Retrofit Analysis of a Historical Building in an Architectural Constrained Area: A Case Study in Rome, Italy
Abstract
:1. Introduction
1.1. Architectural Conservation and Heritage Building Refurbishment
1.2. Italian Energy Retrofit Architectural Heritage Regulation
1.3. Energy Numerical Model Approaches
1.4. Multi-Criteria Energy Retrofitting
1.5. Aim of this Study
2. Materials and Methods
2.1. Methodology
2.2. Case Study
2.3. Energy Efficiency Strategies
2.3.1. External Wall
2.3.2. Sun Protection Film
2.3.3. Roof Insulating
2.3.4. Optimization of the Thermal Plant Management
2.3.5. Revamping and Optimization of Lighting Management
2.3.6. High-Efficiency Cooling Plant
2.3.7. PV
3. Results and Discussions
3.1. Model Calibration
3.2. Retrofitting Scenario Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dehwah, A.H.A.; Asif, M.; Rahman, M.T. Prospects of PV Application in Unregulated Building Rooftops in Developing Countries: A Perspective from Saudi Arabia. Energy Build. 2018, 171, 76–87. [Google Scholar] [CrossRef]
- D’Agostino, D.; Parker, D. A Framework for the Cost-Optimal Design of Nearly Zero Energy Buildings (NZEBs) in Representative Climates across Europe. Energy 2018, 149, 814–829. [Google Scholar] [CrossRef]
- Nematchoua, M.K.; Marie-Reine Nishimwe, A.; Reiter, S. Towards Nearly Zero-Energy Residential Neighbourhoods in the European Union: A Case Study. Renew. Sustain. Energy Rev. 2021, 135, 110198. [Google Scholar] [CrossRef]
- Battista, G.; Evangelisti, L.; Guattari, C.; de Lieto Vollaro, E.; de Lieto Vollaro, R.; Asdrubali, F. Urban Heat Island Mitigation Strategies: Experimental and Numerical Analysis of a University Campus in Rome (Italy). Sustainability 2020, 12, 7971. [Google Scholar] [CrossRef]
- Battista, G. Analysis of the Air Pollution Sources in the City of Rome (Italy). Energy Procedia 2017, 126, 392–397. [Google Scholar] [CrossRef]
- Mauri, L.; Vallati, A.; Ocłoń, P. Low Impact Energy Saving Strategies for Individual Heating Systems in a Modern Residential Building: A Case Study in Rome. J. Clean. Prod. 2019, 214, 791–802. [Google Scholar] [CrossRef]
- Kaloustian, N.; Aouad, D.; Battista, G.; Zinzi, M. Leftover Spaces for the Mitigation of Urban Overheating in Municipal Beirut. Climate 2018, 6, 68. [Google Scholar] [CrossRef] [Green Version]
- Battista, G.; de Lieto Vollaro, E.; de Lieto Vollaro, R. How Cool Pavements and Green Roof Affect Building Energy Performances. Heat Transfer Eng. 2021, 43, 326–336. [Google Scholar] [CrossRef]
- Cornaro, C.; Puggioni, V.A.; Strollo, R.M. Dynamic Simulation and On-Site Measurements for Energy Retrofit of Complex Historic Buildings: Villa Mondragone Case Study. J. Build. Eng. 2016, 6, 17–28. [Google Scholar] [CrossRef]
- Vallati, A.; Grignaffini, S.; Romagna, M.; Mauri, L. Effects of Different Building Automation Systems on the Energy Consumption for Three Thermal Insulation Values of the Building Envelope. In Proceedings of the EEEIC 2016—International Conference on Environment and Electrical Engineering, Florence, Italy, 7–10 June 2016. [Google Scholar] [CrossRef]
- Ali, U.; Shamsi, M.H.; Bohacek, M.; Hoare, C.; Purcell, K.; Mangina, E.; O’Donnell, J. A Data-Driven Approach to Optimize Urban Scale Energy Retrofit Decisions for Residential Buildings. Appl. Energy 2020, 267, 114861. [Google Scholar] [CrossRef]
- Martínez-Molina, A.; Tort-Ausina, I.; Cho, S.; Vivancos, J.L. Energy Efficiency and Thermal Comfort in Historic Buildings: A Review. Renew. Sustain. Energy Rev. 2016, 61, 70–85. [Google Scholar] [CrossRef]
- Wu, Z.; Xu, J. Predicting and Optimization of Energy Consumption Using System Dynamics-Fuzzy Multiple Objective Programming in World Heritage Areas. Energy 2013, 49, 19–31. [Google Scholar] [CrossRef]
- Polo López, C.S.; Frontini, F. Energy Efficiency and Renewable Solar Energy Integration in Heritage Historic Buildings. Energy Procedia 2014, 48, 1493–1502. [Google Scholar] [CrossRef] [Green Version]
- De Berardinis, P.; Rotilio, M.; Marchionni, C.; Friedman, A. Improving the Energy-Efficiency of Historic Masonry Buildings. A Case Study: A Minor Centre in the Abruzzo Region, Italy. Energy Build. 2014, 80, 415–423. [Google Scholar] [CrossRef]
- Ascione, F.; Bianco, N.; De Masi, R.F.; De’Rossi, F.; Vanoli, G.P. Energy Retrofit of an Educational Building in the Ancient Center of Benevento. Feasibility Study of Energy Savings and Respect of the Historical Value. Energy Build. 2015, 95, 172–183. [Google Scholar] [CrossRef]
- Alongi, A.; Scoccia, R.; Motta, M.; Mazzarella, L. Numerical Investigation of the Castle of Zena Energy Needs and a Feasibility Study for the Implementation of Electric and Gas Driven Heat Pump. Energy Build. 2015, 95, 32–38. [Google Scholar] [CrossRef]
- Franco, G.; Magrini, A.; Cartesegna, M.; Guerrini, M. Towards a Systematic Approach for Energy Refurbishment of Historical Buildings. The Case Study of Albergo Dei Poveri in Genoa, Italy. Energy Build. 2015, 95, 153–159. [Google Scholar] [CrossRef]
- Ben, H.; Steemers, K. Energy Retrofit and Occupant Behaviour in Protected Housing: A Case Study of the Brunswick Centre in London. Energy Build. 2014, 80, 120–130. [Google Scholar] [CrossRef]
- Ascione, F.; De Rossi, F.; Vanoli, G.P. Energy Retrofit of Historical Buildings: Theoretical and Experimental Investigations for the Modelling of Reliable Performance Scenarios. Energy Build. 2011, 43, 1925–1936. [Google Scholar] [CrossRef]
- Feilden, B.M. Conservation of Historic Buildings; Routledge: London, UK, 2003; ISBN 9780750658638. [Google Scholar]
- Staniforth, S. Historical Perspectives on Preventive Conservation; Readings in Conservation Series; Getty Publications: Los Angeles, CA, USA, 2013. [Google Scholar]
- Heinemann, H.; Naldini, S. The Role of Monumentenwacht: 40 Years Theory and Practice in the Netherlands. In Innovative Built Heritage Models—Edited Contributions to the International Conference on Innovative Built Heritage Models and Preventive Systems, CHANGES 2017; CRC Press: Boca Raton, FL, USA, 2018; pp. 107–116. [Google Scholar] [CrossRef]
- van Roy, N.; Verstrynge, E.; Vandesande, A.; van Balen, K. Implementation of Maintenance Systems: Identification of Maintenance Practices within the Monumentenwacht Model in Belgium. In Innovative Built Heritage Models—Edited Contributions to the International Conference on Innovative Built Heritage Models and Preventive Systems, CHANGES 2017; CRC Press: Boca Raton, FL, USA, 2018; pp. 125–134. [Google Scholar] [CrossRef]
- Tagliabue, L.C.; Leonforte, F.; Compostella, J. Renovation of an UNESCO Heritage Settlement in Southern Italy: ASHP and BIPV for a “Spread Hotel” Project. Energy Procedia 2012, 30, 1060–1068. [Google Scholar] [CrossRef] [Green Version]
- Bottino-Leone, D.; Larcher, M.; Herrera-Avellanosa, D.; Haas, F.; Troi, A. Evaluation of Natural-Based Internal Insulation Systems in Historic Buildings through a Holistic Approach. Energy 2019, 181, 521–531. [Google Scholar] [CrossRef]
- lo Basso, G.; Rosa, F.; Astiaso Garcia, D.; Cumo, F. Hybrid Systems Adoption for Lowering Historic Buildings PFEC (Primary Fossil Energy Consumption)—A Comparative Energy Analysis. Renew Energy 2018, 117, 414–433. [Google Scholar] [CrossRef]
- Arumägi, E.; Kalamees, T. Analysis of Energy Economic Renovation for Historic Wooden Apartment Buildings in Cold Climates. Appl. Energy 2014, 115, 540–548. [Google Scholar] [CrossRef]
- Galatioto, A.; Ciulla, G.; Ricciu, R. An Overview of Energy Retrofit Actions Feasibility on Italian Historical Buildings. Energy 2017, 137, 991–1000. [Google Scholar] [CrossRef]
- Chen, X.; Qu, K.; Calautit, J.; Ekambaram, A.; Lu, W.; Fox, C.; Gan, G.; Riffat, S. Multi-Criteria Assessment Approach for a Residential Building Retrofit in Norway. Energy Build. 2020, 215, 109668. [Google Scholar] [CrossRef]
- Berardi, U.; Nosrati, R.H. Long-Term Thermal Conductivity of Aerogel-Enhanced Insulating Materials under Different Laboratory Aging Conditions. Energy 2018, 147, 1188–1202. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, Z.; Yang, Z.; Hu, J.; Yang, Y.; Chang, L.; Lee, L.J.; Xu, T. Preparation and Characterization of Vacuum Insulation Panels with Super-Stratified Glass Fiber Core Material. Energy 2015, 93, 945–954. [Google Scholar] [CrossRef]
- Biswas, K.; Patel, T.; Shrestha, S.; Smith, D.; Desjarlais, A. Whole Building Retrofit Using Vacuum Insulation Panels and Energy Performance Analysis. Energy Build. 2019, 203, 109430. [Google Scholar] [CrossRef]
- Legge 1 Giugno 1939, N.1089 Tutela Delle Cose d’interesse Artistico o Storico. Available online: https://www.librari.beniculturali.it/it/documenti/Normativa/Legge_1_giugno_1939_n_1089.pdf (accessed on 26 November 2022).
- Legge 29 Giugno 1939, n. 1497 “Protezione Delle Bellezze Naturali”. Available online: http://www.comune.jesi.an.it/MV/leggi/l1497-39.htm (accessed on 26 November 2022).
- Decreto Legislativo 29 Ottobre 1999, n. 490 Testo Unico Delle Disposizioni Legislative in Materia Di Beni Culturali e Ambientali, a Norma Dell’art. 1 Della Legge 8 Ottobre 1997, n. 352. Available online: https://www.gazzettaufficiale.it/eli/id/1999/12/27/099G0542/sg (accessed on 26 November 2022).
- Presidenza Repubblica Italiana, Decreto Legislativo 22 Gennaio 2004, n. 42, Codice Dei Beni Culturali e Del Paesaggio, Ai Sensi Dell’articolo 10 Legge 6 Luglio2002, n. 137. GU n.45 Del 24-2-2004—Suppl. Ordinario n. 28. Available online: https://www.beniculturali.it/mibac/multimedia/MiBAC/documents/1226395624032_Codice2004.pdf (accessed on 26 November 2022).
- Legge 12 Luglio 2011, n. 106 Conversione in Legge, Con Modificazioni, Del Decreto Legge 13 Maggio 2011, n. 70 Semestre Europeo—Prime Disposizioni Urgenti per l’economia. Available online: https://www.gazzettaufficiale.it/atto/serie_generale/caricaDettaglioAtto/originario?atto.dataPubblicazioneGazzetta=2011-07-12&atto.codiceRedazionale=011G0152&elenco30giorni=false (accessed on 26 November 2022).
- Fabbri, K. Energy Incidence of Historic Building: Leaving No Stone Unturned. J. Cult. Herit. 2013, 14, e25–e27. [Google Scholar] [CrossRef]
- Litti, G.; Audenaert, A.; Braet, J. Energy Retrofitting in Architectural Heritage, Possible Risks Due to the Missing of a Specific Legislative and Methodological Protocol. Proceedings of the European Conference on Sustainability. Energy Environ. 2013, 2013, 127–137. [Google Scholar]
- Building Regulations and Historic Buildings Balancing the Needs for Energy Conservation with Those of Building Conservation: An Interim Guidance Note on the Application of Part L. Available online: http://www.castle-surveyors.co.uk/Building_Regulations_and_Historic_Buildings.pdf (accessed on 26 November 2022).
- Mazzarella, L. Energy Retrofit of Historic and Existing Buildings. The Legislative and Regulatory Point of View. Energy Build. 2015, 95, 23–31. [Google Scholar] [CrossRef]
- CEN and CENELEC—CEN-CENELEC. Available online: https://www.cencenelec.eu/european-standardization/cen-and-cenelec/ (accessed on 26 November 2022).
- Heritage, E. PPS5 Planning for the Historic Environment: Historic Environment Planning Practice Guide. 2010. Available online: https://www.rbkc.gov.uk/pdf/Document%2032%20-%20English%20Heritage%20Practice%20Guide%20-%20Alteration%20to%20Listed%20Buildings.pdf (accessed on 26 November 2022).
- DIRECTIVE 2002/91/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 16 December 2002 on the Energy Performance of Buildings. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2003:001:0065:0071:EN:PDF (accessed on 26 November 2022).
- DECRETO LEGISLATIVO 19 Agosto 2005, n. 192 Attuazione Della Direttiva 2002/91/CE Relativa al Rendimento Energetico Nell’edilizia. Available online: https://www.gazzettaufficiale.it/eli/id/2005/09/23/005G0219/sg (accessed on 26 November 2022).
- LEGGE 3 Agosto 2013, n. 90 Conversione, Con Modificazioni, Del Decreto-Legge 4 Giugno 2013, n. 63 Disposizioni Urgenti per Il Recepimento Della Direttiva 2010/31/UE Del Parlamento Europeo e Del Consiglio Del 19 Maggio 2010, Sulla Prestazione Energetica Nell’edilizia per La Definizione Delle Procedure d’infrazione Avviate Dalla Commissione Europea, Nonché Altre Disposizioni in Materia Di Coesione Sociale. Available online: https://www.gazzettaufficiale.it/eli/id/2013/08/03/13G00133/sg (accessed on 26 November 2022).
- DIRECTIVE 2010/31/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 19 May 2010 on the Energy Performance of Buildings. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:153:0013:0035:en:PDF (accessed on 26 November 2022).
- Adhikari, R.S.; Lucchi, E.; Pracchi, V.; Rosina, E. Static and Dynamic Evaluation Methods for Energy Efficiency in Historical Buildings. In Proceedings of the 29th Conference, Sustainable Architecture for a Renewable Future, Munich, Germany, 10–12 September 2013; pp. 10–12. [Google Scholar]
- Saikia, P.; Pancholi, M.; Sood, D.; Rakshit, D. Dynamic Optimization of Multi-Retrofit Building Envelope for Enhanced Energy Performance with a Case Study in Hot Indian Climate. Energy 2020, 197, 117263. [Google Scholar] [CrossRef]
- Streicher, K.N.; Mennel, S.; Chambers, J.; Parra, D.; Patel, M.K. Cost-Effectiveness of Large-Scale Deep Energy Retrofit Packages for Residential Buildings under Different Economic Assessment Approaches. Energy Build. 2020, 215, 109870. [Google Scholar] [CrossRef]
- Qu, K.; Chen, X.; Ekambaram, A.; Cui, Y.; Gan, G.; Økland, A.; Riffat, S. A Novel Holistic EPC Related Retrofit Approach for Residential Apartment Building Renovation in Norway. Sustain. Cities Soc. 2020, 54, 101975. [Google Scholar] [CrossRef]
- Zheng, D.; Yu, L.; Wang, L. A Techno-Economic-Risk Decision-Making Methodology for Large-Scale Building Energy Efficiency Retrofit Using Monte Carlo Simulation. Energy 2019, 189, 116169. [Google Scholar] [CrossRef]
- Ciulla, G.; Galatioto, A.; Ricciu, R. Energy and Economic Analysis and Feasibility of Retrofit Actions in Italian Residential Historical Buildings. Energy Build. 2016, 128, 649–659. [Google Scholar] [CrossRef]
- Rodrigues, C.; Freire, F. Adaptive Reuse of Buildings: Eco-Efficiency Assessment of Retrofit Strategies for Alternative Uses of an Historic Building. J. Clean. Prod. 2017, 157, 94–105. [Google Scholar] [CrossRef]
- Wang, R.; Lu, S.; Feng, W. A Three-Stage Optimization Methodology for Envelope Design of Passive House Considering Energy Demand, Thermal Comfort and Cost. Energy 2020, 192, 116723. [Google Scholar] [CrossRef]
- RETScreen. Available online: https://www.nrcan.gc.ca/maps-tools-and-publications/tools/modelling-tools/retscreen/7465 (accessed on 19 June 2022).
- Lee, K.H.; Lee, D.W.; Baek, N.C.; Kwon, H.M.; Lee, C.J. Preliminary Determination of Optimal Size for Renewable Energy Resources in Buildings Using RETScreen. Energy 2012, 47, 83–96. [Google Scholar] [CrossRef]
Fuel Used | Electricity | Natural Gas | Solar |
---|---|---|---|
ante-operam percentage usage (%) | 50.5 | 49.5 | 0.0 |
post-operam percentage usage (%) | 24.7 | 55.4 | 19.9 |
ante-operam consumption (kWh) | 471,313 | 462,274 | 0 |
post-operam consumption (kWh) | 130,355 | 291,717 | 104,685 |
ante-operam GHG emission (tCO2) | 222.4 | 83.0 | 0 |
post-operam GHG emission (tCO2) | 61.5 | 52.4 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Battista, G.; de Lieto Vollaro, E.; Ocłoń, P.; de Lieto Vollaro, R. Retrofit Analysis of a Historical Building in an Architectural Constrained Area: A Case Study in Rome, Italy. Appl. Sci. 2022, 12, 12305. https://doi.org/10.3390/app122312305
Battista G, de Lieto Vollaro E, Ocłoń P, de Lieto Vollaro R. Retrofit Analysis of a Historical Building in an Architectural Constrained Area: A Case Study in Rome, Italy. Applied Sciences. 2022; 12(23):12305. https://doi.org/10.3390/app122312305
Chicago/Turabian StyleBattista, Gabriele, Emanuele de Lieto Vollaro, Paweł Ocłoń, and Roberto de Lieto Vollaro. 2022. "Retrofit Analysis of a Historical Building in an Architectural Constrained Area: A Case Study in Rome, Italy" Applied Sciences 12, no. 23: 12305. https://doi.org/10.3390/app122312305
APA StyleBattista, G., de Lieto Vollaro, E., Ocłoń, P., & de Lieto Vollaro, R. (2022). Retrofit Analysis of a Historical Building in an Architectural Constrained Area: A Case Study in Rome, Italy. Applied Sciences, 12(23), 12305. https://doi.org/10.3390/app122312305