Should the Application of Diode Laser Completely Replace Conventional Pulpotomy of Primary Teeth?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Statistical Analysis
3. Results
- -
- Teeth without symptoms after 6 months—diode laser 75%, burr 63.33%
- -
- Teeth without symptoms after 12 months—diode laser 86.67%, burr 75%
- -
- Teeth without symptoms after 24 months—diode laser 91.67%, burr 86.67%
- -
- Teeth without periapical change after 6 months—diode laser 73.3%, burr 63.3%
- -
- Teeth without periapical change after 12 months—diode laser 81.67%, burr 75%
- -
- Teeth without periapical change after 24 months—diode laser 93.3%, burr 83.3%
- -
- Teeth without change on X-ray after 6, 12, and 24 months—diode laser 86.67%, burr 73.3%
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nazemisalman, B.; Farsadeghi, M.; Sokhansanj, M. Types of Lasers and Their Applications in Pediatric Dentistry. J. Lasers Med. Sci. 2015, 6, 96–101. [Google Scholar] [CrossRef] [PubMed]
- De Coster, P.; Rajasekharan, S.; Martens, L. Laser-assisted pulpotomy in primary teeth: A systematic review. Int. J. Paediatr. Dent. 2013, 23, 389–399. [Google Scholar] [CrossRef] [PubMed]
- Kornblit, R.; Trapani, D.; Bossù, M.; Muller-Bolla, M.; Rocca, J.P.; Polimeni, A. The use of Erbium:YAG laser for caries removal in paediatric patients following Minimally Invasive Dentistry concepts. Eur. J. Paediatr. Dent. 2008, 9, 81–87. [Google Scholar] [PubMed]
- Pala, S.P.; Nuvvula, S.; Kamatham, R. Expression of pain and distress in children during dental extractions through drawings as a projective measure: A clinical study. World J. Clin. Pediatr. 2016, 5, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Bahrololoomi, Z.; Fekrazad, R.; Zamaninejad, S. Antibacterial Effect of Diode Laser in Pulpectomy of Primary Teeth. J. Lasers Med. Sci. 2017, 8, 197–200. [Google Scholar] [CrossRef] [Green Version]
- Bahrololoomi, Z.; Poursina, F.; Birang, R.; Foroughi, E.; Yousefshahi, H. The Effect of Er:YAG Laser on Enterococcus faecalis Bacterium in the Pulpectomy of Anterior Primary Teeth. J. Lasers Med. Sci. 2017, 8, 166–171. [Google Scholar] [CrossRef] [Green Version]
- Parker, S.; Cronshaw, M.; Anagnostaki, E.; Mylona, V.; Lynch, E.; Grootveld, M. Current Concepts of Laser-Oral Tissue Interaction. Dent. J. 2020, 8, 61. [Google Scholar] [CrossRef]
- Kumar, M.; Grishmi, M.; Girish, N.; Harish, B. State of the art laser technology in dentistry. IERJ 2017, 3, 3–6. [Google Scholar]
- Dhar, V.; Marghalani, A.A.; Crystal, Y.O.; Kumar, A.; Ritwik, P.; Tulunoglu, O.; Graham, L. Use of Vital Pulp Therapies in Primary Teeth with Deep Caries Lesions. Pediatr. Dent. 2017, 39, 146–159. [Google Scholar]
- Chung, H.; Dai, T.; Sharma, S.K.; Huang, Y.Y.; Carroll, J.D.; Hamblin, M.R. The nuts and bolts of low-level laser (light) therapy. Ann. Biomed. Eng. 2012, 40, 516–533. [Google Scholar] [CrossRef] [Green Version]
- David, C.M.; Gupta, P. Laser in Dentistry: A Review. Int. J. Adv. Health Sci. 2015, 2, 7–13. [Google Scholar]
- Caprioglio, C.; Olivi, G.; Genovese, M.D. Paediatric laser dentistry. Part 1: General introduction. Eur. J. Paediatr. Dent. 2017, 18, 80–82. [Google Scholar]
- Najeeb, S.; Khurshid, Z.; Zafar, M.S.; Ajlal, S. Applications of Light Amplification by Stimulated Emission of Radiation (Lasers) for Restorative Dentistry. Med. Princ. Pract. 2015, 25, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Patil, U.A. Overview of lasers. Indian J. Plast. Surg. 2008, 41, 101–113. [Google Scholar] [CrossRef]
- Baraba, A.; Miletić, I.; Jukić Krmek, S.; Perhavec, T.; Božić, Ž.; Anić, I. Ablative Potential of the Erbium–Doped Yttrium Aluminium Garnet Laser and Conventional Handpieces: A Comparative Study. Photomed. Laser Surg. 2009, 27, 921–927. [Google Scholar] [CrossRef] [PubMed]
- Kuzekanani, M.; Plotino, G.; Gutmann, J.L. Current applications of lasers in endodontics. G. Ital. Di Endod. 2019, 33, 13–23. [Google Scholar]
- Bago Jurić, I.; Anić, I. The Use of Lasers in Disinfection and Cleaning of Root Canals: A Review. Acta Stomatol. Croat. 2014, 48, 6–15. [Google Scholar] [CrossRef]
- Gupta, G.; Rana, V.; Srivastava, N.; Chandna, P. Laser Pulpotomy-An Effective Alternative to Conventional Techniques: A 12 Months Clinico radiographic Study. Int. J. Clin. Pediatr. Dent. 2015, 8, 18–21. [Google Scholar] [CrossRef]
- Saltzman, B.; Sigal, M.; Clokie, C.; Rukavina, J.; Titley, K.; Kulkarni, G.V. Assessment of a novel alternative to conventional formocresol-zinc oxide eugenol pulpotomy for the treatment of pulpally involved human primary teeth: Diode laser-mineral trioxide aggregate pulpotomy. Int. J. Paediatr. Dent. 2005, 15, 437–447. [Google Scholar] [CrossRef]
- Ambika, S.; Suchitra, M.S. Diode Laser in Pediatric Dentistry. IJSR 2018, 7, 363–369. [Google Scholar]
- Bagchi, P.; Kashyap, N.; Biswas, S. Pulpotomy: Modern concepts and materials. Int. J. Oral Health Dent. 2021, 7, 245–252. [Google Scholar]
- Payahoo, S.; Jamali, S.; Jabbari, G.; Jamee, A. Efficacy of lasers treatment of exposed pulps to stimulate healing: A systematic review and meta-analysis. Pesqui. Bras. Em Odontopediatria E Clínica Integr. 2020, 20, 51. [Google Scholar] [CrossRef]
- Caprioglio, C.; Olivi, G.; Genovese, M.D.; Vitale, M.C. Paediatric laser dentistry. Part 3: Dental trauma. Eur. J. Paediatr. Dent. 2017, 18, 247–250. [Google Scholar] [PubMed]
- Olivi, G.; Caprioglio, C.; Olivi, M.; Genovese, M.D. Paediatric laser dentistry. Part 2: Hard tissue laser applications. Eur. J. Paediatr. Dent. 2017, 18, 163–166. [Google Scholar] [PubMed]
- Ansari, G.; Chitsazan, A.; Fekrazad, R.; Javadi, F. Clinical and Radiographic Evaluation of Diode Laser Pulpotomy on Human Primary Teeth. Laser Ther. 2018, 27, 187–192. [Google Scholar] [CrossRef] [Green Version]
- Durmus, B.; Tanboga, I. In vivo evaluation of the treatment outcome of pulpotomy in primary molars using diode laser, formocresol, and ferric sulphate. Photomed. Laser Surg. 2014, 32, 289–295. [Google Scholar] [CrossRef] [Green Version]
- Pei, S.; Shih, W.; Liu, J. Outcome Comparison between Diode Laser Pulpotomy and Formocresol Pulpotomy on Human Primary Molars. J. Dent. Sci. 2020, 15, 163–167. [Google Scholar] [CrossRef]
- Nayyar, A.; Satyarth, S.; Alkhamis, A.; Almunahi, H.; Abdulaziz Alsuhaymi, M.; Vadde, H.; Senapathi, S.N.; Shami, A.; Aldrewesh, R. Comparative Evaluation of Mineral Trioxide Aggregate Pulpotomy and Laser-Assisted Mineral Trioxide Aggregate Pulpotomy: An Original Research Article. J. Microsc. Ultrastruct. 2021, 9, 7. [Google Scholar] [CrossRef]
- Kaya, C.; Elbay, Ü.Ş.; Elbay, M.; Uçar, G. The Comparison of Calcium Hydroxide + Biostimulation, Calcium Hydroxide, Formocresol, and MTA Pulpotomies without Biostimulation in Primary Teeth: 12-Months Clinical and Radiographic Follow-Up. Lasers Med. Sci. 2022, 37, 2545–2554. [Google Scholar] [CrossRef]
- Ryge, G. Clinical criteria. Int. Dent. J. 1980, 30, 347–358. [Google Scholar]
- Sadeghi, M.; Lynch, C.D.; Shahamat, N. Eighteen-Month Clinical Evaluation of Microhybrid, Packable and Nanofilled Resin Composites in Class I Restorations. J. Oral. Rehab. 2010, 37, 532–537. [Google Scholar] [CrossRef] [PubMed]
- Türkün, L.Ş.; Türkün, M.; Özata, F. Two-Year Clinical Evaluation of a Packable Resin-Based Composite. J. Am. Dent. Assoc. 2003, 134, 1205–1212. [Google Scholar] [CrossRef] [PubMed]
- Türkün, L.Ş.; Aktener, B.O. Twenty-Four-Month Clinical Evaluation of Different Posterior Composite Resin Materials. J. Am. Dent. Assoc. 2001, 132, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Petticrew, M. Systematic reviews from astronomy to zoology: Myths and misconceptions. BMJ 2001, 322, 98–101. [Google Scholar] [CrossRef] [Green Version]
- Ranly, D.M. Pulpotomy therapy in primary teeth: New modalities for old rationales. Pediatr. Dent. 1994, 18, 403–409. [Google Scholar]
- ‘s-Gravenmade, E.J. Some biochemical considerations of fixation in endodontics. J. Endod. 1975, 1, 233–237. [Google Scholar] [CrossRef]
- Ranly, D.M.; Lazzari, E.P. A biochemical study of two bifunctional reagents as alternatives to formocresol. J. Dent. Res. 1983, 62, 1054–1057. [Google Scholar] [CrossRef]
- Goldmacher, V.S.; Tilley, W.G. Formocresol is mutagenic for cultured human fibroblasts. Mutat. Res. 1983, 116, 417–422. [Google Scholar] [CrossRef]
- Hill, S.D.; Berry, C.W.; Seale, N.S.; Kaga, M. Comparison of antimicrobial and cytotoxic effects of glutaraldehyde and formocresol. Oral Surg. Oral Med. Oral Pathol. 1991, 71, 89–95. [Google Scholar] [CrossRef]
- Odabas, M.E.; Bodur, H.; Baris, E.; Demir, C. Clinical, radiographic, and histopathologic evaluation of Nd:YAG laser pulpotomy on human primary teeth. J. Endod. 2007, 33, 415–421. [Google Scholar] [CrossRef]
- Ranly, D.M.; Garcia-Godoy, F. Current and potential pulp therapies for primary and young permanent teeth. J. Dent. 2000, 28, 153–161. [Google Scholar] [CrossRef]
- Nadin, G.; Goel, B.R.; Yeung, C.A.; Glenny, A.M. Pulp treatment for extensive decay in primary teeth. Cochrane Database Syst. Rev. 2003, Cd003220. [Google Scholar] [CrossRef]
- Lerner, E.J. Diode lasers offer efficiency and reliability. Laser Focus World 1998, 34, 93–98. [Google Scholar]
- Miserendino, L.J.; Neiburger, E.J.; Walia, H.; Luebke, N.; Brantley, W. Thermal effects of continuous wave CO2 laser exposure on human teeth: An in vitro study. J. Endod. 1989, 15, 302–305. [Google Scholar] [CrossRef]
- Jeffrey, I.W.; Lawrenson, B.; Saunders, E.M.; Longbottom, C. Dentinal temperature transients caused by exposure to CO2 laser irradiation and possible pulpal damage. J. Dent. 1990, 18, 31–36. [Google Scholar] [CrossRef]
- Uloopi, K.S.; Vinay, C.; Ratnaditya, A.; Gopal, A.S.; Mrudula, K.J.; Rao, R.C. Clinical evaluation of low level diode laser application for primary teeth pulpotomy. J. Clin. Diagn. Res. 2016, 10, ZC67–ZC70. [Google Scholar] [CrossRef] [PubMed]
- Krothapalli, N.; Prasad, M.G.; Vasa, A.A.; Divya, G.; Thakur, M.S.; Saujanya, K. Clinical evaluation of outcome of primary teeth pulpotomy using mineral trioxide aggregate, laser and biodentine–an in vivo study. J. Clin. Diagn. Res. 2015, 9, ZC35–ZC37. [Google Scholar]
- Yadav, P.; Indushekar, K.; Saraf, B.; Sheoran, N.; Sardana, D. Comparative evaluation of ferric sulfate, electrosurgical and diode laser on human primary molars pulpotomy: An “in-vivo” study. Laser Ther. 2014, 23, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Ansari, G.; Aghdam, H.S.; Taheri, P.; Ahsaie, M.G. Laser pulpotomy—An effective alternative to conventional techniques—A systematic review of literature and meta-analysis. Laser Med. Sci. 2018, 33, 1621–1629. [Google Scholar] [CrossRef]
- Lin, P.Y.; Chen, H.S.; Wang, Y.H.; Tu, Y.K. Primary molar pulpotomy: A systematic review and network meta-analysis. J. Dent. 2014, 42, 1060–1077. [Google Scholar] [CrossRef]
- Huth, K.C.; Paschos, E.; Hajek-Al-Khatar, N.; Hollweck, R.; Crispin, A.; Hickel, R.; Folwaczny, M. Effectiveness of 4 pulpotomy techniques--randomized controlled trial. J. Dent. Res. 2005, 84, 1144–1148. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, M.N.; Jha, M.N.; Undre, M.I.; Ershad, A.; Shaikh, T.N. Outcome of Pulpotomy in Primary Teeth Using Diode Laser. J. Contemp. Dent. 2019, 9, 72–77. [Google Scholar] [CrossRef]
- Kuo, H.Y.; Lin, J.R.; Huang, W.H.; Chiang, M.L. Clinical outcomes for primary molars treated by different types of pulpotomy: A retrospective cohort study. J. Formos. Med. Assoc. 2018, 117, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Cuadros-Fernández, C.; Lorente Rodríguez, A.I.; Sáez-Martínez, S.; García-Binimelis, J.; About, I.; Mercadé, M. Short-term treatment outcome of pulpotomies in primary molars using mineral trioxide aggregate and Biodentine: A randomized clinical trial. Clin. Oral Investig. 2016, 20, 1639–1645. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, M.; Changiz, S.; Makarem, A.; Ahrari, F. Clinical and Radiographic Effectiveness of Mineral Trioxide Aggregate (MTA) Partial Pulpotomy with Low Power or High Power Diode Laser Irradiation in Deciduous Molars: A Randomized Clinical Trial. Lasers Med. Sci. 2022, 37, 2293–2303. [Google Scholar] [CrossRef]
- Khademi, A.; Akhlaghi, N. Outcomes of Vital Pulp Therapy in Permanent Teeth with Different Medicaments Based on Review of the Literature. Dent. Res. J. 2015, 12, 406. [Google Scholar] [CrossRef]
- Demarco, F.F.; Rosa, M.S.; Tarquínio, S.B.C.; Piva, E. Influence of the Restoration Quality on the Success of Pulpotomy Treatment: A Preliminary Retrospective Study. J. Appl. Oral Sci. 2005, 13, 72–77. [Google Scholar] [CrossRef]
Characteristic | A (Alfa) | B (Bravo) | C (Charlie) | D (Delta) |
---|---|---|---|---|
Color | The restoration appears to match the shade and translucency of adjacent tooth tissues. | The restoration does not match the shade and translucency of adjacent tooth tissues, but the mismatch is within the normal range of tooth shades. (Within normal range: similar to silicate cement restorations for which the dentist did not quite succeed in matching tooth color by his choice among available silicate cement shades). | The restoration does not match the shade and translucency of the adjacent tooth structure, and the mismatch is outside the normal range of tooth shades and translucency. | N/A |
Marginal adaptation | The explorer does not catch when drawn across the surface of the restoration toward the tooth, or, if the explorer does not catch, there is no visible crevice along the periphery of the restoration. | The explorer catches and there is visible evidence of a crevice, which the explorer penetrates, indicating that the edge of the restoration does not adapt closely to the tooth structure. The dentin and/or the base are not exposed, and the restoration is not mobile. | The explorer penetrates a crevice defect extended to the dentin-enamel junction. | Restoration is fractured or completely missing. |
Cavosurface marginal discoloration | There is no visual evidence of marginal discoloration different from the color of the restorative material and from the color of the adjacent tooth structure. | There is visual evidence of marginal discoloration at the junction of the tooth structure and the restoration, but the discoloration has not penetrated along the restoration in a pulpal direction. | There is visual evidence of marginal discoloration at the junction of the tooth structure and the restoration that has penetrated along the restoration in a pulpal direction. | N/A |
Secondary caries | The restoration is a continuation of the existing anatomic form adjacent to the restoration. | There is visual evidence of dark keep discoloration adjacent to the restoration (but not directly associated with cavosurface margins) | N/A | N/A |
Postoperative sensitivity | No postoperative sensitivity | Postoperative sensitivity | N/A | N/A |
Parameter | Valid N | Composite | GIC | Total | |||
---|---|---|---|---|---|---|---|
Sum | % | Sum | % | Sum | % | ||
USPHS color 6 months | 120 | 52 | 86.67 | 47 | 78.33 | 99 | 82.50 |
USPHS color 12 months | 120 | 49 | 81.67 | 43 | 71.67 | 92 | 76.67 |
USPHS color 24 months | 120 | 40 | 66.67 | 39 | 65.00 | 79 | 65.83 |
USPHS marginal adaptation 6 months | 120 | 52 | 86.67 | 47 | 78.33 | 99 | 82.50 |
USPHS marginal adaptation 12 months | 120 | 49 | 81.67 | 41 | 68.33 | 90 | 75.00 |
USPHS marginal adaptation 24 months | 120 | 37 | 61.67 | 36 | 60.00 | 73 | 60.83 |
USPHS marginal discoloration 6 months | 120 | 52 | 86.67 | 47 | 78.33 | 99 | 82.50 |
USPHS marginal discoloration 12 months | 120 | 45 | 75.00 | 38 | 63.33 | 83 | 69.17 |
USPHS marginal discoloration 24 months | 120 | 36 | 60.00 | 36 | 60.00 | 72 | 60.00 |
USPHS secondary caries 6 months | 120 | 55 | 91.67 | 48 | 80.00 | 103 | 85.83 |
USPHS secondary caries 12 months | 120 | 47 | 78.33 | 45 | 75.00 | 92 | 76.67 |
USPHS secondary caries 24 months | 120 | 47 | 78.33 | 45 | 75.00 | 92 | 76.67 |
USPHS postoperative hypersensitivity 6 mo. | 120 | 54 | 90.00 | 48 | 80.00 | 102 | 85.00 |
USPHS postoperative hypersensitivity 6 mo. | 120 | 53 | 88.33 | 48 | 80.00 | 101 | 84.17 |
USPHS postoperative hypersensitivity 6 mo. | 120 | 51 | 85.00 | 43 | 71.67 | 94 | 78.33 |
Success USPHS 6 months | 120 | 52 | 86.67 | 47 | 78.33 | 99 | 82.50 |
Success USPHS 12 months | 120 | 42 | 70.00 | 37 | 61.67 | 79 | 65.83 |
Success USPHS 24 months | 120 | 32 | 53.33 | 34 | 56.67 | 66 | 55.00 |
Correlations MD Pairwise Deleted Marked Correlations are Significant at p < 0.01000 | ||||||
---|---|---|---|---|---|---|
Variable | Success 6 mo. | Success Restauration 6 mo. | Success 12 mo. | Success Restauration 12 | Success 12 mo. | Success Restauration 12 |
Success 6 mo. | 1.000000 | 0.839654 * | ||||
Success restauration 6 mo. | 0.839654 * | 1.000000 | ||||
Success 12 mo. | 1.000000 | 0.776305 * | ||||
Success restauration 12 mo. | 0.776305* | 1.000000 | ||||
Success 24 mo. | 1.000000 | 0.68467 * | ||||
Success restauration 24 mo. | 0.68467 * | 1.000000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šimunović, L.; Špiljak, B.; Vranić, L.; Bašić, R.; Negovetić Vranić, D. Should the Application of Diode Laser Completely Replace Conventional Pulpotomy of Primary Teeth? Appl. Sci. 2022, 12, 11667. https://doi.org/10.3390/app122211667
Šimunović L, Špiljak B, Vranić L, Bašić R, Negovetić Vranić D. Should the Application of Diode Laser Completely Replace Conventional Pulpotomy of Primary Teeth? Applied Sciences. 2022; 12(22):11667. https://doi.org/10.3390/app122211667
Chicago/Turabian StyleŠimunović, Luka, Bruno Špiljak, Lara Vranić, Rebecca Bašić, and Dubravka Negovetić Vranić. 2022. "Should the Application of Diode Laser Completely Replace Conventional Pulpotomy of Primary Teeth?" Applied Sciences 12, no. 22: 11667. https://doi.org/10.3390/app122211667
APA StyleŠimunović, L., Špiljak, B., Vranić, L., Bašić, R., & Negovetić Vranić, D. (2022). Should the Application of Diode Laser Completely Replace Conventional Pulpotomy of Primary Teeth? Applied Sciences, 12(22), 11667. https://doi.org/10.3390/app122211667