Underground Disposal of Coal Gangue Backfill in China
Abstract
:1. Introduction
2. The Current Status of Coal Gangue Discharge on the Ground in China
3. Gangue Backfilling Technologies
3.1. Mechanical Backfilling
3.2. Fully Mechanized Mining with Solid Backfilling Technology
3.3. Mixed Workface Using a Gangue Backfilling and Caving Method
3.4. Longwall-Roadway Cemented Backfilling
3.5. Paste Backfilling
3.6. Hybrid Gangue Backfilling Technology
4. Gangue Backfilling Technologies: Advantages and Deficiencies
5. Problems and Proposed Solutions
5.1. Problems
5.1.1. The Backfilling Process Effect on Gangue Backfilling Efficiency
5.1.2. The Effect of Equipment Performance on Gangue Backfilling Efficiency
5.2. Prospects
5.2.1. Innovative Gangue Disposal
- (1)
- Slurry backfilling in the goaf
- (2)
- High-efficiency gangue backfilling in a super-long mining workface
5.2.2. Research and Development of New Equipment
- (1)
- Optimized design of the backfilling shield
- (2)
- Research and development of a novel type of multihole-bottom-dump chain conveyor
- (3)
- Research and development of the gangue pipeline pumping system
5.2.3. Automation
5.2.4. Attaching Importance to the Environmental Effects
6. Conclusions
- (i)
- The recycling of coal gangue on the ground is restricted by high cost and difficult technologies, which cannot meet the demand for coal gangue disposal;
- (ii)
- The existing underground gangue backfilling technologies include: mechanical backfilling, fully mechanized mining with solid backfilling technology, mixed workface using a gangue backfilling and caving method, longwall-roadway cemented backfilling, and paste backfilling. These technologies are mainly applied to coal mining under buildings (structures), railways, and water bodies in Eastern China. However, they have quite limited gangue disposal capacity due to inadequate equipment and low automation;
- (iii)
- Slurry backfilling in the goaf and high-efficiency gangue backfilling in a super-long mining workface have been innovatively developed, showing that the maximum disposal capacity of coal gangue can increase by three times, reaching five million tons per year;
- (iv)
- The key equipment and automation of the technology have been innovated, which can facilitate the intensive, high-yield, large-scale utilization of coal gangue. The environmental benefits of coal gangue are also mentioned. These will achieve green sustainable coal mining development.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- BP. BP Statistical Review of World Energy 2021; BP: London, UK, 2021. [Google Scholar]
- National Bureau of Statistics of China. 2021 Statistical Bulletin of National Economic and Social Development of the People’s Republic of China; National Bureau of Statistics of China: Beijing, China, 2022. [Google Scholar]
- China National Coal Association. Annual Report on Coal Industry in China (2021); China National Coal Association: Beijing, China, 2022. [Google Scholar]
- National Energy Administration. The 13th Five-Year Plan for Coal Industry; National Energy Administration: Beijing, China, 2016. [Google Scholar]
- Qi, W.Y. Study on Environmental Effects of Gangue Backfilled Body in Underground Coal Mines. Ph.D. thesis, China University of Mining and Technology, Xuzhou, China, 2019. [Google Scholar]
- Yang, Y. Coal gangue stacked and its comprehensive utilization. China Resour. Compr. Util. 2014, 32, 18–22. [Google Scholar]
- Zhang, Y.Y.; Nakano, J.; Liu, L.; Wang, X.D. Trace element partitioning behavior of coal gangue-fired CFB plant: Experimental and equilibrium calculation. Environ. Sci. Pollut. Res. 2015, 22, 15469–15478. [Google Scholar] [CrossRef] [PubMed]
- He, Y. An analysis of waste solid exchange. Environ. Sci. Surv. 2008, 6, 23–25. [Google Scholar]
- Finkelman, R.B.; Orem, W.; Castranova, V.; Tatu, C.A.; Belkin, H.E.; Zheng, B.; Lerch, H.E.; Maharaj, S.V.; Bates, A.L. Health impacts of coal and coal use: Possible solutions. Int. J. Coal Geol. 2002, 50, 425–443. [Google Scholar] [CrossRef]
- Guo, Y.X.; Zhang, Y.Y.; Cheng, F.Q. Industrial development and prospect about comprehensive utilization of coal gangue. J. Chem. Ind. Eng. 2014, 65, 2443–2453. [Google Scholar]
- Wang, L.H.; Guan, Y.; Wang, D.H.; Liu, D.Y.; Fu, X.; Li, Y.L. Effects of gangue with different substrates on the growth of Chinese cabbage. J. Earth Environ. 2014, 4, 266–270. [Google Scholar]
- Wu, H.; Wen, Q.; Hu, L.; Gong, M.; Tang, Z. Feasibility study on the application of coal gangue as landfill liner material. Waste Manag. 2017, 63, 161–171. [Google Scholar] [CrossRef]
- Liu, M.; Lu, H.; Deng, Q.; Ji, S.; Qin, L.; Wan, Y. Shear strength, water permeability and microstructure of modified municipal sludge based on industrial solid waste containing calcium used as landfill cover materials. Waste Manag. 2022, 145, 20–28. [Google Scholar] [CrossRef]
- Peng, F.C.; Wang, Q.S. Research progress on domestic comprehensive utilization of coal gangue. Energy Environ. Prot. 2016, 30, 17–20. [Google Scholar]
- Tang, Q. Study on Coal Gangue Embankment Settlement and Slope Stability in Expressways. Master’s thesis, Central South University, Changsha, China, 2014. [Google Scholar]
- Li, J.; Wang, J. Comprehensive utilization and environmental risks of coal gangue: A review. J. Clean. Prod. 2019, 239, 117946. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, G.; Wang, D.; Liao, S.; Zhai, M. The hydration properties of blended cement containing ultrafine fly ash with particle size less than 17µm from the circulating fluidized bed combustion of coal gangue. J. Therm. Anal. Calorim. 2020, 139, 2971–2984. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Ling, T.-C. Reactivity activation of waste coal gangue and its impact on the properties of cement-based materials—A review. Construct. Build. Mater. 2020, 234, 117424. [Google Scholar] [CrossRef]
- Xu, H.; Song, W.; Cao, W.; Shao, G.; Lu, H.; Yang, D.; Chen, D.; Zhang, R. Utilization of coal gangue for the production of brick. J. Mater. Cycles Waste Manag. 2016, 19, 1270–1278. [Google Scholar] [CrossRef]
- Zhou, C.; Liu, G.; Cheng, S.; Fang, T.; Lam, P.K.S. The Environmental Geochemistry of Trace Elements and Naturally Radionuclides in a Coal Gangue Brick-Making Plant. Sci. Rep. 2014, 4, 1331–1340. [Google Scholar] [CrossRef] [Green Version]
- Schumacher, K.; Saßmannshausen, N.; Pritzel, C.; Trettin, R. Lightweight aggregate concrete with an open structure and a porous matrix with an improved ratio of compressive strength to dry density. Constr. Build. Mater. 2020, 264, 120167. [Google Scholar] [CrossRef]
- Yang, Y.R.; Ma, Y.L.; Wang, J.; Wang, J. Effect of coal gangue content on performance of fly ash porous ceramistibe. J. Inner Mong. Univ. Sci. Technol. 2017, 36, 187–190. [Google Scholar]
- Dang, W.; He, H.Y. Glass-ceramics fabricated by efficiently utilizing coal gangue. J. Asian Ceram. Soc. 2020, 8, 365–372. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Li, X.; Cai, W.; Shi, Y.; Hui, X.; Cai, Z.; Jin, W.; Fan, J. High-efficiency extraction of aluminum from low-grade kaolin via a novel low-temperature activation method for the preparation of poly-aluminum-ferric-sulfate coagulant. J. Clean. Prod. 2020, 257, 120399. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Liu, X.; Du, Z.; Cheng, F. Effect of silicon content on preparation and coagulation performance of poly-silicic-metal coagulants derived from coal gangue for coking wastewater treatment. Sep. Purif. Technol. 2018, 202, 149–156. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, Z.; Liu, K.; Li, F.; Pang, Y.; Zhang, J.; Si, H. Preparation of nano-sized Mg-doped copper silicate materials using coal gangue as the raw material and its characterization for CO2 adsorption. Korean J. Chem. Eng. 2020, 37, 1786–1794. [Google Scholar] [CrossRef]
- Li, J.; Liu, X.; Wang, S.; Du, Z.; Guo, Y.; Cheng, F. Synthesis and optimization of a novel poly-silicic metal coagulant from coal gangue for tertiary-treatment of coking wastewater. J. Chem. Technol. Biotechnol. 2017, 93, 365–371. [Google Scholar] [CrossRef]
- Chen, S.; Chen, J.; Xu, K.; Pan, R.; Peng, Z.; Ma, L.; Wu, S. Effect of coal gangue/carbon black/multiwall carbon nanotubes hybrid fillers on the properties of natural rubber composites. Polym. Compos. 2015, 37, 3083–3092. [Google Scholar] [CrossRef]
- Shan, X.P. Property Analysis of Coal Gangue and Feasibility Study of Using Coal Gangue as Rubber Reinforcing Fillers. Master’s Thesis, Taiyuan University of Technology, Taiyuan, China, 2014. [Google Scholar]
- Junker, M.; Witthaus, H. Progress in the research and application of coal mining with stowing. Int. J. Min. Sci. Technol. 2013, 23, 7–12. [Google Scholar] [CrossRef]
- Mo, S.; Canbulat, I.; Zhang, C.; Oh, J.; Shen, B.; Hagan, P. Numerical investigation into the effect of backfilling on coal pillar strength in highwall mining. Int. J. Min. Sci. Technol. 2017, 28, 281–286. [Google Scholar] [CrossRef]
- Matsui, K.; Shimada, H.; Sasaoka, T.; Ichinose, M.; Kubota, S. Highwall mining system with backfilling. In Mine Planning and Equipment Selection 2000; Routledge: London, UK, 2018; pp. 333–338. [Google Scholar]
- Kolikov, K.S.; Mazina, I.E.; Manevich, A.I. Stress-strain analysis in coal and rock mass under traditional mining with full caving and in technology with backfilling. Eurasian Min. 2018, 2018, 15. [Google Scholar] [CrossRef]
- Hefni, M.; Ahmed, H.A.; Omar, E.S.; Ali, M.A. The Potential Re-Use of Saudi Mine Tailings in Mine Backfill: A Path towards Sustainable Mining in Saudi Arabia. Sustainability 2021, 13, 6204. [Google Scholar] [CrossRef]
- Raffaldi, M.J.; Seymour, J.B.; Richardson, J.; Zahl, E.; Board, M. Cemented paste backfill geomechanics at a narrow-vein underhand cut-and-fill mine. Rock Mech. Rock Eng. 2019, 52, 4925–4940. [Google Scholar] [CrossRef]
- Xu, H.; Apel, D.B. Optimum location of last-mined stope with the influence of backfilling. J. Sustain. Min. 2020, 19, 212–220. [Google Scholar] [CrossRef]
- Adach-Pawelus, K.; Pawelus, D. Application of Hydraulic Backfill for Rockburst Prevention in the Mining Field with Remnant in the Polish Underground Copper Mines. Energies 2021, 14, 3869. [Google Scholar] [CrossRef]
- Skrzypkowski, K. 3D Numerical Modelling of the Application of Cemented Paste Backfill on Displacements around Strip Excavations. Energies 2021, 14, 7750. [Google Scholar] [CrossRef]
- Liu, Y.M.; Ma, J.S.; Guo, L.; Zhang, A.M.; Chen, X.W.; Zhang, S.J.; Xia, C.N. Summarization of mining technology with backfilling in foreign deep mines. China Mine Eng. 2018, 47, 6. [Google Scholar]
- Liang, L.I.; Zhang, X.W.; Ferri, H. Review on the basic theory of paste backfill in oversea. China Mining Mag. 2016, 25, 8. [Google Scholar]
- Luo, Y.F. A preliminary survey of comprehensive utilization of coal gangue in Shuicheng mining area. Coal Process. Compr. Util. 2020, 6, 81–85+91. [Google Scholar]
- Hao, Y.; Guo, X.; Yao, X.; Han, R.; Li, L.; Zhang, M. Using Chinese coal gangue as an ecological aggregate and its modification: A Review. Materials 2022, 15, 4495. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.X.; Miao, X.X.; Guo, G.L. Development status of backfilling technology using raw waste in coal mining. J. Mining Saf. Eng. 2009, 26, 395–401. [Google Scholar]
- Hu, B.N. Backfill mining technology and development tendency in China coal mine. Coal Sci. Technol. 2012, 40, 1–5+18. [Google Scholar]
- Liu, J.G.; Li, X.W.; He, T. Application status and prospect of backfill mining in Chinese coal mines. J. China Coal Soc. 2020, 45, 141–150. [Google Scholar]
- Qian, M.G.; Xu, J.L.; Miao, X.X. Green coal mining technology. J. China Univ. Mining Technol. 2003, 4, 5–10. [Google Scholar]
- Bian, Z.F.; Jin, D.; Dong, J.H.; Mu, S.G. Discussion on rational ways for coal gangue treatment and utilization. J. Mining Saf. Eng. 2007, 24, 132–136. [Google Scholar]
- Liu, W.C.; Pan, Y.T.; Zhao, Y.X.; Gao, Z.R.; Yin, S.Y.; Wu, P. The present situation and the treatment suggestions of coal gangue storage in Yangquan area. Coal Process. Compr. Util. 2018, 11, 78–81. [Google Scholar]
- Gu, C.; Li, Y. Study on progress in comprehensive utilization of coal-based solid wastes. Coal Chem. Ind. 2020, 43, 98–101+106. [Google Scholar]
- Wei, B.X.; Sun, X.L. The status quo of China’s comprehensive utilization of coal gangue and countermeasures. Nat. Resour. Econ. China 2016, 29, 51–53+72. [Google Scholar]
- Zhang, Y.J.; Chang, X.; Yang, J.H. Analysis on restoration and treatment technology of ecological environment for coal gangue dump. Shanxi Chem. Ind. 2019, 1, 185–188. [Google Scholar]
- Hua, C.; Zhou, G.; Yin, X.; Wang, C.; Chi, B.; Cao, Y.; Wang, Y.; Zheng, Y.; Cheng, Z.; Li, R. Assessment of heavy metal in coal gangue: Distribution, leaching characteristic and potential ecological risk. Environ. Sci. Pollut. Res. 2018, 25, 32321–32331. [Google Scholar] [CrossRef]
- Wu, Y.; Yu, X.; Hu, S.; Shao, H.; Liao, Q.; Fan, Y. Experimental study of the effects of stacking modes on the spontaneous combustion of coal gangue. Process. Saf. Environ. Prot. 2018, 123, 39–47. [Google Scholar] [CrossRef]
- Li, B.; Wang, J.H.; Bi, M.S.; Gao, W.; Shu, C.M. Experimental study of thermophysical properties of coal gangue at initial stage of spontaneous combustion. J. Hazard. Mater. 2020, 400, 123251. [Google Scholar] [CrossRef]
- Wang, H.; Tan, B.; Zhang, X. Research on the technology of detection and risk assessment of fire areas in gangue hills. Environ. Sci. Pollut. Res. 2020, 27, 38776–38787. [Google Scholar] [CrossRef]
- Zhang, J.; Li, M.; Taheri, A.; Zhang, W.; Wu, Z.; Song, W. Properties and Application of Backfill Materials in Coal Mines in China. Minerals 2019, 9, 53. [Google Scholar] [CrossRef]
- Ma, D.; Zhang, J.; Duan, H.; Huang, Y.; Li, M.; Sun, Q.; Zhou, N. Reutilization of gangue wastes in underground backfilling mining: Overburden aquifer protection. Chemosphere 2020, 264, 128400. [Google Scholar] [CrossRef]
- Zhang, J.X.; Miao, X.X. Underground disposal of waste in coal mine. J. China Univ. Mining Technol. 2006, 35, 197–200. [Google Scholar]
- Zha, J.F. Study on Theory and Technology of Coal Gangue Backfill Strip Mining and Strata Control. Ph.D. thesis, China University of Mining and Technology, Xuzhou, China, 2008. [Google Scholar]
- Miao, X.X.; Zhang, J.X.; Guo, G.L. Study on waste-filling method and technology in fully-mechanized coal mining. J. China Coal Soc. 2010, 35, 1–6. [Google Scholar]
- Miao, X.X. Progress of fully mechanized mining with solid backfilling technology. J. China Coal Soc. 2012, 37, 1247–1255. [Google Scholar]
- Zhang, J.X.; Miao, X.X.; Guo, G.L. Consolidated Solid Backfill Mining Method and its Applications; Science Press: Beijing, China, 2015. [Google Scholar]
- Huang, P.; Zhang, J.; Yan, X.; Spearing, A.J.S.; Li, M.; Liu, S. Deformation response of roof in solid backfilling coal mining based on viscoelastic properties of waste gangue. Int. J. Min. Sci. Technol. 2021, 31, 279–289. [Google Scholar] [CrossRef]
- Le, Z.; Yu, Q.; Zhu, W.; Liu, H.; Yang, T. Experimental study on the effect of granular backfill with various gradations on the mechanical behavior of rock. Int. J. Min. Sci. Technol. 2021, 31, 889–899. [Google Scholar] [CrossRef]
- Zhang, J.X.; Zhang, Q.; Ju, F.; Zhou, N.; Li, M.; Sun, Q. Theory and technique of greening mining integrating mining, separating and backfilling in deep coal resources. J. China Coal Soc. 2018, 43, 377–389. [Google Scholar]
- Zhang, J.; Zhang, Q.; Spearing, A.S.; Miao, X.; Guo, S.; Sun, Q. Green coal mining technique integrating mining-dressing-gas draining-backfilling-mining. Int. J. Min. Sci. Technol. 2017, 27, 17–27. [Google Scholar] [CrossRef]
- Tu, S.; Hao, D.; Li, W.; Liu, X.; Miao, K.; Yang, Z.; Ban, J. Construction of the theory and technology system of selective mining in “mining, dressing, backfilling and X” integrated mine. J. Min. Saf. Eng. 2020, 37, 81–92. [Google Scholar]
- Zhang, J.X.; Zhang, Q.; Ju, F.; Zhou, N.; Li, M.; Zhang, W.Q. Practice and technique of green mining with integration of mining. dressing. backfilling and X in coal resources. J. China Coal Soc. 2019, 44, 64–73. [Google Scholar]
- Tai, Y.; Han, X.; Huang, P.; An, B. The mining pressure in mixed workface using a gangue backfilling and caving method. J. Geophys. Eng. 2019, 16, 1–15. [Google Scholar] [CrossRef]
- Wei, Y.; Xiexing, M.; Jixiong, Z.; Qiang, Z.; Qiang, S. Research on mixed mining technology with backfilling and caving methods. J. Min. Saf. Eng. 2016, 33, 845–852. [Google Scholar]
- Zhang, Q.; Du, C.-L.; Zhang, J.-X.; Wang, J.-Q.; Li, M.; Qi, W.-Y. Backfill support’s backfill and operation properties and evaluation. J. Cent. South Univ. 2018, 25, 1524–1534. [Google Scholar] [CrossRef]
- Xuejie, D.; Jixiong, Z.; Nan, Z.; Tailong, A.; Shuai, G. The research and application of longwall-roadway cemented backfilling mining technology in extra-thick coal seam. J. Min. Saf. Eng. 2014, 31, 857–862. [Google Scholar]
- Qin, J.; Zheng, J.; Li, L. An analytical solution to estimate the settlement of tailings or backfill slurry by considering the sedimentation and consolidation. Int. J. Min. Sci. Technol. 2021, 31, 463–471. [Google Scholar] [CrossRef]
- Deng, X.J.; Zhang, J.X.; Zhou, N.; de Wit, B.; Wang, C.T. Upward slicing longwall-roadway cemented backfilling technology for mining an extra-thick coal seam located under aquifers: A case study. Environ. Earth Sci. 2017, 76, 789. [Google Scholar] [CrossRef]
- Zhou, H.Q.; Hou, C.J.; Sun, X.K.; Zhai, Q.D.; Chen, D.J. Solid Waste paste filling for none-village-relocation coal mining. J. China Univ. Mining Technol. 2004, 2, 30–34+53. [Google Scholar]
- Chang, Q.; Chen, J.; Zhou, H.; Bai, J. Implementation of Paste Backfill Mining Technology in Chinese Coal Mines. Sci. World J. 2014, 2014, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Miao, X.X.; Ju, F.; Huang, Y.L.; Guo, G.L. New development and prospect of backfilling mining theory and technology. J. China Univ. Min. Technol. 2015, 44, 391–399+429. [Google Scholar]
- Li, M.; Zhang, J.; Li, A.; Zhou, N. Reutilisation of coal gangue and fly ash as underground backfill materials for surface subsidence control. J. Clean. Prod. 2020, 254, 120113. [Google Scholar] [CrossRef]
- Huang, P.; Spearing, A.J.S.; Feng, J.; Jessu, K.V.; Guo, S. Effects of solid backfilling on overburden strata movement in shallow depth longwall coal mines in West China. J. Geophys. Eng. 2018, 15, 2194–2208. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.L.; Zhang, J.X.; An, B.F.; Zhang, Q. Overlying strata movement law in fully mechanized coal mining and backfilling longwall face by similar physical simulation. J. Min. Sci. 2011, 47, 618–627. [Google Scholar]
- Yin, W. Ground Control Theory and Application of Backfilling Collaborate with Caving Fully-Mechanized Mining. Ph.D. Thesis, China University of Mining and Technology, Xuzhou, China, 2017. [Google Scholar]
- Wang, Y.; Huang, Y.; Hao, Y. Experimental Study and Application of Rheological Properties of Coal Gangue-Fly Ash Backfill Slurry. Processes 2020, 8, 284. [Google Scholar] [CrossRef] [Green Version]
- Rong, K.; Lan, W.; Li, H. Industrial Experiment of Goaf Filling Using the Filling Materials Based on Hemihydrate Phosphogypsum. Minerals 2020, 10, 324. [Google Scholar] [CrossRef] [Green Version]
- Wei, C.; Wang, X.-M.; Zhang, Y.-H.; Zhang, Q.-L. Paste-like cemented backfilling technology and rheological characteristics analysis based on jigging sands. J. Cent. South Univ. 2017, 24, 155–167. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, S.; Zhang, N.; Zhao, C. The application of short-wall block backfill mining to preserve surface water resources in northwest China. J. Clean. Prod. 2020, 261, 121232. [Google Scholar] [CrossRef]
- Li, B.; Zhou, N.; Qi, W.; Li, A.; Cui, Z. Surface Subsidence Control during Deep Backfill Coal Mining: A Case Study. Adv. Civ. Eng. 2020, 2020, 1–12. [Google Scholar] [CrossRef]
- Ju, Y.; Wang, X. Understanding the Capacity Utilization Rate and Overcapacity of China’s Coal Industry and Interprovincial Heterogeneity. IEEE Access 2019, 7, 111375–111386. [Google Scholar] [CrossRef]
- Li, C.; Wang, A.; Chen, X.; Chen, Q.; Zhang, Y.; Li, Y. Regional distribution and sustainable development strategy of mineral resources in China. Chin. Geogr. Sci. 2013, 23, 470–481. [Google Scholar] [CrossRef] [Green Version]
- Zhao, K.G.; Li, Y.P. Analysis and development suggestion for coal resources safety in China. Coal Eng. 2018, 50, 185–189. [Google Scholar]
- Xu, W.P. Study on innovation and development of shearer technology in China. Coal Mine Mach. 2021, 42, 27–29. [Google Scholar]
- Xu, Z.G. Review, rethink, and prospect of China’s modern and chemical industry development in recent 25 years. Coal Sci. Technol. 2020, 48, 1–25. [Google Scholar]
- Zhang, Q.; Zhang, J.-X.; Tai, Y.; Fang, K.; Yin, W. Horizontal roof gap of backfill hydraulic support. J. Cent. South Univ. 2015, 22, 3544–3555. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, J.-X.; Qi, W.-Y.; Zhou, N.; Tai, Y. Structure optimal design research on backfill hydraulic support. J. Cent. South Univ. 2017, 24, 1637–1646. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, J.X.; Tai, Y.; Ju, F.; Sun, Q. The theoretical research on basic characteristics of backfilling hydraulic support and its application. J. Min. Saf. Eng. 2014, 31, 845–851. [Google Scholar]
- Dolipski, M.; Remiorz, E.; Sobota, P. Determination of dynamic loads of sprocket drum teeth and seats by means of a mathematical model of the longwall conveyor. Arch. Min. Sci. 2012, 57, 1101–1119. [Google Scholar]
- Luan, L.J.; Fan, M.F.; Guo, J.S.; Gao, H. A study on the design of dumping hole in multihole-bottom-dump chain conveyor. Coal Mine Mach. 2016, 37, 5–7. [Google Scholar]
- Gao, H.; Zhao, L.; Du, X.S.; Yuan, W.J. Study and design of the multihole-bottom-dump filling scraper conveyor. Coal Mine Mach. 2014, 35, 131–133. [Google Scholar]
- Liu, W.L.; Xu, Y.M.; Qin, J.; Zhu, L.D. Improvement of the head and tail of the filling scraper conveyor. Min. Process. Equip. 2012, 40, 129–130. [Google Scholar]
- Ning, Y.L.; Ou, R.Z.; Lin, W.X.; Zhan, J. A study on the optimization and modification of the pumping system for full graded gravel cement filling materials. Nonferrous Met. 2017, 69, 7–9+17. [Google Scholar]
- Wang, L.H.; Bao, A.H.; Luo, Y.Y. Application and prospect of China’s filling technology. Min. Res. Dev. 2017, 37, 1–7. [Google Scholar]
- Huang, Z.; Zhang, L.; Ma, Z. Study on the Mechanical Relationship among the Backfilling Mining Support, Roof Rock Beam, and Gangue Filling Body in Comprehensive Mechanized Filling Mining Process. Adv. Civ. Eng. 2020, 2020, 1–15. [Google Scholar] [CrossRef]
- Zhao, L.S.; Guo, J.X.; Zhao, H.; Qie, L. A study on the automatic control system technology for the backfilling shield. Coal Technol. 2020, 39, 170–172. [Google Scholar]
- Zhang, Q.; Wu, Z.Y.; Du, E.B.; Chen, Y.; Huang, L.; Li, M. Working resistance design method of backfilling shield. J. Min. Saf. Eng. 2020, 37, 118–127. [Google Scholar]
- Gao, H. Mechanics properties research and structure on the main part of hanging scraper conveyor of solid backfill hydraulic support. Master’s Thesis, Liaoning Technical University, Fuxin, China, 2016. [Google Scholar]
- Zhang, D.S.; Yuan, S.; Yuan, Z.; Song, Q.S.; Gao, H. Simulation research of the hanging scraper conveyor of the solid filling hydraulic support. J. Mech. Transm. 2017, 41, 140–145+177. [Google Scholar]
- Ralston, J.C.; Hargrave, C.O.; Dunn, M.T. Longwall automation: Trends, challenges and opportunities. Int. J. Min. Sci. Technol. 2017, 27, 733–739. [Google Scholar] [CrossRef]
- Wang, G.; Xu, Y.H. Intelligent and ecological coal mining as well as clean utilization technology in China: Review and prospects. Int. J. Min. Sci. Technol. 2019, 29, 161–169. [Google Scholar] [CrossRef]
- Barnewold, L.; Lottermoser, B.G. Identification of digital technologies and digitalisation trends in the mining industry. Int. J. Min. Sci. Technol. 2020, 30, 747–757. [Google Scholar] [CrossRef]
- Rogers, W.P.; Kahraman, M.M.; Drews, F.A.; Powell, P.; Haight, J.M.; Wang, Y.; Baxla, K.; Sobalkar, M. Automation in the mining industry: Review of technology, systems, human factors, and political risk. Min. Metall. Explor. 2019, 36, 607–631. [Google Scholar]
- Meng, Z.S.; Zhang, S.; Xie, Y.Y.; Zeng, Q.L. Attitude Adjustment of Backfilling Support Based on Mechanical-Hydraulic Co-Simulation. Int. J. Simul. Model. 2020, 19, 399–409. [Google Scholar] [CrossRef]
- Peng, S.S.; Du, F.; Cheng, J.; Li, Y. Automation in U.S. longwall coal mining: A state-of-the-art review. Int. J. Min. Sci. Technol. 2019, 29, 151–159. [Google Scholar] [CrossRef]
- Bołoz, Ł.; Biały, W. Automation and Robotization of Underground Mining in Poland. Appl. Sci. 2020, 10, 7221. [Google Scholar] [CrossRef]
- Wang, J.; Huang, Z. The Recent Technological Development of Intelligent Mining in China. Engineering 2017, 3, 439–444. [Google Scholar] [CrossRef]
- Ranjith, P.; Zhao, J.; Ju, M.; De Silva, R.V.; Rathnaweera, T.; Bandara, A.K. Opportunities and Challenges in Deep Mining: A Brief Review. Engineering 2017, 3, 546–551. [Google Scholar] [CrossRef]
- Liu, J.G.; Bi, J.M.; Zhao, L.T.; Xie, G.Q. Research and application of fully mechanized mining with solid backfilling technology. Coal Sci. Technol. 2016, 44, 149–156. [Google Scholar]
- Jiao, S.L.; Lin, J.G.; Shang, L. Automated system for fully mechanized mining with solid backfilling technology. Coal Sci. Technol. 2015, 43, 109–113+108. [Google Scholar]
- Huang, J.; Tian, C.; Xing, L.; Bian, Z.; Miao, X. Green and Sustainable Mining: Underground Coal Mine Fully Mechanized Solid Dense Stowing-Mining Method. Sustainability 2017, 9, 1418. [Google Scholar] [CrossRef]
- Zhou, N.; Yao, Y.N.; Song, W.J.; He, Z.W.; Meng, G.H.; Liu, Y. Present situation and prospect of coal gangue treatment technology. J. Min. Saf. Eng. 2020, 37, 136–146. [Google Scholar]
- Zhang, J.X.; Tu, S.H.; Cao, Y.J.; Tan, Y.L.; Xin, H.Q.; Pang, J.L. Research progress of technologies for intelligent separation and in-situ backfill in deep coal mines in China. J. Min. Saf. Eng. 2020, 37, 1–10+22. [Google Scholar]
- Ma, L.Q.; Sun, H.; Ngo, I.; Han, J. Infrared radiation quantification of rock damage and its constitutive modeling under loading. Infrared Phys. Technol. 2022, 121, 104044. [Google Scholar] [CrossRef]
- Ma, L.Q.; Khan, N.M.; Cao, K.W.; Rehman, H.; Salman, S.; Rehman, F.U. Prediction of sandstone dilatancy point in different water contents using infrared radiation characteristic: Experimental and machine learning approaches. Lithoshere 2021, 4, 3243070. [Google Scholar] [CrossRef]
- Ma, L.; Xu, Y.; Ngo, I.; Wang, Y.; Zhai, J.; Hou, L. Prediction of water-blocking capability of water-seepage-resistance strata based on AHP-fuzzy comprehensive evaluation method—A case study. Water 2022, 14, 2517. [Google Scholar] [CrossRef]
- Wang, P.; Hu, Z.; Wang, P. Attenuation of heavy metals by geosynthetics in the coal gangue-filled columns. Environ. Technol. 2013, 34, 2889–2895. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Wang, W.; Bian, Z. Prospects of resource utilization and disposal of coal-based solid wastes in Xinjiang. Coal Sci. Technol. 2021, 49, 319–330. [Google Scholar]
- Zhang, J.X.; Ju, Y.; Zhang, Q.; Ju, F.; Xiao, X.; Zhang, W.Q.; Zhou, N.; Li, M. Low ecological environment damage technology and method in coal mines. J. Min. Strata Control Eng. 2019, 1, 56–68. [Google Scholar]
- Guo, S.; Zhang, J.; Li, M.; Zhou, N.; Song, W.; Wang, Z.; Qi, S. A preliminary study of solid-waste coal gangue based biomineralization as eco-friendly underground backfill material: Material preparation and macro-micro analyses. Sci. Total Environ. 2021, 770, 145241. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.J.; Liu, M.; Xing, Y.W.; Li, G.S.; Luo, J.Q.; Gui, X.H. Current situation and prospect of underground coal preparation technology. J. Min. Saf. Eng. 2020, 37, 192–201. [Google Scholar]
- Sun, Q.; Zhang, J.; Qi, W.; Li, M. Backfill mining alternatives and strategies for mitigating shallow coal mining hazards in the western mining area of China. Q. J. Eng. Geol. Hydrogeol. 2019, 53, 217–226. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, J.; Li, B.; Zhou, N.; Xiao, X.; Li, M.; Zhu, C. Environmental behavior of construction and demolition waste as recycled aggregates for backfilling in mines: Leaching toxicity and surface subsidence studies. J. Hazard. Mater. 2020, 389, 121870. [Google Scholar] [CrossRef] [PubMed]
No. | Coal Mine | Province Location | Applied Technology | Backfilling Materials | Disposal Capacity of Coal Gangue/(ton thousand t·a−1) |
---|---|---|---|---|---|
1 | Xingdong Coal Mine | Hebei | Roadway throwing gangue mechanical backfilling | Gangue generated during roadway excavation (GRE) | 4.5 |
2 | Taiyuan Dongshan Coal Mine | Shanxi | Gangue from the waste heap (GWH) | 15 | |
3 | Shengquan Mining Company | Shandong | Conventional mechanized mining with mechanical backfilling | GRE, GWH | 10 |
4 | E’zhuang Coal Mine | Shandong | GRE | 21.6 | |
5 | Jisan Coal Mine | Shandong | Fully mechanized mining with solid backfilling technology | GRE | 30 |
6 | Yangzhuang Coal Mine | Anhui | GRE | 30 | |
7 | Huayuan Coal Mine | Shandong | GRE, GWH | 50 | |
8 | Zhaizhen Coal Mine | Shandong | GWH, fly ash (FA) | 50 | |
9 | Xinjulong Coal Mine | Shandong | Gangue from underground washing and dressing (GWD) | 60 | |
10 | Tangshan Coal Mine | Hebei | GRE, GWH, GWD | 60 | |
11 | Wugou Coal Mine | Anhui | GWH, FA | 70 | |
12 | Taiyuan Coal Mine | Inner Mongolia | GWH, FA | 90 | |
13 | Xingtai Coal Mine | Hebei | GWH, FA | 45.5 | |
14 | Tangkou Coal Mine | Shandong | GRE | 40 | |
15 | Shi’er Coal Mine | Henan | Mixed workface using a gangue backfilling and caving method | GWH, GWD | 150 |
16 | Gongge Yingzi Coal Mine | Inner Mongolia | Longwall-roadway cemented backfilling | GWH, FA | 45 |
17 | Xiaotun Coal Mine | Hebei | Paste backfilling | GWH, FA | 21 |
18 | Daizhuang Coal Mine | Shandong | GWH, FA | 23.2 | |
19 | Xinyang Coal Mine | Shanxi | GWH, FA | 26.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, W.; Zhang, J.; Li, M.; Yan, H.; Zhou, N.; Yao, Y.; Guo, Y. Underground Disposal of Coal Gangue Backfill in China. Appl. Sci. 2022, 12, 12060. https://doi.org/10.3390/app122312060
Song W, Zhang J, Li M, Yan H, Zhou N, Yao Y, Guo Y. Underground Disposal of Coal Gangue Backfill in China. Applied Sciences. 2022; 12(23):12060. https://doi.org/10.3390/app122312060
Chicago/Turabian StyleSong, Weijian, Jixiong Zhang, Meng Li, Hao Yan, Nan Zhou, Yinan Yao, and Yaben Guo. 2022. "Underground Disposal of Coal Gangue Backfill in China" Applied Sciences 12, no. 23: 12060. https://doi.org/10.3390/app122312060
APA StyleSong, W., Zhang, J., Li, M., Yan, H., Zhou, N., Yao, Y., & Guo, Y. (2022). Underground Disposal of Coal Gangue Backfill in China. Applied Sciences, 12(23), 12060. https://doi.org/10.3390/app122312060