Towards Watt-Level THz Sources for High-Resolution Spectroscopy Based on 5th-Harmonic Multiplication in Gyrotrons
Abstract
:1. Introduction
2. Simulations of 5th-Harmonic Multiplication with Parameters of a 250-GHz High-Power Gyrotron
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bründermann, E.; Hübers, H.-W.; Kimmitt, M.F. Terahertz Techniques; Springer Series in Optical Sciences; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Tonouchi, M. Cutting-edge terahertz technology. Nat. Photonics 2007, 1, 97–105. [Google Scholar] [CrossRef]
- Dhillon, S.S.; Vitiello, M.S.; Linfield, E.H.; Davies, A.G.; Hoffmann, M.C.; Nooske, J.; Paoloni, C.; Gensch, M.; Weightman, P.; Williams, G.P.; et al. The 2017 terahertz science and technology roadmap. J. Phys. D Appl. Phys. 2017, 50, 043001. [Google Scholar] [CrossRef]
- Booske, J.H.; Dobbs, R.J.; Joye, C.D.; Kory, C.L.; Neil, G.R.; Park, G.-S.; Park, J.; Temkin, R.J. Vacuum Electronic High Power Terahertz Sources. IEEE Trans. Terahertz Sci. Technol. 2011, 1, 54–75. [Google Scholar] [CrossRef]
- Mumtaz, S.; Choi, E.H. An efficient vircator with high output power and less drifting electron loss by forming multivirtual cathodes. IEEE Electron Device Lett. 2022, 43, 1756–1759. [Google Scholar] [CrossRef]
- Dubinov, A.E.; Saikov, S.K.; Tarakanov, V.P. Multivircator as a new highly effective microwave generator with multiple virtual cathodes: Concept and PIC-simulation. IEEE Trans. Plasma Sci. 2020, 48, 141–145. [Google Scholar] [CrossRef]
- Idehara, T.; Sabchevski, S.P.; Glyavin, M.; Mitsudo, S. The gyrotrons as promising radiation sources for THz sensing and imaging. Appl. Sci. 2020, 10, 980. [Google Scholar] [CrossRef] [Green Version]
- Thumm, M.; Denisov, G.G.; Sakamoto, K.; Tran, M.Q. High-power gyrotrons for electron cyclotron heating and current drive. Nucl. Fusion 2019, 59, 073001. [Google Scholar] [CrossRef]
- Denisov, G.G.; Glyavin, M.Y.; Fokin, A.P.; Kuftin, A.N.; Tsvetkov, A.I.; Sedov, A.S.; Soluyanova, E.A.; Bakulin, M.I.; Sokolov, E.V.; Tai, E.M.; et al. First experimental tests of powerful 250 GHz gyrotron for future fusion research and collective Thomson scattering diagnostics. Rev. Sci. Instr. 2018, 89, 084702. [Google Scholar] [CrossRef]
- Glyavin, M.Y.; Luchinin, A.G.; Golubiatnikov, G.Y. Generation of 1.5-kW, 1-THz coherent radiation from a gyrotron with a pulsed magnetic field. Phys. Rev. Lett. 2008, 100, 015101. [Google Scholar] [CrossRef]
- Idehara, T.; Tatematsu, Y.; Yamaguchi, Y.; Khutoryan, E.M.; Kuleshov, A.N.; Ueda, K.; Matsuki, Y.; Fujiwara, T. The development of 460 GHz gyrotrons for 700 MHz DNP-NMR spectroscopy. J. Infrared Millim. Terahertz Waves 2015, 36, 613–627. [Google Scholar] [CrossRef]
- Litvak, A.G.; Denisov, G.G.; Glyavin, M.Y. Russian gyrotrons: Achievements and trends. IEEE J. Microw. 2021, 1, 260–268. [Google Scholar] [CrossRef]
- Glyavin, M.Y.; Kuftin, A.N.; Morozkin, M.V.; Proyavin, M.D.; Fokin, A.P.; Chirkov, A.V.; Manuilov, V.N.; Sedov, A.S.; Soluyanova, E.A.; Sobolev, D.I.; et al. A 250-Watts, 0.5-THz continuous-wave second-harmonic gyrotron. IEEE Electr. Dev. Lett. 2021, 42, 1666–1669. [Google Scholar] [CrossRef]
- Kalynov, Y.K.; Manuilov, V.N.; Fiks, A.S.; Zavolskiy, N.A. Powerful continuous-wave sub-terahertz electron maser operating at the 3rd cyclotron harmonic. Appl. Phys. Lett. 2019, 14, 213502. [Google Scholar] [CrossRef]
- Cryogen-Free Magnet Product. Jastec Japan Superconductor Technology, Inc. Available online: http://www.jastec-inc.com (accessed on 10 October 2022).
- Nusinovich, G.S. Mode interaction in gyrotrons. Int. J. Electron. 1981, 51, 457–474. [Google Scholar] [CrossRef]
- Sabchevski, S.P.; Glyavin, M.Y.; Nusinovich, G.S. The progress in the studies of mode interaction in gyrotrons. J. Infrared Milli Terahz Waves 2022, 43, 1–47. [Google Scholar] [CrossRef]
- Hirshfield, J.L. Coherent radiation from spatiotemporally modulated gyrating electron beams. Phys. Rev. A 1991, 44, 6845–6853. [Google Scholar] [CrossRef]
- Baik, C.-W.; Jeon, S.-G.; Kim, D.H.; Sato, N.; Yokoo, K.; Park, G.-S. Third-harmonic frequency multiplication of a two-stage tapered gyrotron TWT amplifier. IEEE Trans. Electron Dev. 2005, 52, 829–838. [Google Scholar] [CrossRef]
- Glyavin, M.; Zotova, I.; Rozental, R.; Malkin, A.; Sergeev, A.; Fokin, A.; Rumyantsev, V.; Morozov, S. Investigation of the frequency double-multiplication effect in a sub-THz gyrotron. J. Infrared Millim. Terahertz Waves 2020, 41, 1245–1251. [Google Scholar] [CrossRef]
- Denisov, G.G.; Zotova, I.V.; Malkin, A.M.; Sergeev, A.S.; Rozental, R.R.; Fokin, A.P.; Belousov, V.I.; Shmelev, M.Y.; Chirkov, A.V.; Tsvetkov, A.I.; et al. Boosted excitation of an ultra-high cyclotron harmonic based on frequency multiplication by a weakly relativistic beam of gyrating electrons. Phys. Rev. E 2022, 106, L023203. [Google Scholar] [CrossRef]
- Bakunin, V.L.; Denisov, G.G.; Novozhilova, Y.V. Principal enhancement of THz-range gyrotron parameters using injection locking. IEEE Electron Device Lett 2020, 41, 777. [Google Scholar] [CrossRef]
- Koshelev, M.A.; Tsvetkov, A.I.; Morozkin, M.V.; Glyavin, M.Y.; Tretyakov, M.Y. Molecular gas spectroscopy using radioacoustic detection and high-power coherent subterahertz radiation sources. J. Mol. Spectrosc 2017, 331, 9–16. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Denisov, G.; Zotova, I.; Zheleznov, I.; Malkin, A.; Sergeev, A.; Rozental, R.; Glyavin, M. Towards Watt-Level THz Sources for High-Resolution Spectroscopy Based on 5th-Harmonic Multiplication in Gyrotrons. Appl. Sci. 2022, 12, 11370. https://doi.org/10.3390/app122211370
Denisov G, Zotova I, Zheleznov I, Malkin A, Sergeev A, Rozental R, Glyavin M. Towards Watt-Level THz Sources for High-Resolution Spectroscopy Based on 5th-Harmonic Multiplication in Gyrotrons. Applied Sciences. 2022; 12(22):11370. https://doi.org/10.3390/app122211370
Chicago/Turabian StyleDenisov, Grigory, Irina Zotova, Ilya Zheleznov, Andrey Malkin, Alexander Sergeev, Roman Rozental, and Mikhail Glyavin. 2022. "Towards Watt-Level THz Sources for High-Resolution Spectroscopy Based on 5th-Harmonic Multiplication in Gyrotrons" Applied Sciences 12, no. 22: 11370. https://doi.org/10.3390/app122211370
APA StyleDenisov, G., Zotova, I., Zheleznov, I., Malkin, A., Sergeev, A., Rozental, R., & Glyavin, M. (2022). Towards Watt-Level THz Sources for High-Resolution Spectroscopy Based on 5th-Harmonic Multiplication in Gyrotrons. Applied Sciences, 12(22), 11370. https://doi.org/10.3390/app122211370