Encapsulated Phytase Produced by Recombinant Yarrowia lipolytica Exhibits High Efficiency on Broiler Chickens in Low Dosage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Yeast Strains
2.2. Preparing Feed Additives by Cultivation of the Yeast Strain
2.3. Assay of the Composition of the Experimental Diets and the Chicken Faeces
2.4. Assay of Phytase Activity
2.5. Diet Composition for the Experimental Chicken Groups
2.6. Birds and Their Keeping
2.7. Assay of Body Weight and Statistical Data Analysis
3. Results
3.1. Feed Additives Production Using the Y. lipolytica Strains
3.2. Establishing a Diet for Testing the Impact of the Phytases on Body Weight and FCR
3.3. The Influence of the Phytases on Body Weight, Weight Gain, Feed Assimilability, and FCR
3.4. The Impact of the Phytases on Residual Phosphorus and Macro- and Microelements in the Broilers’ Faeces
4. Discussions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alam, S.; Masood, S.; Zaneb, H.; Rabbani, I.; Khan, R.U.; Shah, M.; Ashraf, S.; Alhidary, I.A. Effect of Bacillus cereus and Phytase on the Expression of Musculoskeletal Strength and Gut Health in Japanese Quail (Coturnix japonica). J. Poult. Sci. 2020, 57, 200–204. [Google Scholar] [CrossRef] [Green Version]
- Kryukov, V.S.; Glebova, I.V.; Zinoviev, S.V. Reevaluation of Phytase Action Mechanism in Animal Nutrition. Biochemistry 2021, 86 (Suppl. 1), S152–S165. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Singh, B.; Raigond, P.; Sahu, C.; Mishra, U.N.; Sharma, S.; Lal, M.K. Phytic acid: Blessing in disguise, a prime compound required for both plant and human nutrition. Food Res. Int. 2021, 142, 110193. [Google Scholar] [CrossRef]
- Morgan, N.K.; Walk, C.L.; Bedford, M.R.; Burton, E.J. Contribution of intestinal- and cereal-derived phytase activity on phytate degradation in young broilers. Poult. Sci. 2015, 94, 1577–1583. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Nutrient Requirements of Swine, 10th ed.; National Academy Press: Washington, DC, USA, 2012. [Google Scholar]
- Tsai, T.C.; Dove, R.; Bedford, M.R.; Azain, M.J. Effect of phytase on phosphorous balance in 20-kg barrows fed low or adequate phosphorous diets. Anim. Nutr. 2020, 6, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Zinin, N.V.; Serkina, A.V.; Gelfand, M.S.; Shevelev, A.B.; Sineoky, S.P. Gene cloning, expression and characterization of novel phytase from Obesumbacterium proteus. FEMS Microbiol. Lett. 2004, 236, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Gordeeva, T.L.; Borshchevskaya, L.N.; Kalinina, A.N.; Sineoky, S.P.; Kashirskaya, M.D.; Voronin, S.P. Increase in Thermal Stability of Phytase from Citrobacter freundii by Site-Directed Saturation Mutagenesis. Biotekhnologiya 2018, 34, 33–42. [Google Scholar] [CrossRef]
- Gordeyeva, T.L.; Borshchevskaya, L.N.; Kalininam, A.N.; Sineokiy, S.P.; Voronin, S.P.; Kashirskaya, M.D. Rekombinantnyy produtsent kormovogo fermenta fitazy na osnove drozhzhey Pichia pastoris. Aktual. Biotekhnologiya 2018, 26, 117. [Google Scholar]
- Gordeeva, T.L.; Borshchevskaya, L.N.; Kalinina, A.N.; Sineokym, S.P.; Voronin, S.P.; Kashirskaya, M.D. Expression and characteristics of phytases from Obesumbacterium proteus in Pichia pastoris Yeast. Biotekhnologiya 2018, 34, 18–25. [Google Scholar] [CrossRef]
- Serdyuk, E.G.; Isakova, E.P.; Gessler, N.N.; Trubnikova, E.V.; Antipov, A.N.; Deryabina, Y.I. Activity of neutral phytase from Obesumbacterium proteus in recombinant strains of Yarrowia lipolytica under cultivation on low-grade vegetable substrate. Appl. Biochem. Microbiol. 2019, 55, 549–555. [Google Scholar] [CrossRef]
- Vasudevan, U.M.; Jaiswal, A.K.; Krishna, S.; Pandey, A. Thermostable phytase in feed and fuel industries. Bioresour. Technol. 2019, 278, 400–407. [Google Scholar] [CrossRef]
- Isakova, E.P.; Serdyuk, E.G.; Gessler, N.N.; Trubnikova, E.V.; Biryukova, Y.K.; Epova, E.Y.; Deryabina, Y.I.; Nikolaev, A.V. A new recombinant strain of Yarrowia lipolytica producing encapsulated phytase from Obesumbacterium proteus. Dokl. Biochem. Biophys. 2018, 481, 201–204. [Google Scholar] [CrossRef]
- Tabinda, A.B.; Ghazala, R.; Yasar, A.; Ashraf, M. Utilization of chicken intestine as an alternative protein source in the diet for fingerlings of Cirrhinus mirigala. J. Anim. Plant Sci. 2013, 23, 1603–1608. [Google Scholar]
- Tabinda, A.B.; Butt, A. Replacement of Fish Meal with Poultry By–Product Meal (Chicken Intestine) as a Protein Source in Grass Carp Fry Diet. Pak. J. Zool. 2012, 44, 1373–1381. [Google Scholar]
- Alidadi, H.; Salmani, E.R.; Hamidi, M.R. Assessing fat and aquaculture feed recyclable from chicken wastes of poultry slaughterhouse in Bojnoord, North Khorasan Province, Iran. Arch. Agric. Environ. Sci. 2017, 2, 270–276. [Google Scholar] [CrossRef]
- Ptak, A.; Bedford, M.R.; Świątkiewicz, S.; Żyła, K.; Józefiak, D. Phytase modulates ileal microbiota and enhances growth performance of the broiler chickens. PLoS ONE 2015, 10, e0119770. [Google Scholar] [CrossRef] [Green Version]
- Danilova, M.A.; Epova, E.Y.; Trubnikova, E.V.; Shevelev, A.B. A Feed Additive Containing Encapsulated 6-Phytase within Recombinant Yarrowia lipolytica Cells Produced by Cultivation on Fat-Containing Waste. Appl. Sci. 2022, 12, 3094. [Google Scholar] [CrossRef]
- Ziarat, M.M.; Kermanshahi, H.; Mogaddam, H.N.; Heravi, R.M. Performance of an Escherichia coli phytase expressed in Lactococcus lactis on nutrient retention, bone traits and intestinal morphology in broiler chickens. J. Anim. Physiol. Anim. Nutr. 2020, 104, 909–917. [Google Scholar] [CrossRef]
- Gessler, N.N.; Serdyuk, E.G.; Isakova, E.P.; Deryabina, Y.I. Phytases and the Prospects for Their Application (Review). Appl. Biochem. Microbiol. 2018, 54, 352–360. [Google Scholar] [CrossRef]
- Savichev, A.T.; Sorokin, S.E. Rentgenofluorestsentnyy energodispersionnyy analiz zol’nykh elementov v rasteniyakh. Agrokhimiya 2001, 12, 61–67. [Google Scholar]
- Fiske, C.H.; Subbarow, Y. The colorimetric determination of phosphorus. J. Biol. Chem. 1925, 66, 375–400. [Google Scholar] [CrossRef]
- Norton, J.D.; Yang, S.P.; Diffley, P. Influence of source and quantity of protein on the development of immunity and resistance to African trypanosomiasis. Infect. Immun. 1986, 51, 455–460. [Google Scholar] [CrossRef] [Green Version]
- Czech, A.; Smolczyk, A.; Grela, E.R.; Kiesz, M. Effect of dietary supplementation with Yarrowia lipolytica or Saccharomyces cerevisiae yeast and probiotic additives on growth performance, basic nutrients digestibility and biochemical blood profile in piglets. J. Anim. Physiol. Anim. Nutr. 2018, 102, 1720–1730. [Google Scholar] [CrossRef]
- da Silva, C.A.; Callegari, M.A.; Dias, C.P.; Bridi, A.M.; Pierozan, C.R.; Foppa, L.; da Silva Martins, C.C.; Dias, F.T.F.; Passos, A.; Hermes, R. Increasing doses of phytase from Citrobacter braakii in diets with reduced inorganic phosphorus and calcium improve growth performance and lean meat of growing and finishing pigs. PLoS ONE 2019, 14, e0217490. [Google Scholar] [CrossRef]
- Srikanthithasan, K.; Macelline, S.P.; Wickramasuriya, S.S.; Tharangani, H.; Li-Ang; Jayasena, D.D.; Heo, J.-M. Effects of adding phytase from Aspergillus niger to a low phosphorus diet on growth performance, tibia characteristics, phosphorus excretion, and meat quality of broilers 35 days after hatching. J. Poult. Sci. 2020, 57, 28–36. [Google Scholar] [CrossRef] [Green Version]
- Moore, P.A., Jr.; Daniel, T.C.; Edwards, D.R. Reducing phosphorus runoff and improving poultry production with alum. Poult. Sci. 1999, 78, 692–698. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Poultry, 9th ed.; The National Academies Press: Washington, DC, USA, 1994. [Google Scholar]
- Plumstead, P.W.; Romero-Sanchez, H.; Maguire, R.O.; Gernat, A.G.; Brake, J. Effects of phosphorus level and phytase in broiler breeder rearing and laying diets on live performance and phosphorus excretion. Poult. Sci. 2007, 86, 225–231. [Google Scholar] [CrossRef]
Ingredients | Name of the Group | |||||
---|---|---|---|---|---|---|
Negative Control | Positive Control | Encaps. OPP, 30 FYT/kg | Encaps. OPP, 15 FYT/kg | Ladozyme Proxi, 100 FYT/kg | Ladozyme Proxi, 1000 FYT/kg | |
Basic diet | 880 g | 875 g | 880 g | 940 g | 1000 g | 1000 g |
Na2HPO4 × 2H2O | - | 5 g | - | - | - | - |
Powder PO1f | 120 g | 120 g | - | - | - | - |
Powder PO1f (pUV3-Op) | - | - | 120 g | 80 g | - | - |
Ladozyme Proxi | - | - | - | - | 0.05 g | 0.5 g |
Cultivation Parameter | Y. lipolytica Strains | |
---|---|---|
PO1f | PO1f (pUV3-Op) | |
Inoculation fermenter—7 L culture | ||
Medium pH just after inoculation | 6.1 | 6.0 |
Final pH medium at the 21 h cultivation stage | 9.4 | 9.4 |
Oxygen saturation at the 6 h stage, % | 60 | 43 |
Oxygen saturation at the 6 h stage, % | 90 | 90 |
Preparative fermenter—80 L culture | ||
pH of the medium just after inoculation | 6.9 | 6.7 |
Minimum oxygen saturation, % | 14% at 6 h | 14% at 13 h |
Final oxygen saturation at 44 h, % | 80 | 79 |
Minimum pH at X h | 4.9 at 4 h | 5.0 at 8 h |
pH at the 18 h cultivation stage | 8.5 | 8.9 |
Weight of the wet biomass, kg | 7.3 | 6.6 |
Wet biomass moisture, % | 77 | 77 |
Dry biomass weight, kg | 1.7 | 1.5 |
Phytase activity, FYT/g | 0.25 | - |
Total phytase activity, FYT | 420 | - |
Additive for Experimental Group | Macroelement Contents, % of Dry Weight | Microelement Contents, μg/g of Dry Weight | ||||
---|---|---|---|---|---|---|
p | Mg | K | Ca | Zn | Cu | |
Encaps. phytase 30 FYT/kg | 0.40 | 0.18 | 0.67 | 0.15 | 68 | 14 |
Encaps. phytase 15 FYT/kg | 0.41 | 0.15 | 0.65 | 0.13 | 58 | 14 |
Ladozyme Proxi, 100 FYT/kg | 0.43 | 0.19 | 0.71 | 0.26 | 63 | 15 |
Ladozyme Proxi, 1000 FYT/kg | 0.56 | 0.23 | 0.83 | 0.42 | 68 | 15 |
Positive control | 0.61 | 0.23 | 0.85 | 0.15 | 56 | 13 |
Negative control | 0.48 | 0.19 | 0.77 | 0.17 | 70 | 20 |
Factor | Measure Unit | Amounts | ||||
Exchange energy | Kcal/100 g | 305.00 | ||||
crude protein | % | 24.00 | ||||
Crude lipid | % | 7.20 | ||||
Krude fibre | % | 4.00 | ||||
Lisin (total) | % | 1.45 | ||||
Methionine (total) | % | 0.68 | ||||
Methionine + Cysteine (total) | % | 1.03 | ||||
Threonine (total) | % | 0.91 | ||||
Tryptophan (total) | % | 0.25 | ||||
Calcium | % | 1.00 | ||||
Phosphorus | % | 0.70 | ||||
Phosphorus (av.) | % | 0.50 | ||||
Sodium | % | 0.20 | ||||
Chlorine | % | 0.22 | ||||
Potassium | % | 0.74 | ||||
Vitamin A | Thous of ME | 15.00 | ||||
Vitamin D3 | Thous of ME | 5.00 | ||||
Vitamin E | mg | 100.00 | ||||
B Vitamin | trace | |||||
Iron | mg | 60.00 | ||||
Zink | mg | 120.00 | ||||
Manganese | mg | 100.00 | ||||
Copper, Iodine, Selenium | trace | |||||
The Feed Composition (Starter) | The Component Amount (%) | Phosphorus Amount, % per 100 g of the Feed | ||||
Total | Available | |||||
Corn | 48% | 0.25 | 0.07 | |||
Wheat (Cereal) | 16% | 0.3 | 0.09 | |||
Barley | 11% | 0.34 | 0.1 | |||
Protein Meal | 19% | 1.1 | 0.55 | |||
Grass meal (Greenery) | 3% | 0.21 | 0.1 | |||
Yeast | 2% | 1.4 | 1.26 | |||
Shells | 1% | - | - |
The Number of Measure Day | Bird Weight (g) | |||||
---|---|---|---|---|---|---|
The Control Group (+Control) | The Control Group (−Control) | The Experimental Group (Encaps Phytase, 30 FYT/kg | The Experimental Group (Encaps Phytase, 15 FYT/kg | The Experimental Group, Ladozyme Proxi, 1000 FYT/kg | The Experimental Group, Ladozyme Proxi, 100 FYT/kg | |
The 14th day | 378.30 ± 44.88 | 377.30 ± 42.03 | 377.00 ± 41.71 | 378.30 ± 43.15 | 377.50 ± 46.09 | 379.90 ± 43.06 |
Difference with +C, g | 0.00 | −1.00 | −1.30 | 0.00 | −0.80 | 1.60 |
Difference with +C, % | 0.00% | −0.27% | −0.34% | 0.00% | −0.22% | 0.43% |
The 21st day | 950.80 ± 15.78 a | 946.30 ± 16.33 a | 947.40 ± 12.42 b | 945.40 ± 9.83 b | 939.00 ± 14.62 c | 945.90 ± 9.86 c |
Difference with +C, g | 0.00 | −4.50 | −3.30 | −5.40 | −11.80 | −4.90 |
Difference with +C, % | 0.00% | −0.48% | −0.34% | −0.57% | −1.24% | −0.51% |
The 28th day | 1572.30 ± 7.00 c | 1373.00 ± 20.95 c | 1555.10 ± 11.23 a | 1503.80 ± 10.18 a | 1493.10 ± 15.82 a | 1508.00 ± 12.92 |
Difference with +C, g | 0.00 | −199.30 | −17.20 | −68.50 | −79.20 | −64.30 |
Difference with +C, % | 0.00% | −12.68% | −1.09% | −4.36% | −5.04% | −4.09% |
The 35th day | 1952.00 ± 40.62 | 1767.20 ± 40.78 c | 2066.50 ± 69.54 c | 1823.20 ± 29.78 c | 1824.60 ± 24.49 c | 1795.50 ± 27.44 c |
Difference with +C, g | 0.00 | −184.80 | 114.50 | −128.80 | −127.40 | −156.50 |
Difference with +C, % | 0.00% | −9.47% | 5.86% | −6.60% | −6.52% | −8.02% |
The 42nd day | 2769.20 ± 43.09 b | 2211.50 ± 15.33 b | 2792.30 ± 23.67 b | 2447.50 ± 24.66 b | 2353.50 ± 28.59 c | 2318.50 ± 15.87 c |
Difference with +C, g | 0.00 | −557.70 | 23.10 | −321.70 | −415.70 | −450.70 |
Difference with +C, % | 0.00% | −20.14% | 0.83% | −11.62% | −15.01% | −16.27% |
Day Of The Broiler Life | Average Body Weight, g | |||||
---|---|---|---|---|---|---|
Positive Control | Negative Control | Encaps. Phytase 30 FYT/kg | Encaps. Phytase 15 FYT/kg | Ladozyme Proxi, 100 FYT/kg | Ladozyme Proxi, 1000 FYT/kg | |
The 14th day | ||||||
Ratio to the negative control, % | 0.00 | −1.00 | −1.30 | 0.00 | −0.80 | 1.60 |
Ratio to the positive control, % | 0.00% | −0.27% | −0.34% | 0.00% | −0.22% | 0.43% |
The 21st day | ||||||
Ratio to the negative control, % | 0.0 | −4.5 | −3.3 | −5.4 | −11.8 | −4.9 |
Ratio to the positive control, % | 0.0% | −0.5% | −0.3% | −0.6% | −1.2% | −0.5% |
The 28th day | ||||||
Ratio to the negative control, % | 0.0 | −199.3 | −17.2 | −68.5 | −79.2 | −64.3 |
Ratio to the positive control, % | 0.0% | −12.7% | −1.1% | −4.4% | −5.0% | −4.1% |
The 35th day | ||||||
Ratio to the negative control, % | 0.0 | −184.8 | 114.5 | −128.8 | −127.4 | −156.5 |
Ratio to the positive control, % | 0.0% | −9.5% | 5.9% | −6.6% | −6.5% | −8.0% |
The 42nd day | ||||||
Ratio to the negative control, % | 0.0 | −557.7 | 23.1 | −321.7 | −415.7 | −450.7 |
Ratio to the positive control, % | 0.0% | −20.1% | 0.83% | −11.6% | −15.0% | −16.3% |
Diet for Experimental Group | Macroelement Contents, % of Dry Weight | Microelement Contents, μg/g of Dry Weight | ||||
---|---|---|---|---|---|---|
p | Mg | K | Ca | Zn | Cu | |
7th day of experiment | ||||||
Encaps. phytase 30 FYT/kg | 0.79 | 0.27 | 1.2 | 0.96 | 354 | 61 |
Ladozyme Proxi, 1000 FYT/kg | 2.05 | 0.63 | 2.32 | 1.49 | 666 | 102 |
Positive control | 1.56 | 0.94 | 1.56 | 1.98 | 563 | 89 |
Negative control | 1.38 | 0.47 | 1.96 | 1.07 | 696 | 116 |
28th day of experiment | ||||||
Encaps. phytase 30 FYT/kg | 0.85 | 0.35 | 1.13 | 1.12 | 342 | 58 |
Ladozyme Proxi, 1000 FYT/kg | 2.23 | 0.72 | 2.43 | 1.41 | 683 | 112 |
Positive control | 1.78 | 0.87 | 1.39 | 2.03 | 574 | 94 |
Negative control | 1.45 | 0.56 | 2.11 | 1.09 | 712 | 107 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Danilova, M.A.; Epova, E.Y.; Trubnikova, E.V.; Badrutdinov, N.V.; Kokoreva, A.S.; Pusev, M.S.; Deryabina, Y.I.; Isakova, E.P. Encapsulated Phytase Produced by Recombinant Yarrowia lipolytica Exhibits High Efficiency on Broiler Chickens in Low Dosage. Appl. Sci. 2022, 12, 11999. https://doi.org/10.3390/app122311999
Danilova MA, Epova EY, Trubnikova EV, Badrutdinov NV, Kokoreva AS, Pusev MS, Deryabina YI, Isakova EP. Encapsulated Phytase Produced by Recombinant Yarrowia lipolytica Exhibits High Efficiency on Broiler Chickens in Low Dosage. Applied Sciences. 2022; 12(23):11999. https://doi.org/10.3390/app122311999
Chicago/Turabian StyleDanilova, Maria A., Ekaterina Yu. Epova, Elena V. Trubnikova, Niyaz V. Badrutdinov, Anastasya S. Kokoreva, Maxim S. Pusev, Yulia I. Deryabina, and Elena P. Isakova. 2022. "Encapsulated Phytase Produced by Recombinant Yarrowia lipolytica Exhibits High Efficiency on Broiler Chickens in Low Dosage" Applied Sciences 12, no. 23: 11999. https://doi.org/10.3390/app122311999
APA StyleDanilova, M. A., Epova, E. Y., Trubnikova, E. V., Badrutdinov, N. V., Kokoreva, A. S., Pusev, M. S., Deryabina, Y. I., & Isakova, E. P. (2022). Encapsulated Phytase Produced by Recombinant Yarrowia lipolytica Exhibits High Efficiency on Broiler Chickens in Low Dosage. Applied Sciences, 12(23), 11999. https://doi.org/10.3390/app122311999