], 130 a [17,65], 500 a [66] | 1.62 pw [17] | 0.13–0.42 (0.21) pw [17], 0.015–0.021 pw [14] | 0.342–0.345 [20] | ||||
10 | 16 a,d [18,66], 100 a [17,65] | 2.8 pw [17] | 0.12–0.47 (0.28) pw [17], 0.099–0.129 pw [14] | |||||
11 | 40 a,d [18,66] | 9 lq [19] | 81 [19] | 27 [19] | 0.068–0.096 lq [19], 0.115–0.133 pw [14], 0.29–7.27 rcb [27] | 0.144–0.164 [19], 0.47–15.23 [15] | 0.057–0.087 [19] | |
12 | 0.00186 e [67], 0.011 b [28], 0.04 a [3], 0.4 a [65], 1.7 c [31], 2 a [68], 2.2 c [3,7,16] | 256 pw, rcb [13,16,30], 2048 pw [7] | 32, 256 [20], 512, 1024 [32] | 1024 [30] | 7.6 rcb [16], 14 pw [7], 16 dc, 24 dc [31] | 0.017 rcb [16], 0.031 pw [3,7], 0.043–0.055 lq [19], 0.14–2.95 rcb [27] | 0.0273–0.0401 [31], 0.452–0.546 [19], 0.728–1.177 [20], 0.98—6.77 [15] | 0.065–0.095 [19] |
13 | 0.00186 e [67], 3.6 b [28], 8.6 a [33], 9 a [3], 57 c [3,7,16], 76 c [31] | 27 lq [19], 32 pw [30], 64 rcb [16], 256 pw [7] | 2, 4 [31], 32, 256 [20], 729 [19] | 27 [19], 512 [30] | <1 dc [31], 1 rcb [16], 1.2 pw [7] | 0.07 pw [3,7], 0.024–0.026 pw [14], 0.056 rcb [16], 0.23–1.83 rcb [27] | 0.0556–0.0572 [31], 0.728–1.177 [20] | |
14 | 200 b [28], 530 a [32,34] | 0.235–0.261 pw [14] | ||||||
15 | 6.6 b [28] | 0.11–0.27 pw (0.16) [17], 0.057–0.079 pw [14] | ||||||
16 | 0.9 b [28] | 27 lq [19] | 243 [19], >4096 [20] | 9 [19], | 0.082–0.122 lq [19], 0.18–1.31 rcb [27], 1.209–1.291 pw [14] | 0.152–0.172 [20], 0.214–0.262 [19] | 0.045–0.057 [19] | |
17 | >170 b [28] | >4096 [20] | 0.152–0.172 [20] | |||||
18 | 0.0002 e [67], 0.014 b [28], 0.031 a [33], 0.09 a [3], 0.5 c [7,16], 7.2 c [31] | 256 pw, rcb [7,13,16,30] | 512, 2048 [31] | 512 [30] | <1 dc, 2 dc [31], 6.6 rcb [16], 16 pw [7] | 0.01–0.014 pw [14] 0.0033 rcb [16], 0.0082 pw [3,7] | 0.00286–0.0113 [31], 0.8–5.07 [15] | |
19 | 0.047–0.061 pw [14] | 0.013–0.267 [24] | ||||||
20 | 0.002 a [3,12], 0.002 b [28] 0.0039 a [33], 0.004–0.024 a [33], 0.01 c [31], 0.024 a [66], 0.001–0.1 a [67] | 512 pw [13,30] | 2 [31], 128, 512 [20] | 64 [30] | 1 dc, 8 dc [31] | 0.00001–0.00008 [31] | ||
21 | >2000 b [28] | 0.027–0.042 [20] | ||||||
23 | 8, 16 [20] | 0.17–1 rcb [27] | ||||||
24 | >2000 b [28] | 2, 128 [20] | 0.146–0.191 [20] | |||||
25 | >2000 b [28] | 2, 128 [20] | 0.146–0.191 [20] | |||||
26 | 32 [20] | 0.392–0.435 [20] | ||||||
27 | 0.044–0.046 pw [14] | |||||||
29 | 48 c [31], 62 a [3] | 128 [31] | <1 dc [31] | 0.0033–0.00535 [31] | ||||
30 | 0.002 a [3,12,65], 0.003 b [28] 0.0062 a [33], 0.002–0.045 a [33], 0.04 c [31], 0.045 a [66], 0.8 c [3,7,16], 0.002–0.1 a [69] | 128 rcb [16] | 2 [31] | 1.2 rcb [16], 6 dc, 9 dc [31], 12 pw [7] | 0.00085 pw [3,7], 0.00094 rcb [16] | 0.00024–0.00036 [31] | ||
31 | 24 b [28] | |||||||
32 | >2000 b [28] | |||||||
33 | 35 [65] | |||||||
34 | 6 [65] | 0.234–0.276 pw [14] | ||||||
35 | 20 [65] | 0.135–0.151 pw [14] | ||||||
36 | 300 a [26] | 0.01–0.014 pw [14] | ||||||
37 | 0.033–0.043 pw [14] | |||||||
38 | 1120 a [32] | 0.053–0.069 pw [14] | ||||||
39 | 0.46 c [31] | 512 [31] | 1 dc [31] | 0.00046–0.00058 [31] | ||||
40 | 8, 32 [31] |
Compound Name | Pa of Antibacterial Activity from AntiBac-Pred | Log10 of Odour Threshold | ||
---|---|---|---|---|
Yersinia pestis | Mycobacterium tuberculosis | Corynebacterium jeikeium | ||
pyrazine | 0.7689 | 5.460521 | ||
tetramethylpyrazine | 0.7431 | 4.213065 | ||
2,3-dimethylpyrazine | 0.7010 | 3.091079 | ||
2,5-dimethylpyrazine | 0.7010 | 0.6459 | 3.308208 | |
2,6-dimethylpyrazine | 0.6560 | 3.560305 | ||
2-methylpyrazine | 0.6050 | 0.5963 | 4.637609 | |
trimethylpyrazine | 0.6050 | 2.758911 | ||
2,3-diethylpyrazine | 0.5018 | 0.8195439 | ||
2-isobutyl-3-methoxypyrazine | 0.6632 | −1.540607 | ||
2-isobutyl-3-methylpyrazine | 0.5242 | 1.544068 |
t-Test of Independent Groups | Spearman’s Rank–Order Correlation Test | ||
---|---|---|---|
Analysed variables | 2 | Analysed variables | 2 |
Significance level, α | 0,05 | Significance level, α | 0.05 |
Correction for different variances | No | Number of pairs | 12 |
Difference of the means | −2.340587 | r | 0.37895 |
−95% CI for the difference | −3.496677 | Std. err. of r | 0.292643 |
+95% CI for the difference | −1.184498 | −95% CI for r coefficient | −0.267219 |
Standard error of the difference | 0.557454 | +95% CI for r coefficient | 0.790038 |
Pooled standard deviation | 1.365478 | t-statistic for r | 1.294923 |
t-statistic | −4.198709 | Degrees of freedom | 10 |
Degrees of freedom | 22 | Two-sided p-value | 0.224445 |
Two-sided p-value (t-test) | 0.000371 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cherniienko, A.; Pawełczyk, A.; Zaprutko, L. Antimicrobial and Odour Qualities of Alkylpyrazines Occurring in Chocolate and Cocoa Products. Appl. Sci. 2022, 12, 11361. https://doi.org/10.3390/app122211361
Cherniienko A, Pawełczyk A, Zaprutko L. Antimicrobial and Odour Qualities of Alkylpyrazines Occurring in Chocolate and Cocoa Products. Applied Sciences. 2022; 12(22):11361. https://doi.org/10.3390/app122211361
Chicago/Turabian StyleCherniienko, Alina, Anna Pawełczyk, and Lucjusz Zaprutko. 2022. "Antimicrobial and Odour Qualities of Alkylpyrazines Occurring in Chocolate and Cocoa Products" Applied Sciences 12, no. 22: 11361. https://doi.org/10.3390/app122211361
APA StyleCherniienko, A., Pawełczyk, A., & Zaprutko, L. (2022). Antimicrobial and Odour Qualities of Alkylpyrazines Occurring in Chocolate and Cocoa Products. Applied Sciences, 12(22), 11361. https://doi.org/10.3390/app122211361