Wheat Ear Detection Algorithm Based on Improved YOLOv4
Abstract
:1. Introduction
2. Materials and Methods
2.1. YOLOv4 Object Detection Algorithm
2.1.1. Feature Extracting Network
2.1.2. Feature Fusion Network
2.1.3. Prediction Network
2.2. Improved YOLOv4 to Enhance Receptive Field
2.3. Evaluation of Model Performance
3. Results and Discussion
3.1. Dataset and Platform
3.2. Model Training
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Cheng, Z.; Lu, Z. System response modeling of HMCVT for tractors and the comparative research on system identification methods. Comput. Electron. Agric. 2022, 202, 107386. [Google Scholar] [CrossRef]
- Chen, Y.; Cheng, Z.; Qian, Y. Research on Wet Clutch Switching Quality in the Shifting Stage of an Agricultural Tractor Transmission System. Agriculture 2022, 12, 1174. [Google Scholar] [CrossRef]
- Cheng, Z.; Lu, Z. Research on load disturbance based variable speed PID control and a novel denoising method based effect evaluation of HST for agricultural machinery. Agriculture 2021, 11, 960. [Google Scholar] [CrossRef]
- Zhou, C.; Liang, D.; Yang, X.; Yang, H.; Yue, J.; Yang, G. Wheat ears counting in field conditions based on multi-feature optimization and TWSVM. Front. Plant Sci. 2018, 9, 1024. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Gallego, J.A.; Kefauver, S.C.; Gutiérrez, N.A.; Nieto-Taladriz, M.T.; Araus, J.L. Wheat ear counting in-field conditions: High throughput and low-cost approach using RGB images. Plant Methods 2018, 14, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Alharbi, N.; Zhou, J.; Wang, W. Automatic Counting of Wheat Spikes from Wheat Growth Images. In Proceedings of the 7th International Conference on Pattern Recognition Applications and Methods, Funchal, Madeira, Portugal, 16–18 January 2018; pp. 346–355. [Google Scholar]
- Zhao, Y.; Ma, J.; Shen, L.; Qian, Y. Optimizing the junction-tree-based reinforcement learning algorithm for network-wide signal coordination. J. Adv. Transp. 2020, 2020, 6489027. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, A. Remaining useful life prediction of rolling bearings using electrostatic monitoring based on two-stage information fusion stochastic filtering. Math. Probl. Eng. 2020, 2020, 2153235. [Google Scholar] [CrossRef]
- Gupta, A.; Narayan, S.; Joseph, K.; Khan, S.; Khan, F.S.; Shah, M. OW-DETR: Open-world detection transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Louisiana, New Orleans, America, 19–23 June 2022; pp. 9235–9244. [Google Scholar]
- Tu, D.; Min, X.; Duan, H.; Guo, G.; Zhai, G.; Shen, W. End-to-End Human-Gaze-Target Detection with Transformers. arXiv 2022, arXiv:2203.10433. [Google Scholar]
- Zhao, Y.; Ukkusuri, S.V.; Lu, J. Multidimensional scaling-based data dimension reduction method for application in short-term traffic flow prediction for urban road network. J. Adv. Transp. 2018, 2018, 3876841. [Google Scholar] [CrossRef]
- Zhao, Y.; Guo, X.; Lu, Y. Semantic-aligned Fusion Transformer for One-shot Object Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Louisiana, New Orleans, America, 19–23 June 2022; pp. 7601–7611. [Google Scholar]
- Grbovic, Z.; Panic, M.; Marko, O.; Brdar, S.; Crnojevic, V. Wheat ear detection in RGB and thermal images using deep neural networks. Environments 2019, 11, 13. [Google Scholar]
- Ma, J.; Li, Y.; Du, K.; Zheng, F.; Zhang, L.; Gong, Z.; Jiao, W. Segmenting ears of winter wheat at flowering stage using digital images and deep learning. Comput. Electron. Agric. 2020, 168, 105159. [Google Scholar] [CrossRef]
- Su, W.H.; Zhang, J.; Yang, C.; Page, R.; Szinyei, T.; Hirsch, C.D.; Steffenson, B.J. Automatic evaluation of wheat resistance to fusarium head blight using dual mask-RCNN deep learning frameworks in computer vision. Remote. Sens. 2020, 13, 26. [Google Scholar] [CrossRef]
- Wang, Y.; Qin, Y.; Cui, J. Occlusion robust wheat ear counting algorithm based on deep learning. Front. Plant Sci. 2021, 12, 645899. [Google Scholar] [CrossRef]
- Dong, J.; Chen, Q.; Yan, S.; Yuille, A. Towards unified object detection and semantic segmentation. In Proceedings of the European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2014; pp. 299–314. [Google Scholar]
- Hasan, M.M.; Chopin, J.P.; Laga, H.; Miklavcic, S.J. Detection and analysis of wheat spikes using convolutional neural networks. Plant Methods 2018, 14, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Madec, S.; Jin, X.; Lu, H.; De Solan, B.; Liu, S.; Duyme, F.; Heritier, E.; Baret, F. Ear density estimation from high resolution RGB imagery using deep learning technique. Agric. For. Meteorol. 2019, 264, 225–234. [Google Scholar] [CrossRef]
- Tan, M.; Pang, R.; Le, Q.V. Efficientdet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10781–10790. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Gibbs, J.A.; Burgess, A.J.; Pound, M.P.; Pridmore, T.P.; Murchie, E.H. Recovering wind-induced plant motion in dense field environments via deep learning and multiple object tracking. Plant Physiol. 2019, 181, 28–42. [Google Scholar] [CrossRef] [PubMed]
- Bhagat, S.; Kokare, M.; Haswani, V.; Hambarde, P.; Kamble, R. WheatNet-lite: A novel light weight network for wheat head detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 1332–1341. [Google Scholar]
- Wang, C.Y.; Liao, H.Y.M.; Wu, Y.H.; Chen, P.Y.; Hsieh, J.W.; Yeh, I.H. CSPNet: A new backbone that can enhance learning capability of CNN. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 390–391. [Google Scholar]
- Yang, B.; Gao, Z.; Gao, Y.; Zhu, Y. Rapid detection and counting of wheat ears in the field using YOLOv4 with attention module. Agronomy 2021, 11, 1202. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, X.; Yan, J.; Qiu, X.; Yao, X.; Tian, Y.; Zhu, Y.; Cao, W. A wheat spike detection method in UAV images based on improved YOLOv5. Remote. Sens. 2021, 13, 3095. [Google Scholar] [CrossRef]
- Najafian, K.; Ghanbari, A.; Stavness, I.; Jin, L.; Shirdel, G.H.; Maleki, F. A semi-self-supervised learning approach for wheat head detection using extremely small number of labeled samples. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 11–17 October 2021; pp. 1342–1351. [Google Scholar]
- Fernandez-Gallego, J.A.; Buchaillot, M.L.; Aparicio Gutiérrez, N.; Nieto-Taladriz, M.T.; Araus, J.L.; Kefauver, S.C. Automatic wheat ear counting using thermal imagery. Remote. Sens. 2019, 11, 751. [Google Scholar] [CrossRef] [Green Version]
- Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated residual transformations for deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1492–1500. [Google Scholar]
- Misra, D. Mish: A self regularized non-monotonic neural activation function. arXiv 2019, arXiv:1908.08681. [Google Scholar]
- Ghiasi, G.; Lin, T.Y.; Le, Q.V. Dropblock: A regularization method for convolutional networks. Adv. Neural Inf. Process. Syst. 2018, 31. [Google Scholar]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer -Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar]
- Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path aggregation network for instance segmentation. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18 June 2018; pp. 8759–8768. [Google Scholar]
- Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in context. In Proceedings of the European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2014; pp. 740–755. [Google Scholar]
- Zheng, Z.; Wang, P.; Liu, W.; Li, J.; Ye, R.; Ren, D. Distance-IoU loss: Faster and better learning for bounding box regression. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 12993–13000. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [Google Scholar] [CrossRef] [Green Version]
- David, E.; Serouart, M.; Smith, D.; Madec, S.; Velumani, K.; Liu, S.; Wang, X.; Pinto, F.; Shafiee, S.; Tahir, I.S.; et al. Global wheat head detection 2021: An improved dataset for benchmarking wheat head detection methods. Plant Phenomics 2021, 2021, 846158. [Google Scholar] [CrossRef] [PubMed]
Method | AP(%) | Precision(%) 1 | Recall(%) 1 | FPS | |
---|---|---|---|---|---|
Proposed | 95.16 | 0.87 | 96.91 | 79.00 | 51.78 |
YOLOv4 | 92.00 | 0.87 | 95.09 | 79.51 | 54.06 |
CBAM-YOLOv4 | 96.40 | 0.93 | 89.73 | 96.55 | NA |
Method | AP(%) | Precision(%) 1 | Recall(%) 1 | FPS | |
---|---|---|---|---|---|
Proposed | 97.96 | 0.93 | 96.40 | 90.24 | 51.01 |
YOLOv4 | 92.83 | 0.91 | 94.05 | 88.44 | 50.65 |
CBAM-YOLOv4 | 93.11 | 0.89 | 87.55 | 91.01 | NA |
Detected Number | Real Number | Accuracy |
---|---|---|
170 | 175 | 97.14% |
132 | 134 | 98.5% |
47 | 49 | 95.92% |
56 | 57 | 98.25% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, F.; Xu, L.; Lv, L.; Zhang, Y. Wheat Ear Detection Algorithm Based on Improved YOLOv4. Appl. Sci. 2022, 12, 12195. https://doi.org/10.3390/app122312195
Zhao F, Xu L, Lv L, Zhang Y. Wheat Ear Detection Algorithm Based on Improved YOLOv4. Applied Sciences. 2022; 12(23):12195. https://doi.org/10.3390/app122312195
Chicago/Turabian StyleZhao, Fengkui, Lizhang Xu, Liya Lv, and Yong Zhang. 2022. "Wheat Ear Detection Algorithm Based on Improved YOLOv4" Applied Sciences 12, no. 23: 12195. https://doi.org/10.3390/app122312195
APA StyleZhao, F., Xu, L., Lv, L., & Zhang, Y. (2022). Wheat Ear Detection Algorithm Based on Improved YOLOv4. Applied Sciences, 12(23), 12195. https://doi.org/10.3390/app122312195