A Cost-Effective Triplet Lens Design with Chromatic Aberration Correction Based on Optimization Algorithm and Illustration Method
Abstract
:1. Introduction
2. Methods
2.1. Refractive Index versus Wavelength
2.2. Chromatic Aberration of a Thin Lens
2.3. Correction of Longitudinal Chromatic Aberration of a Thin Triplet Lens
2.4. Merit Function
3. The Combination of a Thin Triplet Lens Using the Illustration Method
3.1. Vd − PdC Diagram (G Diagram)
3.2. PAB − PdC Diagram (E Diagram)
3.3. Illustration Method
4. The Refractive Power of the Thick Triplet Lens Design
4.1. The Refractive Power of a Thick Lens
4.2. The Refractive Power of a Thick Triplet Lens
5. Optimization Program and Design Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Welford, W.T. Aberrations of the Symmetrical Optical System; Harcourt Brace Jovanovich: New York, NY, USA, 1974. [Google Scholar]
- Stephens, R.E. Selection of glasses for three-color achromats. J. Opt. Soc. Am. 1959, 49, 398–401. [Google Scholar] [CrossRef]
- Stephens, R.E. Four-color achromats and superchromats. J. Opt. Soc. Am. 1960, 50, 1016–1019. [Google Scholar] [CrossRef]
- Lessing, N.V.D. Selection of optical glasses in superchromats. Appl. Opt. 1970, 9, 1665–1668. [Google Scholar] [CrossRef] [PubMed]
- Wynne, C.G. Secondary spectrum correction with normal glasses. Opt. Commun. 1977, 21, 419–424. [Google Scholar] [CrossRef]
- Sharma, K.D.; Rama Gopal, S.V. Design of achromatic doublets: Evaluation of the double-graph technique. Appl. Opt. 1983, 22, 497–500. [Google Scholar] [CrossRef] [PubMed]
- Robb, P.N. Selection of optical glasses. 1: Two materials. Appl. Opt. 1985, 24, 1864–1877. [Google Scholar] [CrossRef] [PubMed]
- Rayces, J.L.; Rosete-Aguilar, M. Selection of glasses for achromatic doublets with reduced secondary spectrum. I. Tolerance conditions for secondary spectrum, spherochromatism, and fifth-order spherical aberration. Appl. Opt. 2001, 40, 5663–5676. [Google Scholar] [CrossRef] [PubMed]
- Rosete-Aguilar, M.; Raycesd, J.L. Selection of glasses for achromatic doublets with reduced secondary spectrum. II. Application of the method for selecting pairs of glasses with reduced secondary spectrum. Appl. Opt. 2001, 40, 5677–5686. [Google Scholar] [CrossRef] [PubMed]
- Duplov, R. Apochromatic telescope without anomalous dispersion glasses. Appl. Opt. 2006, 45, 5164–5167. [Google Scholar] [CrossRef] [PubMed]
- Seong, K.; Greivernkamp, J.E. Chromatic aberration measurement for transmission interferometric testing. Appl. Opt. 2008, 47, 6508–6511. [Google Scholar] [CrossRef] [PubMed]
- Benny, Y. Wide-angle chromatic aberration corrector for the human eye. J. Opt. Soc. Am. A 2007, 24, 1538–1544. [Google Scholar] [CrossRef]
- Ravikumar, S.; Thibos, L.N.; Bradley, A. Calculation of retinal image quality for polychromatic light. J. Opt. Soc. Am. A 2008, 25, 2395–2407. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, P.; Miccio, L.; Grilli, S.; Paturzo, M.; De Nicola, S.; Finizio, A.; Osellame, R.; Laporta, P. Quantitative phase microscopy of microstructures with extended measurement range and correction of chromatic aberrations by multiwavelength digital holography. Opt. Express 2007, 15, 14591–14600. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.S.; Tien, C.L.; Sun, C.C.; Lee, C.C. A Low-cost Optimization Design for Minimizing Chromatic Aberration by Doublet Prisms. J. Opt. Soc. Korea 2012, 16, 336–342. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.S.; Tien, C.L.; Chu, P.Y.; Hung, Z.Y. Optimization design of a stereo-photographic system based on achromatic double-prism arrays. Appl. Opt. 2018, 57, 8034–8043. [Google Scholar] [CrossRef]
- Sun, W.S.; Chu, C.H.; Tien, C.L. Well-Chosen Method for an Optimal Design of Doublet Lens Design. Opt. Express 2009, 17, 1414–1428. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.S. Illustrating Method of Triplet Prisms for Minimizing the Chromatic Aberration. In International Optical Design Conference; Optica Publishing Group: Jackson Hole, WY, USA, 2010; p. JMB33. [Google Scholar]
- Schott, Inc. TIE-29: Refractive index and dispersion. In Proceedings of Schott Technical Information; Schott Inc.: Jena, Germany, 2015. [Google Scholar]
- Wynne, C.G.; Worme, P.M.J.H. Lens design by computer. Appl. Opt. 1963, 2, 1233–1238. [Google Scholar] [CrossRef]
- Jamieson, T.H. Optimization Techniques in Lens Design; American Elsevier: New York, NY, USA, 1971. [Google Scholar]
No | Glass Type | No | Glass Type | No | Glass Type | No | Glass Type | No | Glass Type |
---|---|---|---|---|---|---|---|---|---|
1 | F2 | 23 | N-F2 | 45 | N-LAK33B | 67 | N-SF2 | 89 | P-LASF50 |
2 | F5 | 24 | N-FK5 | 46 | N-LAK34 | 68 | N-SF4 | 90 | P-LASF51 |
3 | FK5HTi | 25 | N-FK51A | 47 | ’N-LAK7 | 69 | N-SF5 | 91 | P-SF68 |
4 | K10 | 26 | N-FK58 | 48 | N-LAK8 | 70 | N-SF57 | 92 | P-SF69 |
5 | K7 | 27 | N-K5 | 49 | N-LAK9 | 71 | N-SF6 | 93 | P-SF8 |
6 | LAFN7 | 28 | N-KF9 | 50 | N-LASF31A | 72 | N-SF66 | 94 | P-SK57 |
7 | LASF35 | 29 | N-KZFS11 | 51 | N-LASF40 | 73 | N-SF8 | 95 | P-SK57Q1 |
8 | LF5 | 30 | N-KZFS2 | 52 | N-LASF41 | 74 | N-SK11 | 96 | P-SK58A |
9 | LLF1 | 31 | N-KZFS4 | 53 | N-LASF43 | 75 | N-SK14 | 97 | P-SK60 |
10 | N-BAF10 | 32 | N-KZFS5 | 54 | N-LASF44 | 76 | N-SK16 | 98 | SF1 |
11 | N-BAF4 | 33 | N-KZFS8 | 55 | N-LASF45 | 77 | N-SK2 | 99 | SF10 |
12 | N-BAF51 | 34 | N-LAF2 | 56 | N-LASF46A | 78 | N-SK4 | 100 | SF11 |
13 | N-BAF52 | 35 | N-LAF21 | 57 | N-LASF9 | 79 | N-SK5 | 101 | SF2 |
14 | N-BAK1 | 36 | N-LAF33 | 58 | N-PK51 | 80 | N-SSK2 | 102 | SF4 |
15 | N-BAK2 | 37 | N-LAF34 | 59 | N-PK52A | 81 | N-SSK5 | 103 | SF5 |
16 | N-BAK4 | 38 | N-LAF35 | 60 | N-PSK3 | 82 | N-SSK8 | 104 | SF56A |
17 | N-BALF4 | 39 | N-LAF7 | 61 | N-PSK53A | 83 | ’N-ZK | 105 | SF57 |
18 | N-BALF5 | 40 | N-LAK10 | 62 | N-SF1 | 84 | N-ZK7A | 106 | SF6 |
19 | N-BASF2 | 41 | N-LAK12 | 63 | N-SF10 | 85 | P-BK7 | ||
20 | N-BASF64 | 42 | N-LAK14 | 64 | N-SF11 | 86 | P-LAF37 | ||
21 | N-BK10 | 43 | N-LAK21 | 65 | N-SF14 | 87 | P-LAK35 | ||
22 | N-BK7 | 44 | N-LAK22 | 66 | N-SF15 | 88 | P-LASF47 |
Number | Kd1 (mm−1) | Kd2 (mm−1) | Kd3 (mm−1) | C1 − C2 (mm−1) | C3 − C4 (mm−1) | C5 − C6 (mm−1) | fd (mm−1) | LCA (μm × mm) |
---|---|---|---|---|---|---|---|---|
A | 0.2504 | −0.1701 | 0.0197 | 0.5039 | −0.2667 | 0.0213 | 10 | 6.4531 |
B | 0.2468 | −0.1819 | 0.0351 | 0.5072 | −0.2852 | 0.0477 | 10 | 5.5363 |
C | 0.2264 | −0.1530 | 0.0265 | 0.4966 | −0.2399 | 0.0313 | 10 | 5.8096 |
D | 0.2336 | −0.1509 | 0.0172 | 0.5124 | −0.2460 | 0.0171 | 10 | 5.8880 |
E | 0.2224 | −0.1407 | 0.0183 | 0.4878 | −0.2207 | 0.0182 | 10 | 2.6743 |
F | 0.2351 | −0.1528 | 0.0177 | 0.5155 | −0.2491 | 0.0192 | 10 | 3.9891 |
G | 0.2645 | −0.1766 | 0.0121 | 0.5800 | −0.2452 | 0.0131 | 10 | 6.2705 |
H | 0.2474 | −0.1769 | 0.0296 | 0.5084 | −0.2774 | 0.0349 | 10 | 5.6752 |
A | 10 | 5.6328 | 8.2488 |
B | 10 | 4.8447 | 9.2612 |
C | 10 | 5.8346 | 8.1079 |
D | 10 | 4.5206 | 3.7359 |
E | 10 | 9.7842 | 4.4330 |
F | 10 | 4.3850 | 1.8181 |
G | 10 | 3.3362 | 2.1194 |
H | 10 | 5.4256 | 1.4754 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, W.-S.; Tien, C.-L.; Liang, S.-S.; Lin, J.-S. A Cost-Effective Triplet Lens Design with Chromatic Aberration Correction Based on Optimization Algorithm and Illustration Method. Appl. Sci. 2022, 12, 11881. https://doi.org/10.3390/app122311881
Sun W-S, Tien C-L, Liang S-S, Lin J-S. A Cost-Effective Triplet Lens Design with Chromatic Aberration Correction Based on Optimization Algorithm and Illustration Method. Applied Sciences. 2022; 12(23):11881. https://doi.org/10.3390/app122311881
Chicago/Turabian StyleSun, Wen-Shing, Chuen-Lin Tien, Siao-Suang Liang, and Jhe-Syuan Lin. 2022. "A Cost-Effective Triplet Lens Design with Chromatic Aberration Correction Based on Optimization Algorithm and Illustration Method" Applied Sciences 12, no. 23: 11881. https://doi.org/10.3390/app122311881
APA StyleSun, W.-S., Tien, C.-L., Liang, S.-S., & Lin, J.-S. (2022). A Cost-Effective Triplet Lens Design with Chromatic Aberration Correction Based on Optimization Algorithm and Illustration Method. Applied Sciences, 12(23), 11881. https://doi.org/10.3390/app122311881